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A E R I A L  R O B O T S

Visual route following for tiny autonomous robots
Tom van Dijk*, Christophe De Wagter, Guido C. H. E. de Croon*

Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major re-
search topic in robotics because cameras are lightweight, power-efficient sensors that provide rich information on 
the environment. However, the main challenge of visual navigation is that it requires substantial computational 
power and memory for visual processing and storage of the results. As of yet, this has precluded its use on small, 
extremely resource-constrained robots such as lightweight drones. Inspired by the parsimony of natural intelli-
gence, we propose an insect-inspired approach toward visual navigation that is specifically aimed at extremely 
resource-restricted robots. It is a route-following approach in which a robot’s outbound trajectory is stored as a 
collection of highly compressed panoramic images together with their spatial relationships as measured with 
odometry. During the inbound journey, the robot uses a combination of odometry and visual homing to return to 
the stored locations, with visual homing preventing the buildup of odometric drift. A main advancement of the 
proposed strategy is that the number of stored compressed images is minimized by spacing them apart as far as 
the accuracy of odometry allows. To demonstrate the suitability for small systems, we implemented the strategy 
on a tiny 56-gram drone. The drone could successfully follow routes up to 100 meters with a trajectory representa-
tion that consumed less than 20 bytes per meter. The presented method forms a substantial step toward the au-
tonomous visual navigation of tiny robots, facilitating their more widespread application.

INTRODUCTION
To do useful tasks, mobile autonomous robots need to navigate 
through their surrounding environment. Unlike their fixed counter-
parts, mobile robots need to travel toward locations that are relevant 
to their mission or to return to their base after their mission has 
been completed. Currently, most autonomous robots rely on exter-
nal infrastructure for localization and navigation, such as the Global 
Positioning System (GPS) outdoors (1) or ultra-wideband localiza-
tion systems indoors (2). However, for many applications, this de-
pendence on external infrastructure is undesirable. For one, the 
external infrastructure might not always be available, such as GPS in 
dense urban environments, extreme environments such as in caves, 
or when it is jammed. Second, it might be too impractical or time-
consuming to set up additional infrastructure, especially in new or 
unknown environments such as search-and-rescue operations. Even 
in fully controlled environments, such as greenhouses or warehous-
es, costs might be another prohibitive factor. Hence, for many ap-
plications, it is vital that robots can navigate using only their own 
sensors, without reliance on external infrastructure.

Although options are abundant for larger robots, this is unfortu-
nately not the case for smaller systems, such as the 56-g drone con-
sidered here (Fig. 1), or even tinier systems (3). First of all, the 
sensors might be too large, heavy, or power hungry for use on small 
platforms. This is, for instance, the case with light detection and 
ranging sensors (4), which otherwise provide a popular and high-
precision solution for larger robots. Vision-based navigation could 
be a solution here because cameras are passive sensors that can be 
both very lightweight and power efficient (5, 6). However, here, we 
run into the second issue: the excessive computational demands of 
the underlying vision algorithms. Mainstream approaches toward 
visual navigation tend to rely on simultaneous localization and 

mapping (SLAM) (7), a class of algorithms that typically construct 
and maintain detailed, metrically accurate maps of the environment 
while taking measurement uncertainties explicitly into account. The 
calculations that deal with these uncertainties and correct the map 
globally make SLAM computationally complex and memory inten-
sive, requiring hundreds of megabytes to even several gigabytes to 
map medium-sized spaces in the order of tens of square meters (8). 
Achieving navigation with the maps built by visual SLAM addition-
ally requires algorithms for path planning and trajectory tracking. 
The resulting computational and memory demands require power-
ful embedded processing units that far exceed smaller robots’ pay-
load capacity or power budget.

For this reason, there has been an increasing amount of work 
that focuses on more efficient navigation solutions. For instance, the 
class of topological SLAM methods saves on computation and mem-
ory by forgoing the construction of a global metric map (9, 10). A 
major concern for these methods is the visual distinctiveness of dif-
ferent places in the environment because place recognition is neces-
sary to globally correct the map. This typically still requires quite 
complex visual processing. Reducing the computational complexity 
of visual place recognition is hence an active research area (11, 12). 
Other approaches to achieve more efficient navigation leverage the 
design of smaller, more powerful processors. For example, in (13), 
judicious software-hardware co-design led to a 2.4-mW–consuming 
custom-designed chip that was able to perform visual-inertial odom-
etry (VIO). VIO algorithms form a subset of SLAM in which there 
is no recognition of already visited places (known as “loop closure”), 
and hence, they cannot eliminate odometric drift. Moreover, there is 
still some progress in scaling down existing processors despite the 
slowing down of processor miniaturization because of impending 
physical limits (14). Examples of lightweight computing units in-
clude Google Coral’s tensor processing unit (TPU) (15), Intel’s Neu-
ral Compute Stick (16), and the JeVois smart camera, for example, 
used in (17). Until now, these processors have not yet brought vision-
based navigation to very small robots, like lightweight nanocopters. 
Furthermore, even if processing power increases in the future, it is 
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questionable whether one will have the luxury to spend all that pro-
cessing power on navigation. Real-world applications involve many 
other tasks, such as perception for obstacle avoidance or for recog-
nizing mission-relevant objects. Hence, a parsimonious solution 
to navigation is and will remain highly relevant for small, autono-
mous robots.

Luckily, nature is a great source of inspiration for parsimonious 
solutions to navigation. Insects such as ants and bees can navigate 
over remarkable distances despite their tiny brains. For example, the 
desert ant Cataglyphis (18) can forage over long distances and then 
walk straight back to its nest, with journey lengths of up to 1 km. To 
bring a comparable algorithm to our robots, we must first under-
stand how insect navigation works.

