
Building Hybrid Frameworks

Differences between static libraries and dynamic frameworks

Getting Started - Creating a Framework

Using the Framework into Your Project

Using Objective-C in the Swift Framework

Using Objective-C APIs From Your Framework

Adding Swift Static Library Dependency to Your Framework

Adding Objective-C Static Library to Your Framework

Where to go from here?

My name is Cecilia, the past 4.5 years I have been working in Spotify for various projects.
The area covers infrastructure, continuous integration, feature design and implementation,
Swift upgrading etc. Today I’d like to focus on one thing, that is libraries and frameworks.

Cause the knowledge is useful in any circumstances during the development. I hope that
you will be able to bring something back to your work after this workshop.

In our day to day work, we are using other people’s code in our code base. Some of us are
managing other people's code using third party dependency tools like cocoapods, swift
package manager etc.

With or without these helpful and useful tools, it is interesting to know how to build a library
yourself and how to use them manually. When you have a solid ground, it is much easier to
understand on the big scale level. For example, Spotify has its own dependency
management system, It is just a wrapper to stripe away the manual setup for developers.
When you understand what is needed to be done, it is also easier to understand what the
script is doing.

The big questions that are related to libraries and frameworks are:

● How to create your own libraries and frameworks in Swift and Objective-C
● How to add your libraries/frameworks into others’ projects.

You can google these questions and internet has answers to them.

But if you dig one step deeper and there are more specific things that sometimes internet
can not help. In this workshop, I will cover something that is basic, I will also try to show
something that is hard to google. Therefore, the workshop will cover the following parts:

● How to create a framework with both Objective-C and Swift
● How to use Objective-C in a Swift framework?
● How to expose Objective-C APIs from your Swift framework?
● How to add a static library dependency to your framework?

Since this workshop is targeted to iOS developers at all levels, at any point, if you already
have the knowledge of that section, feel free to jump to the next.

Version: Xcode 11, iOS 13.

Differences between static libraries and dynamic frameworks

First, a little theory, if you feel that you would like to read theory later, you can jump over to
the ​hands-on section​.

Static libraries Dynamic frameworks

Code only, in binary form .a Code, resources, header, source, binary.

Link statically Link dynamically

Bigger binary size smaller binary size

Slower launch time Faster launch

Example: static library vs dynamic framework hierarchy

Static Library
- lib*.a
- include /$(PROJECT_NAME)/.a

Dynamic Framework
- *.framework

- Headers/ *.a
- Info.plist
- Modules/module.modulemap
- * executive file

Getting Started - Creating a Framework

Let’s start by building this awesome framework that can be used in various projects.

1. The Most Awesome Framework is called Components.
2. In the Components, there is a TrackRowCell which is written in Swift.
3. The TrackRowCell has an image, the image implementation is written in Objective-C.
4. The Components frameWork uses ColorToken Static Library.

This section includes the following parts:

● Creating the framework ​Components
● Adding TrackRowCell implementations in Swift

Open Xcode, ​Create a New Xcode Projec​t ​▸ ​iOS​ ​▸ ​Framework​▸ ​Next​, give ​Components
as ​Product name​ and​ ​choose​ Swift ​as​ ​Language​ and ​Create.

Build and Run.

Go to ​File ​▸​ ​New ​▸ ​File​ ​▸ ​iOS​ ​▸ ​SwiftUI View ​▸ ​Next​, name it ​TrackRowCell ​and ​Create.

In ​TrackRowCell​, remove these boilerplate code.

 ​struct​ ​TrackRowCell​: ​View​ {

 ​var​ body: some ​View​ {

 ​Text​(​"Hello World!"​)

 }

}

Add the following code.

public​ ​struct​ ​TrackRowCell​: ​View​ {

 ​public​ ​init​() {}

 ​public​ ​var​ body: some ​View​ {

 ​HStack​ {

 ​Image​(systemName: ​"book"​)

 ​VStack​ {

 ​Text​(​"三線の花"​).font(.title)

 ​Text​(​"BEGIN"​).font(.subheadline)

 }

 }

 }

}

Basically, it implements a view that contains one image and two texts.
Now, build and Run.