Biologists have studied insect navigation for more than a century 
and have revealed its two core ingredients (19). The first ingredient 
is path integration, which has a counterpart in robotics called 
"odometry," that is, the integration of traveled distance and direc-
tion to estimate one’s position. For instance, ants determine the dis-
tance they have traveled by counting the number of steps they have 
taken. Moreover, they integrate ventral optical flow, tracking how 
fast the ground is seen moving past them (20). The direction is mea-
sured with respect to the sun and the corresponding polarization of 
the sky (18). Using these measurements, ants can maintain an esti-
mate of their position relative to their nest (19). In recent work, the 
mechanisms behind path integration have been traced back all the 
way to the neural level, where ring attractors in the central complex 
play an important role (21–23).

Although path integration can provide an estimate of position, it 
has one major downside: It is susceptible to drift because it inte-
grates its measurement errors. To solve this, nature uses a second 
mechanism: view memory. Here, the environment itself forms an 
additional cue for localization or navigation. There is less consensus 
on how this view of memory is used by insects (24–26). The most 
relevant model for our work is the snapshot model, proposed by 
Cartwright and Collet (24) to describe the homing behavior of bees. 
In this model, the authors posit that bees remember the presence 
and location of landmarks in their visual field, as seen at their goal 

location. Then, to return, they try to maneuver such that the 
landmarks in their field of view move back to their remembered 
positions.

Of course, the highly efficient nature of insect navigation has not 
gone unnoticed by roboticists (27, 28). An early study focused on 
visual homing with the help of artificial landmarks and showed that 
visual homing can enable robots to return to a known spot in the 
environment (29). However, visual homing only works within a 
small region surrounding the target, called the catchment area. To 
navigate longer distances, a straightforward approach would be to 
home toward nearby targets in sequence. As long as the robot is in-
side the catchment area of the next snapshot, this will succeed. How-
ever, catchment areas tend to be limited in size. As a result, snapshots 
need to be spaced close together, which means that a large number 
of snapshots need to be stored to remember longer routes. Depend-
ing on the representation of the snapshot, which can range from 
full-resolution images (30) to more compressed representations 
(31), this can still require more memory than is available on tiny 
robotic platforms, like the 56-g drone used in this study.

To reduce memory requirements, further proposals have been 
made in two directions. The first is a reduction in the memory con-
sumption of the snapshots. Many papers already reduced the images 
to a single row of pixels, where the lateral flow of features is sufficient 
for visual homing. However, Stürzl and Mallot (31) took this one 
step further by transforming this line into the frequency domain 
and remembering only the lowest-frequency components, thereby 
markedly reducing the size of the snapshot even further. The second 
direction is to increase the spacing between snapshots. In a study by 
Denuelle and Srinivasan (32), an improvement was proposed in 
which the homing vector was used as a position estimate relative to 
the snapshot. This allowed the drone to navigate some distance to-
ward the next catchment area, provided that the vector was accurate 
enough. As a result, the overlap between snapshots was reduced, 
though not eliminated. A simulation study by Vardy (33) combined 
odometry with visual homing. New snapshots were taken when the 
odometry and visual homing estimates of the direction toward the 
snapshot started to diverge. However, because this happens at the edge 
of the catchment area, this method still resulted in considerable 
overlap between the catchment areas of subsequent snapshots. In 
this work, we propose an approach to substantially increase the dis-
tance between snapshots and combine it with a memory-efficient 
homing algorithm.

Minimal-memory approach to visual homing–based 
trajectory following
To bring visual navigation to tiny robots, we present a highly memory-
efficient strategy for visual route following. We propose to traverse 
longer distances by better exploiting the combination of visual hom-
ing and odometry (Fig. 2). In this framework, we assume that the 
robot first performs an outbound flight toward a mission goal, fol-
lowed by an inbound flight back to the starting location. The out-
bound flight can, in principle, be performed under any control law, 
including manual control. Because our focus here lies on route fol-
lowing during the inbound flight, we assume that the outbound 
flight is performed without collision and that the environment is 
static such that the route remains free of obstacles.

During the inbound flight, most of the distance is covered using 
odometry, but without any correction, the odometric drift would 
eventually become too large. To correct this drift, we let the robot 

Fig. 1. Tiny, 56-g drone that performs autonomous visual route following with 
its panoramic camera. We propose an insect-inspired approach to visual route 
following that allows tiny, resource-restricted robots to follow long routes using 
only a microcontroller and exceptionally little memory.
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use visual homing to periodically return to known locations in the 
environment (the snapshot locations). During homing, it compares 
its omnidirectional image only with the current active snapshot. Af-
ter homing, the robot is at a known position and can reset its pose 
estimate, thereby eliminating any incurred odometric drift. After 
this reset, the robot can start a new leg of odometry and visual hom-
ing, where the initial error only consists of the homing inaccuracies 
at the last snapshot.

The proposed strategy is extremely memory efficient because the 
snapshots are spaced as far apart as possible. Specifically, we propose 

that the distance between snapshots is ultimately limited by the ac-
curacy of the odometry, in that the strategy will succeed as long as 
the drone can reliably end up inside the next catchment area. Given 
a reasonable odometry accuracy, this distance can be far greater 
than when overlapping catchment areas for consecutive snapshots 
are required.