Using the Framework into Your Project
In Xcode, go to ​File ​▸​ ​New ​▸ ​Project​ ​▸ ​iOS​ ​▸ ​Single View App ​▸ ​Next​, give ​Tracks as
Product name​ and​ ​choose​ Swift ​as​ ​Language, ​SwiftUI​ ​as​ User Interface​, ​Next ​▸ ​Create.

Build and Run the ​Tracks​ project.

Close down the ​Components.xcodeproj, ​Go to​ where Components.xcodeproj ​is located,
drag ​Components.xcodeproj ​into the​ Tracks Project navigator ​lane​.

Tap​ Tracks Target, ​build and run the ​Tracks​ project.

Go to build settings, Select ​Tracks Target, ​in ​General ​▸​ ​Frameworks, Libraries, and
Embedded Content ​▸ + ​, ​tap​ Components.framework, ​then​ Add.

Build and Run.

Go to​ ContentView.swift,

import​ Components

In the body implementation, remove this line

Text​(​"Hello World!"​)

Add the following lines.

List​(​0​..<​10​) { ​_​ ​in

 ​TrackRowCell​()

}

Build and Run.

Now you have successfully used the functions in the Swift framework for your project.
Congratulations and the warm-up is done! Now let’s start the real exercise!

Using Objective-C in the Swift Framework
Tap ​Components ​folder, go to ​File ​▸​ ​New ​▸ ​File​ ​▸ ​Objective-C File​ ​▸ ​Next, ​File:​ ​Image​,
File Type​: Category, ​Class:​ NSString.

Tap​ NSString+Image.h, ​change the ​Target Membership​ from ​Project​ to ​Public​.

Go to​ NSString+Image.h,​ add the following lines.

#​import​ <UIKit/UIKit.h>

NS_ASSUME_NONNULL_BEGIN

/**

 The Image category on NSString

 */

@interface ​NSString​ (​Image​)

- (nullable ​UIImage

*)imageWithAttributes:(​NSDictionary​<​NSAttributedStringKey​, id>

*)attributes size:(​CGSize​)size;

@end

NS_ASSUME_NONNULL_END

Go to ​NSString+Image.m, ​add the following lines.

#import "NSString+Image.h"

@implementation​ NSString (Image)

- (nullable ​UIImage

*)imageWithAttributes:(​NSDictionary​<​NSAttributedStringKey​, id>

*)attributes size:(​CGSize​)size

{

 ​CGSize​ aSize = [​self​ sizeWithAttributes:attributes];

 ​UIGraphicsImageRenderer​ *renderer = [[​UIGraphicsImageRenderer​ alloc]

initWithSize:aSize];

 ​return​ [renderer imageWithActions:^(​UIGraphicsImageRendererContext​ *

_Nonnull rendererContext) {

 [​self​ drawInRect:​CGRectMake​(​0​, ​0​, size.width, size.height)

withAttributes:attributes];

 }];

}

@end

Go to ​Components.h, ​import the header.

#​import​ <Components/NSString+Image.h>

Go to ​TrackRowCell.swift​, add the following code just before the body closure.

let​ image = (​"🎻"​ ​as​ ​NSString​).image(attributes: [.font:

UIFont​.systemFont(ofSize: ​20​)], size: ​CGSize​(width: ​44​, height: ​44​))

Remove this line.

Image​(systemName: ​"book"​)

Add the following line in the same place.

image.​map​ { ​Image​(uiImage: $​0​) }

Build and Run.

Now you know how to use Objective-C in a Swift Framework and you have successfully built
a hybrid framework.

Well done, but this is still very basic, so we're going to something that is even more
awesome! So stay tight and embrace the next step!