In the remainder of this article, we implement and evaluate this 
strategy step by step. First, we evaluate and compare different vi-
sual homing algorithms by their memory efficiency, where we take 
both the size of the snapshot and the resulting catchment area into 
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Fig. 2. Proposed navigation strategy. (A) The experimental platform considered here: a tiny, 56-g Crazyflie Brushless drone. (B) Raw and unwrapped omnidirectional 
camera image. (C) The route-following strategy. During the outbound trajectory, which could be performed under an arbitrary control law (i), the robot periodically takes 
snapshots (ii) of its surroundings. To follow the same route in reverse, the robot first uses odometry (iii) to move toward the location of the next snapshot. For success, it is 
vital that the drone ends up inside the catchment area (iv) of this snapshot. Hence, the distance between snapshots has to be proportional to the expected odometry drift 
and catchment area size. After the odometry movement has been completed, the robot uses visual homing (v) to converge to the snapshot location and thereby cancel 
the incurred odometric drift. These steps are repeated until the robot is back at its intended location.
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account. After selecting a suitable algorithm for efficient visual 
homing, we continue with the key experiment of this article: We 
implemented our strategy on a tiny 56-g drone and let it follow tra-
jectories of up to ~100 m. We show that periodically homing toward 
a snapshot eliminates the buildup of odometric error over time. 
Last, we demonstrate the same strategy on more complex trajecto-
ries and environments.

By implementing our strategy on a tiny, 56-g drone equipped 
with a microcontroller featuring a mere 192 kilobytes of memory, 
we show that the proposed algorithm is especially suitable for tiny 
robots. With our contribution, we bring autonomous visual naviga-
tion to a class of robots for which this was previously unavailable.

RESULTS
Selected homing algorithms for comparison
As a first step toward memory-efficient visual route following, we 
compared homing algorithms in terms of their memory efficien-
cy. To aid the search for an efficient algorithm, first, we broadly 
categorized visual homing algorithms along two axes. We made a 
distinction between “steering methods” or “visual compass–based 
methods” and “vector methods.” Steering methods are characterized 
by their calculation of a steering angle or rate for position control. 
Typically, these methods depend only on features in the forward 
field of view of the robot. Steering methods are often used in visual 
teach-and-repeat navigation tasks and have been successfully dem-
onstrated over long distances, such as in (34–37). In addition, con-
vergence has been proven for straight-line segments (38) and more 
complex paths (36, 39).

On the other hand, vector-based methods typically do not pro-
duce a steering angle but a vector toward the snapshot. In contrast to 
steering-based methods, vector methods tend to not have an obvi-
ous “forward” direction and typically rely on a panoramic field of 
view. Vector methods are often used to home toward a single point, 
and they have also been used in visual route following such as in (40, 
41), although research in this direction has been far less extensive 
than for steering methods.

Although steering-based methods might have been an obvious 
choice, for this article, we chose to focus on vector-based approach-
es. Our reasoning was as follows: First, steering-based methods re-
quire their reference images to be spaced close together. Following 
the proof in (38), the distance between images must be smaller than 
the distance to the dominant feature in the environment; a distance 
of 35 cm was used in said article. We expected to achieve a far great-
er spacing using odometry. Second, we aimed to bring the robot as 
close to the snapshot as possible, ideally on top of it. As a result, we 
had no guarantee that the snapshot would be in front of the robot 
after traveling with odometry; it could just as likely have been be-
hind it or to its side. Last, we thought that a vector is a more natural 
way to express movement for holonomic systems like our drone.

The second axis by which we categorized homing algorithms was 
the way in which snapshots are represented. We considered two 
broad categories of snapshot representations for use in visual hom-
ing: landmark-based and holistic representations. Landmark-based 
methods represent the snapshot as a collection of point landmarks 
that each have their own bearing. Consequently, in landmark-based 
visual homing, points in the environment are tracked from the cur-
rent to the target image. From the point correspondences between 
these two images, a homing vector directed toward the target can be 

derived, for instance, using visual servoing (42–44). To describe and 
track landmarks, keypoint detectors and descriptors from computer 
vision are used. Examples include the computationally expensive 
scale-invariant feature transform (45) features and the much more 
efficient binary robust invariant scalable keypoints (46). In addition, 
the bearing toward each landmark needs to be stored. All in all, this 
still leads to a sizable memory consumption, especially when a large 
number of snapshots need to be remembered. To reduce memory 
consumption, it is possible to share descriptors between multiple 
snapshots as demonstrated by Stelzer et al. (47). However, the size of 
a snapshot remains in the order of hundreds of bytes or more.

On the other end of the spectrum are the holistic methods. Un-
like landmark-based algorithms, these operate on the image as a 
whole. Instead of matching the bearings of landmarks, the entire 
current and target images are matched, for instance, with the sum of 
square differences. This leads to an image difference function (IDF) 
(see Fig. 3), which should be zero when the current and target view 
coincide and increase smoothly with distance near the target loca-
tion. By finding the direction in which the IDF decreases, homing 
can be performed. One option to detect and follow the gradient 
down the IDF is to make physical movements, as demonstrated by 
Zeil et al. (48). Finding the gradient in this way may be time-
consuming. Therefore, Franz et al. (30) proposed an alternative 
method in which small movements were simulated by warping the 
image. Using this method, the authors performed a brute-force 
search over multiple potential movements and selected the best 
match. Hence, we term the method “Search” here. As a computa-
tionally more efficient alternative, Möller et al. (49) suggested only 
predicting two perpendicular movements and using these to esti-
mate the gradient of the IDF. By following the gradient, the robot 
will end up in the (local) minimum of the IDF. In later work, they 
included the second-order gradient as well. They termed their ap-
proach “MFDID.” Storing entire images is not ideal in terms of 
memory efficiency; it is worse than most landmark-based approach-
es. A first improvement is that the snapshot images can be vertically 
averaged because just the lateral flow should already be sufficient to 
find the homing vector. On top of that, Stürzl and Mallot (31) showed 
that these one-dimensional snapshots could be substantially com-
pressed while maintaining homing performance. This compression 
was performed by first transforming the snapshots to the frequency 
domain and then only keeping the lowest frequency components, 
where most of the power is found in natural images. The authors 
showed that homing was still possible using only the lower five com-
ponents. With appropriate rounding, such a snapshot could be stored 
in as little as 10 bytes per snapshot. Figure 3A shows a raw pan-
oramic image and its reconstruction using the highly compressed 
Fourier representation below. It can be observed that this method, 
which we term “Fourier,” captures the coarse vertical structures in 
the environment. Because these images can ultimately be compressed 
further than the bearing-descriptor pairs of landmark-based hom-
ing, we focus on holistic algorithms for the remainder of this article.