Using Objective-C APIs From Your Framework

Remember these two things you did in the previous steps

- Making​ NSString+Image.h​ public.
- Importing ​NSString+Image.h ​in the umbrella header​ Components.h

These two things made it possible for Objective-C code to be reused in other projects. This
is automatically supported by Apple if you are using a framework with bridging header.
We can try out by removing the following lines in ​ContentView.

var​ body: some ​View​ {

 ​List​(​0​..<​10​) { ​_​ ​in

 ​TrackRowCell​()

 }

}

Calling Objective-C functions in the project by adding the following code to​ ​ContentView​.

let​ image = (​"🎶"​).image(attributes: [.font: ​UIFont​.systemFont(ofSize:

20​)], size: ​CGSize​(width: ​44​, height: ​44​))

var​ body: some ​View​ {

 ​Section​(header: image.​map​ { ​Image​(uiImage: $​0​) }) {

 ​List​(​0​..<​10​) {​_​ ​in

 ​TrackRowCell​()

 }

 }

}

Build and Run.

Adding Swift Static Library Dependency to Your Framework

If you think that above is easy so far, that is great. Now we're going to spice up a little bit!
What happens if you would like to add dependencies to your framework? What’s more
important: it is a static library!

In Xcode, go to ​File ​▸​ ​New ​▸ ​Project​ ​▸ ​iOS​ ​▸ ​StaticLibrary​ ▸ ​Next​, give ​ColorToken as
Product name​ and​ ​choose​ Swift ​as​ ​Language​ then ​Next ​▸ ​Create.

Build and Run.

Add the following code to ​ColorToken.

import​ UIKit

public​ ​enum​ ​ColorToken​ {

 ​//https://www.colordic.org/w/

 ​public​ ​static​ ​let​ 小豆色: ​UIColor​ = ​UIColor​(hex:​0x96514d​)

}

 ​extension​ ​UIColor​ {

 ​convenience​ ​init​(hex: ​Int​, alpha: ​Double​ = ​1.0​) {

 ​self​.​init​(red: ​CGFloat​((hex>>​16​)&​0xFF​)/​255.0​, green:

CGFloat​((hex>>​8​)&​0xFF​)/​255.0​, blue: ​CGFloat​((hex)&​0xFF​)/​255.0​, alpha:

CGFloat​(​255​ * alpha) / ​255​)

 }

 ​convenience​ ​init​(hexString: ​String​, alpha: ​Double​ = ​1.0​) {

 ​let​ hex = hexString.trimmingCharacters(​in​:

CharacterSet​.alphanumerics.inverted)

 ​var​ int = ​UInt64​()

 ​Scanner​(string: hex).scanHexInt64(&int)

 ​let​ r, g, b: ​UInt64

 ​switch​ hex.​count​ {

 ​case​ ​3​: ​// RGB (12-bit)

 (r, g, b) = ((int >> ​8​) * ​17​, (int >> ​4​ & ​0xF​) * ​17​, (int & ​0xF​) *

17​)

 ​case​ ​6​: ​// RGB (24-bit)

 (r, g, b) = (int >> ​16​, int >> ​8​ & ​0xFF​, int & ​0xFF​)

 ​default​:

 (r, g, b) = (​1​, ​1​, ​0​)

 }

 ​self​.​init​(red: ​CGFloat​(r) / ​255​, green: ​CGFloat​(g) / ​255​, blue:

CGFloat​(b) / ​255​, alpha: ​CGFloat​(​255​ * alpha) / ​255​)

 }

}

Build and Run.

Close the ​ColorToken​ Project, Open ​Components.xcodeproj​, drag
C​olorToken.xcodeproj​ under the ​Components​ Project. Now we need to add ColorToken
as dependency to the ​Components​ framework.

Tap ​Components​ Project, Select ​Components​ Target, ​General​ ​▸ ​Frameworks and
Libraries ▸ + , ​add​ libColorToken.a.

Build and Run.

Close ​Components.xcodeproj​ and ​open ​Tracks.xcodeproj​, Go to​ TrackRowCell,
add following lines.

import​ ColorToken

Remove this line:

Text("三線の花").font(.title)

Add this line:

Text​(​"三線の花"​).font(.title).foregroundColor(​Color​(​ColorToken​.小豆

色))

Build and Run Tracks.

So to add swift static library is fairly simple, you just need to add ​libColorToken.a.
Everything else is fixed by Apple.

Adding Objective-C Static Library to Your Framework
Let’s see if adding an Objective-C static library would be as easy as Swift​.