Comparison of holistic visual homing algorithms
The selection of a specific visual homing algorithm meant exploring 
a trade-off between the catchment area size, memory consumption 
of snapshots, and computational demands. We evaluated the catch-
ment areas from the abovementioned holistic vector-based meth-
ods (30, 31, 49) with the help of the publicly available panoramic 
image dataset by Gaffin and Brayfield (50). The dataset contains 
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100 pixel–by–100 pixel grayscale images taken at 12.7-cm intervals in 
a 7.3 m–by–6.9 m room and part of the adjacent corridor. To evaluate 
the catchment area, we generated snapshots throughout the envi-
ronment, and for each snapshot, we calculated the homing vectors 
at all panoramic image locations in the room (Fig. 3B). Then, from 
each starting position, homing trajectories were generated by inte-
grating the bilinearly interpolated homing vectors. These trajecto-
ries let us determine the final position of the robot after homing and 
thereby find the set of starting locations from which homing would 
be successful, that is, the catchment area. Because the catchment 
area can have a highly irregular shape (see the dark blue area in 
Fig. 3B), we took the number of successful starting cells as a mea-
sure of the size of the catchment area. The top plot in Fig. 3C shows 
the relationship between the snapshot size in bytes (indicated with 
the letter B) and the average catchment area in square meters. The 
Fourier method led to the largest catchment areas for snapshot sizes 
below 32 bytes, whereas the Search method gave the largest catch-
ment areas above. The lower plot in Fig. 3C shows the average ratio 
of the catchment area with respect to the snapshot size. It shows that 
the Fourier method is highly efficient for small snapshots. Because 
this algorithm is both memory-efficient and computationally cheap, 
it was used in our further experiments. Please note that the choice 
for this representation entailed a dependence on contrasts along the 
horizon line and mainly large vertical features, such as walls, doors, 

windows, and trees. Furthermore, the idea of snapshot matching re-
lies on these contrasts being static.

Visual homing and odometry
Before combining visual homing and odometry into a single naviga-
tion strategy, we examined these elements in isolation. We first vali-
dated the homing performance of the selected visual snapshot 
representation on our robotic platform, a 56-g, Bitcraze Crazyflie 
Brushless (Figs. 1 and 2A). This tiny 12.5-cm drone carried a 10-g 
panoramic camera assembly (included in the 56-g takeoff weight). 
The assembly included an STM32F4 chip for processing the omnidi-
rectional images onboard in real time. Furthermore, the drone was 
equipped with a “flow deck” with a downward-looking camera and 
a tiny laser ranger to measure optical flow and height, respectively. 
Combining these measurements results in velocity estimates, which 
were used for odometry.

In the homing experiment, the drone was first directed to the 
center of our testing environment, a 10 m–by–10 m–by–7 m flight 
arena termed the “Cyberzoo” (see Fig. 4C for an impression). Sub-
sequently, we commanded the drone to go to a small number of 
locations away from the target, to a maximum distance of approxi-
mately 2 m. Then, the drone performed visual homing with the 
Fourier method. Figure 4 shows an overhead view of the drone’s 
trajectories (Fig. 4A), the distance to the target location over time 
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during homing (Fig. 4B), and an overview image of the flight arena 
(Fig. 4C). We observed that eight of nine runs brought the drone 
close to the target location, within ~0.5 m, at which point the run 
was ended. The failed run started at one of the outer positions. By 
definition, the failed homing attempt means that the starting posi-
tion was outside of the (unknown) catchment area of the snapshot 
in the center. The experiment also showed that the drone did not 
always fly straight to the target location, an indication that the 
homing vector can point in a different direction than the target vec-
tor. As long as the homing vector is within ±90°, however, the dis-
tance will decrease, and the drone will eventually arrive at the target 
location.

As explained earlier, our strategy relies on spacing the snapshots 
as far apart as odometry allows. Specifically, the drone should end 
up just inside the next catchment area. The drone’s positioning ac-
curacy depends on two main factors: the accuracy of its starting 
pose after homing and the drift incurred while moving toward the 
new position. This was demonstrated by a simulation of multiple 
trajectories in Fig. 5A, in which the SDs of the initial position and 
heading, yaw rates, and velocity errors were exaggerated to demon-
strate their effect. The model showed that at short distances, the po-
sition error was primarily caused by errors in the initial pose because 

it was almost constant. For longer distances, the error begins to 
grow because of integrated odometry errors. At the end of a route 
leg traveled by means of odometry, the cross-track error was larger 
than the along-track error. This can be seen in Fig. 5A, where there 
is a larger spread orthogonal to than along the route, and in Fig. 5C, 
in which this is also the case for real-world odometry experiments. 
This effect is caused by the heading error, consisting of an initial 
offset and subsequent drift. Figure 5B shows the absolute cross-track 
errors of the drone experiment. Overall, the accuracy was quite 
good, with a cross-track root mean square error of 13 cm after 5 m 
of travel.