In Xcode, go to​ ​File ​▸​ ​New ​▸ ​Project​ ​▸ ​iOS​ ​▸ ​StaticLibrary​ ▸ ​Next​, ​give​ ​FontToken as
Product name​ ​and choose Objective-C as​ ​Language​ ​then​ ​Next ​▸ ​Create.

In the​ ​Project Navigator,​ ​right-click FontToken, ​New Group ​and name it​ include.
Build and Run.

Drag ​the​ FontToken.h ​under​ include ​folder.

In the​ FontToken.h, ​remove everything in this file and​ ​add the following lines:

#import <CoreText/CoreText.h>

@interface​ FontToken : NSObject
+(CTFontRef)heartFont;
+(CTFontRef)catFont;
@end

In the FontToken.m, ​remove everything in this file and ​write the following lines:

#import "FontToken.h"

@implementation FontToken
+(CTFontRef)heartFont
{
 CFStringRef strRef = (CFStringRef)@"dongrinuanxin";
 CTFontRef ref = CTFontCreateWithName(strRef, 20, NULL);
 return ref;
}

+(CTFontRef)catFont
{
 CFStringRef strRef = (CFStringRef)@"MaoMeiMei";
 CTFontRef ref = CTFontCreateWithName(strRef, 20, NULL);
 return ref;
}

@end

Build and run the ​FontToken​ target.

Open ​Components.xcodeproj​, drag FontToken.xcodeproj under the ​Components
Project. Now we need to add FontToken as dependency to the ​Components​ framework.

Tap ​Components​ Project, Select ​Components​ Target, ​General​ ​▸ ​Frameworks and
Libraries ▸ + , ​add​ libFontToken.a.

Compared to Swift static libraries, Objective-C classes have headers. We need to expose
the headers for other projects to use. We can do that by using modulemaps.

Right-click ​Components Project, ​choose​ New Group ​and name it​ Wrapper. ​Right-click
Wrapper, New File ​▸​ ​Rich Text File​, name it ​module.modulemap.

Remove everything in the file and add the following lines.

module ​FontToken​ {

 umbrella ​"../../FontToken/include/"

 export *

}

In ​Components​ project, ​ ​go to​ Build Settings, ​search​ Import Paths, ​click the​ ​+ ​button​,
add the following line.

$(​SRCROOT​)/​Wrapper​/

Close ​Components ​project, and open​ Tracks ​project.

Now download these ​two font files​ that were mentioned in the above code. Drag both files
to the ​Tracks​ project. In the popup menu, ​copy items if needed ​▸ ​ ​Tick​ Adds to targets:
Tracks ​▸ ​Finish.

You’ll also need to register the fonts, in the ​Tracks​ project, go to ​info.plist​,
add the key "​Fonts provided by application​", add the following names of
the font file as an item of the array.

dongrinuanxin.ttf

MaoMeiMei.ttf

 ​In the ​TrackRowCell​, import the module and instantiate the following variables.

import​ FontToken

https://drive.google.com/open?id=1PoRAHzPeXHNEq-kel7QSSYUFC9LZUJBF

import​ ColorToken

let heart: CTFont

let cat: CTFont

Inside the init method, adding the following lines:

public init() {

 let heartFont = FontToken.heartFont()

 let catFont = FontToken.catFont()

 heart = unsafeBitCast(heartFont, to: CTFont.self)

 cat = unsafeBitCast(catFont, to: CTFont.self)

 heartFont?.release()

 catFont?.release()

}

We need to track the reference of the ​heartFont​ and ​catFont​ manually, that’s why we
also need to release it manually. We are using ​unsafeBitCast ​because SwiftUI has a
separate font library, it takes a CTFont, while Objective-C API returns a
unmanaged<CTFont>?.

Use the font in the cell by adding the following lines.

Text("三線の花").foregroundColor(Color(ColorToken.小豆色)).font(Font(heart))
Text("BEGIN").font(Font(cat))

Build and Run.

Where to Go from Here?

That’s it! You have finished the workshop. I hope that you have learned one thing or two.
You can download the final project ​here​. Feel free to share with me what you think of this
workshop, what you have learned, what can be improved and so on.

My twitter is #humlelu and thank you for joining the workshop.

https://github.com/TokyoBirdy/SwiftAlps-Workshop