The plots in Fig. 5 (C and D) show a similar experiment but over 
longer distances. The drone traversed a line of approximately 5 m 
back and forth 10 times. In Fig. 5C, the drone only used odometry 
for this procedure. In Fig. 5D, the drone recorded a snapshot in the 
top left corner and used this to realign itself on each arrival there. 
The results show that the odometry did drift and that the drift be-
came substantial for longer distances. They also show that our peri-
odic realignment scheme, while introducing some error because of 
homing inaccuracies, prevented the buildup of odometric drift over 
time and, as a result, kept the error bounded when traveling longer 
distances.
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Fig. 4. Visual homing toward a single point. The drone was commanded to home over longer distances toward a snapshot at the center of the flight arena (gray circle). 
(A) Homing trajectories shown as colored lines, with crosses for the end positions. (B) The decreasing distance toward the snapshot over time, shown with colored lines 
corresponding to the trajectories in (A). The black line indicates the worst homing performance attained in this experiment for trajectories converging to the snapshot. 
For illustration purposes, in (A), a possible catchment area is drawn with a dashed line. One of the starting positions lay outside of the catchment area and led the drone 
to diverge (red cross as the end position). Homing was successful for distances well more than 1 m, whereas the odometric drift between snapshots during route following 
was expected to be substantially smaller. (C) Picture of the environment setup for this experiment.
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Route following with minimal memory
With the core principles proven, we then demonstrated the com-
plete strategy on more complex trajectories and environments. We 
created different types of trajectories, of which the outbound por-
tion was traversed using odometry (without any global position 
feedback). After the outbound journey was completed, the drone 
started its inbound journey with the help of the proposed insect-
inspired navigation strategy. We qualitatively compared the route-
following accuracy with respect to the outbound trajectory. A motion 
capture system was used to record the absolute position of the drone 
during its outbound and inbound flights. These measurements were 
never communicated to the drone; they were only used for evalua-
tion after the experiment. The trajectories consisted of multiple tra-
versals of an S shape (Fig. 6A) or a U shape (Fig. 6B). The trajectories 
were repeated to maximize the travel distance within the limited 
testing area. The resulting path lengths (of the outbound route) were 
40 m for the S-shaped trajectory and 56 m for the U-shaped one. 
Ultimately, the length of the experiment was limited by the battery 
capacity of the drone.

When introducing our minimal-memory approach to visual 
homing–based trajectory following, we mentioned that snapshots 
are spaced as far as odometry allows. Given the varying unknown 

shapes and sizes of catchment areas and the variable nature of drift, 
choosing a spacing between snapshots has implications for the trade-
off between navigation robustness and memory expenditure (see 
the “Theoretical model for spacing snapshots” section in the Supple-
mentary Materials). In our experiments, we used a fixed 1- or 2-m 
spacing between snapshots during the experiments. First, these 
were conservative values where the position error was primarily 
dominated by homing inaccuracies, whereas the odometric drift be-
tween snapshots remained small. Second, this gave us a larger num-
ber of visual homing attempts, which allowed a better indication of 
its use and robustness during route following.

Figure 6 shows the resulting trajectories for the proposed meth-
od (Fig. 6, A and B). The robot successfully and reliably followed the 
outbound trajectory back to the start. The route-following memo-
ry for the U trajectory consisted of 31 16-byte snapshots and 2 to 3 
2-byte odometry vectors between snapshots, leading to a total mem-
ory size of 0.65 kilobytes for a distance of 56 m. We also compared 
our method with sequential visual homing on one of the trajectories 
(Fig. 6C). The experiment showed that homing between successive 
snapshots is a viable method of navigation. However, the snap-
shots had to be spaced at a distance of 25 cm; earlier attempts with 
1-m spacing consistently failed. Because the catchment areas scale 
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Fig. 5. Combining visual homing and odometry. Each leg of the route-following strategy consists of a homing operation toward a snapshot, followed by an inbound 
maneuver toward the next snapshot using odometry. (A) The error model with exaggerated noise parameters showing both the initial pose error after homing and the 
increased spread because of odometry. (B) Experimental data for real-world odometry experiments in which the traveled distance was varied. (C and D) Proof-of-concept 
demonstration. The drone was commanded to fly a 5-m trajectory back and forth for a total distance of 100 m. In (C), the drone only used odometry, whereas in (D), it 
periodically homed to a snapshot. Repeatedly homing toward snapshots was shown to prevent drift over longer trajectories. (E) Overview photo of the test environment.
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proportionally to the size of the environment (distance to the domi-
nant features, the walls in this case), they were considerably smaller 
than in Fig. 4. Besides the increased memory consumption, the hom-
ing procedure was also relatively slow (to prevent overshoot or large 
pitch/roll angles), and as a result, the drone traveled an appreciably 
shorter distance before the battery ran out. In comparison, the pro-
posed strategy had a substantially higher average speed, whereas the 
tracking error had the same order of magnitude.

We also performed a number of experiments to evaluate the ro-
bustness of the proposed approach. One important characteristic of 
the chosen snapshot representation (with vertical averaging and 
Fourier compression) is that it depends on prominent vertical fea-
tures (contrasts along the horizon line). Such features are common-
ly present in both indoor and outdoor environments. To illustrate 
this, we made a set of snapshots in various places in the building of 
the Faculty of Aerospace Engineering at TU Delft (see the “Presence 

of texture in different environments” section in the Supplementary 
Materials). The low resolution of the snapshots may initially seem 
purely disadvantageous for accurate homing but actually brings 
some robustness against small, dynamic objects. This is illustrated 
with an experiment in which we monitored the resulting home vec-
tor, whereas we moved objects around the robot (tables S1 to S4). 
Sometimes in indoor environments, there are corridors with purely 
uniform walls. In that case, the current approach will not be able to 
correct the drift in the direction of the corridor (lateral drift can be 
canceled because of the different appearance of the floor and walls). 
Furthermore, to show that the drone is also able to follow routes in 
different indoor environments, we performed additional experiments 
in three different places at the Faculty of Aerospace Engineering: close 
to an airplane simulator SIMONA (51), in an office hallway, and in 
our laboratory space (Fig. 7). Videos of these flights can be found in 
the Supplementary Materials. Last, because the flight time of the real 
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Fig. 6. Validation of the complete route-following strategy. The drone successfully followed long routes in complex environments where it was impossible to see the 
entire route from a single point of view. The outbound route is shown in red, route following using odometry in yellow, and homing in blue (A to C). The drone traversed 
the route multiple times during the outbound and inbound segments to maximize the length of the trajectory (all on the order of ~50 m). For comparison, a route-
following attempt in which the drone only used sequential visual homing as a strategy is shown (C). The drone successfully followed the route but stopped early because 
the increased travel time caused the battery to run out before completing one stretch of the trajectory. A time-lapse photo of the experiment in (B) is shown in (D).
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drone is limited, we performed simulation experiments to show that 
also longer distances can be covered with the proposed strategy. Spe-
cifically, in the AirSim simulator (52), a simulated Parrot augmented 
reality (AR) drone was able to use the strategy to successfully track 
a 300-m trajectory in a forest environment (fig. S2).

DISCUSSION
We have proposed an insect-inspired navigation strategy for route 
following, which extensively depends on odometry to reduce mem-
ory usage. The strategy was demonstrated on the lightest robot to date 
to perform vision-based navigation, a 56-g Crazyflie drone, leading 
to successful navigation for as long as the battery lasted.

The experiments show that even tiny robots can navigate autono-
mously. Of course, the strategy studied here is a route-following 

strategy. This sets it apart from SLAM-based navigation approaches 
and has two important implications. First, the robot will perform an 
inbound route that is identical to the outbound route. This is similar 
to other teach-and-repeat methods in robotics (37, 53). By not going 
straight back to the starting location, as insects are known to do 
(18), the robot follows a trajectory that is suboptimal in terms of 
path length. In contrast, robots performing metric SLAM can plan 
and execute optimal paths at the expense of considerable processing. 
How to perform straight returns to the initial location while coping 
with odometric drift without metric maps is an important topic for 
future study. Second, the current algorithm is unable to combine mul-
tiple paths to move between arbitrary locations in the environment. 
It will not be able to fly to another previously visited place that 
is relevant to its task without first returning to the home loca-
tion. Also, insects can do this, and it is hypothesized that insects may 

store different places in a nest-centered 
reference frame (19). Such a representa-
tion is reminiscent of topological map-
ping approaches, which may provide 
fertile ground for integration with the 
method proposed here. For example, in 
(54), new nodes (places) were created in 
a topological map by estimating online 
whether the robot was about to leave 
the catchment area of the previous node. 
This led to overlapping catchment areas, 
an idea very similar to that of Vardy (33) 
in the insect route-following literature. 
The proposed idea of further spacing 
snapshots (or nodes in the topological 
graph) apart is directly relevant to such a 
topological mapping approach.

In terms of biological plausibility, we 
do not believe that the proposed strategy 
is an accurate model for explaining in-
sect navigation behavior. Although some 
switching between path integration and 
visual homing occurs when insects move 
from unknown to known environments, 
behavioral experiments show that they 
mostly use these cues simultaneously (55, 
56), in contrast to our strategy. However, 
our results do support the general idea 
that path integration and visual hom-
ing are best used in combination. Even 
more, they suggest that path integration 
has a marked effect on the efficiency and 
parsimony of navigation even when oth-
er (visual) cues are present and encour-
age further research into the integration 
of these cues (19, 56, 57).

In the field of robotics, the performed 
experiments are highly encouraging be-
cause they show that tiny robots are also 
able to perform vision-based autonomous 
navigation. Future work could focus on 
improved robustness by introducing 
obstacle-avoidance capabilities. For in-
stance, the omnidirectional image could 

A

B

C

Fig. 7. Flights in different indoor environments. To test the robustness of the proposed visual navigation method, 
we performed tests in various indoor environments. A time-lapse image of each test is shown for three environments: 
(A) a large indoor test facility for airplane simulation (SIMONA), (B) an indoor office hallway, and (C) the Micro Air Ve-
hicle Laboratory space (the bright spot on the floor is due to direct, bright sunlight). The outbound trajectory is indi-
cated by red arrows, odometry-based indoor trajectories by yellow arrows, and homing maneuvers by blue arrows.
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be used to determine optical flow for collision avoidance (58, 59). 
Moreover, the robot could estimate the catchment area size online 
and be endowed with a search procedure when losing the route. Ad-
ditional experiments in varying environments could identify which 
elements of the method need the most improvement. Still, as al-
ready hinted above, the choice for route following implies a cost 
in terms of tracking accuracy and flexibility in navigation targets. 
Even if we further approach the impressive navigation capabilities 
of insects, it may be that for these characteristics, a traditional 
SLAM-based navigation approach remains superior. However, for 
autonomously navigating robots, optimality in terms of mass and 
energy expenditure is also important. This is definitely the case for 
applications such as greenhouse monitoring by flying robots. The 
driving factors for that application are safety and navigation in nar-
row, cluttered environments. Tiny, lightweight flying robots are 
hence ideal for such an application, in which it is most important 
that the robots fly out, gather data, and come back to a fixed charg-
ing station. The data can then be uploaded to a server for mission-
specific processing, such as evaluating crop growth or disease 
detection. We expect that the best navigation solution will eventu-
ally be task-dependent and venture that even for much bigger ro-
bots on the order of kilograms, insect-inspired navigation may be 
the best option when efficiency is more important than high posi-
tioning accuracy along the trajectory. If orders of magnitude in 
computation and memory can be saved from the task of naviga-
tion, this computation can be used for onboard mission-relevant 
tasks such as the recognition of diseases or pests in a greenhouse 
application or the counting of products in a warehouse monitoring 
application. Hence, the current work will not only benefit tiny ro-
bots, such as the 56-g drone used here or even the insect-sized 
Harvard RoboBee (60), but much larger robots as well.

MATERIALS AND METHODS
Hardware
The experiments here were performed on a prototype of the Crazyflie 
Brushless drone provided by Bitcraze. The Flowdeck V2 (PMW3901 
optical flow sensor, VL53L1x laser ranger) was used for velocity and 
altitude control and odometry. For navigation, the drone was equipped 
with a TCM8230MD camera with a Kogeto Dot 360 panoramic lens. 
Processing was performed using two STM32F4 microcontrollers, one 
on the autopilot and one on the camera assembly. Visual processing 
was performed on the camera microcontroller; state estimation and 
control were performed on the autopilot. Logging was performed off-
board using the radio link.

The default Crazyflie firmware was used as autopilot. State esti-
mation was performed with the default extended Kalman filter. A 
custom onboard app communicates with the camera over a UART 
link and sends position set points and measurement updates to the 
autopilot’s controller and estimator.

Image processing
Image processing began with the preprocessing of the camera frames. 
Raw images were captured at a 128 pixel–by–96 pixel resolution 
(Fig. 2B). A custom autoexposure routine adjusted the shutter time to 
keep the horizon’s mean luma at a fixed value (80 out of 255) while 
ignoring the rest of the image (including the lens fixture).

The image was then reprojected to cylindrical coordinates at a 
128 pixel–by–16 pixel resolution. We used a look-up table and 

nearest-neighbor sampling for computational efficiency. The cylin-
drical images were aligned with the drone’s north estimate by offset-
ting the sampling angle. Derotation of pitch and roll angles was 
implemented but not used because the angles during the experi-
ment remained sufficiently small. The images were then converted 
to grayscale and vertically averaged to produce a one-dimensional 
periodic signal. We used the fast Fourier transform from the ARM 
CMSIS DSP library to transform this signal to the frequency do-
main. For memory efficiency, the direct current (DC)– and higher-
frequency components were dropped. The remaining complex 
coefficients were quantized to pairs of 8-bit signed integers, with a 
fixed per-frequency scaling to cover most of the 8-bit range.

Homing implementation
For the comparison of homing methods, we implemented the algo-
rithms by Franz et al. (30) (Search), Möller et al. (49) (MFDID), and 
Stürzl and Mallot (31) (Fourier) as described in the respective pa-
pers. For each choice of snapshot size, the parameters were retuned 
using a grid search to maximize the size of the catchment area. For 
the Search algorithm, we used a bearing-distance search grid, be-
cause the exact grid was not described in the article. For MFDID, we 
included the use of the Newton-based correction (61) as part of the 
parameter search but found little difference in this dataset, which 
mainly consists of a square, open room.

The Fourier-based homing algorithm by Stürzl and Mallot (31) 
was also implemented on the experimental hardware. For efficient 
implementation, we wish to highlight an important property of this 
algorithm. To find the homing vector, Stürzl and Mallot (31) derived 
and minimized an “approximate IDF” ℰ2 in terms of hypothetical 
movement h ∈ R3 in the form of a quadratic surface:

Here, A, b, and c are fully defined by the complex coefficients of 
the Fourier-transformed, derotated images. As a result, the hom-
ing vector can be found using only the fast Fourier transform 
and a three-by-three matrix inversion, which makes this algorithm 
highly efficient in terms of run time. For the full definition, we re-
fer to (31).

Although the images are already coarsely aligned with respect to 
the north estimate, we did include the coarse rotation alignment 
step of the algorithm. However, we replaced the phase-based algo-
rithm with a brute-force search over all possible rotations, because 
we found that this provided more robust results in practice. The 
phase-based algorithm appeared to lack robustness when symme-
tries were present in the environment or when lower frequencies 
were absent in the panoramic images, although we did not fully in-
vestigate this further.

For the sequencing of snapshots, it is important to detect arrival 
after homing. This was initially determined by observing the differ-
ence between the currently relevant snapshot and the current obser-
vation. If this difference did not reach a new minimum during the 
last 10 frames (~1 s), the drone was considered to have arrived. Al-
though this worked, it resulted in long hover times near the snap-
shots. In the final experiments, this detection was replaced by a simple 
timeout. This considerably reduced hovering times and thereby al-
lowed longer travel distances, at the cost of a slightly higher homing 
position error.

ℰ2(h) =
1

2
h⊤Ah + b⊤h + c
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Route memory
The “route memory,” containing the snapshots and odometry vec-
tors, was implemented in memory using two stacks (Fig. 8). The 
odometric trajectory was recorded as a sequence of translation vec-
tors. While recording, a new vector was pushed onto the stack every 
0.3 m. These vectors were stored as a pair of 8-bit signed integers, 
with a resolution of 10 cm. Each new vector was calculated by com-
paring the current position estimate with the sum of all previous 
vectors; this prevented the buildup of rounding errors. To reduce 
memory consumption, the recorded trajectory was simplified when 
a new snapshot was taken. At that time, the complete trajectory 
since the last snapshot was decimated using the Ramer-Douglas-
Peucker algorithm (62, 63) (ϵ = 0.1 m). This strongly reduced the 
number of odometry vectors while keeping the resulting deviation 
within strict bounds. Additional vectors may be stored to keep the 
lengths within 8-bit integer bounds. After simplifying the trajectory, 
the snapshot was pushed onto its own stack together with the size of 
the odometry stack at that time so that its position in the odometry 
frame could be retrieved during route following.

During route following, after each odometry segment, the drone 
should be close to the true position of the snapshot on top of the 
stack (Fig. 8). The drone then started a homing maneuver toward 
this snapshot, removing the need for along-route localization. Once 
the homing maneuver was completed, the drone realigned its posi-
tion and heading estimate to those of the snapshot as recorded by 
the odometry vectors and the north alignment of the snapshot. In 
practice, this realignment was implemented as an absolute position 
and heading measurement with a small covariance for easier inte-
gration with the Kalman filter.

Experimental setup
During the flight experiments in Figs. 4 to 6, the true position of 
the drone was measured using an OptiTrack motion capture sys-
tem. These position data were not communicated to the drone at 
any time; they were only recorded for analysis after the flight. The 
time stamps were aligned by maximizing the cross-correlation be-
tween the north or east positions in both log files. The outbound 
trajectories during the flight experiments did not use the true po-
sition either; these relied entirely on the onboard position estimate.

The experimental flights shown in Figs. 4 to 6 were performed 
over artificial grass. Judging by the performance of odometry-only 
navigation, this provided sufficient texture for the Crazyflie’s optical 
flow sensor. The drone used its downward-facing laser range sensor 

to maintain a constant height during the experiment. On the sides of 
the flight area, canvas panels with mostly natural scenes provided 
additional texture for navigation. For the U- and S-shaped trajecto-
ries, these panels were also placed in the center of the flight area to 
block the line of sight between the extreme points.

The experimental flights shown in Fig. 7 were performed at differ-
ent locations in the Faculty of Aerospace Engineering: in a large open 
space of the SIMONA airplane simulator, a narrow corridor, and the 
Micro Air Vehicle Laboratory. Each experiment started with a manu-
ally designed, preprogrammed outbound flight that was executed on 
the basis of odometry. The outbound flight was followed by an au-
tonomous inbound flight. Figure 7 contains stitched time-lapse im-
ages, in which we show the drone when making the snapshot during 
the outbound flight (red arrows), when the drone estimates arriving 
at the snapshot location with odometry during the inbound flight 
(yellow arrows), and after homing to the snapshot (blue arrows). The 
videos can also be found in the Supplementary Materials.

Simulation setup
Figure 5A shows the results of elementary simulation experiments 
to illustrate the effects of odometry drift. The simulation included 
both an initial position and heading offset because of imperfect 
homing and odometry drift along the route leg. Hence, we initial-
ized the pose as x, y,ψ ← x0 + (σx0), y0 + (σy0),ψ0 + (σψ0) , 
where (x0, y0, ψ0) is the actual snapshot position and  (σ) is a nor-
mally distributed random variable with zero mean and SD σ. Then, 
for each time step, the state was updated as follows:

For the simulation in Fig. 5A, the following values were used: Δx = 
0.25 m, σx0 = σy0 = 0.10 m, σψ0 = 5°, σx = σy = 0.025 m, and σψ = 2°. 
Please note that these values are large compared with the real hom-
ing and drift errors so that the figure shows the effects they have on 
the position error at the end of the route leg.

Statistical tests
No statistical tests were performed for this article.

ψ ← ψ + (σψ)

x ← x + Δxcosψ + (σx)

y ← y + Δ x sinψ + (σy)

20dm North
0dm West

20dm North
0dm West

10dm North
0dm West

0dm North
10dm West

0dm North
15dm West

5dm South
0dm WestOdometry stack:

Snapshot stack:

Fig. 8. Route representation in memory. The trajectory was represented using two stacks: one holding snapshots and one holding odometry vectors. When a new 
snapshot was pushed, it was stored together with the number of odometry vectors that were present at that time. This allowed the snapshot position to be found by 
adding all odometry vectors before it and aided in the sequencing of odometry and homing maneuvers. A single odometry vector consisted of two int8 numbers at 
decimeter resolution (2 bytes). A snapshot consisted of eight complex coefficients (2× int8, so 16 bytes in total) plus a uint16 odometry count (2 bytes).

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 23, 2025



van Dijk et al., Sci. Robot. 9, eadk0310 (2024)     17 July 2024

S c i e n c e  R o b o t i c s  |  R e s e a r c h  Ar  t i c l e

12 of 13

Supplementary Materials
The PDF file includes:
Methods
Figs. S1 to S8
Tables S1 to S4

Other Supplementary Material for this manuscript includes the following:
Data file S1
Movies S1 to S13
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