W) Check for updates

SCIENCE ROBOTICS | RESEARCH ARTICLE

AERIAL ROBOTS

Visual route following for tiny autonomous robots

Tom van Dijk*, Christophe De Wagter, Guido C. H. E. de Croon*

Copyright © 2024 The
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. No claim to
original U.S.
Government Works

Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major re-
search topicin robotics because cameras are lightweight, power-efficient sensors that provide rich information on
the environment. However, the main challenge of visual navigation is that it requires substantial computational
power and memory for visual processing and storage of the results. As of yet, this has precluded its use on small,
extremely resource-constrained robots such as lightweight drones. Inspired by the parsimony of natural intelli-
gence, we propose an insect-inspired approach toward visual navigation that is specifically aimed at extremely
resource-restricted robots. It is a route-following approach in which a robot’s outbound trajectory is stored as a
collection of highly compressed panoramic images together with their spatial relationships as measured with
odometry. During the inbound journey, the robot uses a combination of odometry and visual homing to return to
the stored locations, with visual homing preventing the buildup of odometric drift. A main advancement of the
proposed strategy is that the number of stored compressed images is minimized by spacing them apart as far as
the accuracy of odometry allows. To demonstrate the suitability for small systems, we implemented the strategy
on a tiny 56-gram drone. The drone could successfully follow routes up to 100 meters with a trajectory representa-
tion that consumed less than 20 bytes per meter. The presented method forms a substantial step toward the au-

tonomous visual navigation of tiny robots, facilitating their more widespread application.

INTRODUCTION

To do useful tasks, mobile autonomous robots need to navigate
through their surrounding environment. Unlike their fixed counter-
parts, mobile robots need to travel toward locations that are relevant
to their mission or to return to their base after their mission has
been completed. Currently, most autonomous robots rely on exter-
nal infrastructure for localization and navigation, such as the Global
Positioning System (GPS) outdoors (I) or ultra-wideband localiza-
tion systems indoors (2). However, for many applications, this de-
pendence on external infrastructure is undesirable. For one, the
external infrastructure might not always be available, such as GPS in
dense urban environments, extreme environments such as in caves,
or when it is jammed. Second, it might be too impractical or time-
consuming to set up additional infrastructure, especially in new or
unknown environments such as search-and-rescue operations. Even
in fully controlled environments, such as greenhouses or warehous-
es, costs might be another prohibitive factor. Hence, for many ap-
plications, it is vital that robots can navigate using only their own
sensors, without reliance on external infrastructure.

Although options are abundant for larger robots, this is unfortu-
nately not the case for smaller systems, such as the 56-g drone con-
sidered here (Fig. 1), or even tinier systems (3). First of all, the
sensors might be too large, heavy, or power hungry for use on small
platforms. This is, for instance, the case with light detection and
ranging sensors (4), which otherwise provide a popular and high-
precision solution for larger robots. Vision-based navigation could
be a solution here because cameras are passive sensors that can be
both very lightweight and power efficient (5, 6). However, here, we
run into the second issue: the excessive computational demands of
the underlying vision algorithms. Mainstream approaches toward
visual navigation tend to rely on simultaneous localization and
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mapping (SLAM) (7), a class of algorithms that typically construct
and maintain detailed, metrically accurate maps of the environment
while taking measurement uncertainties explicitly into account. The
calculations that deal with these uncertainties and correct the map
globally make SLAM computationally complex and memory inten-
sive, requiring hundreds of megabytes to even several gigabytes to
map medium-sized spaces in the order of tens of square meters (8).
Achieving navigation with the maps built by visual SLAM addition-
ally requires algorithms for path planning and trajectory tracking.
The resulting computational and memory demands require power-
ful embedded processing units that far exceed smaller robots’ pay-
load capacity or power budget.

For this reason, there has been an increasing amount of work
that focuses on more efficient navigation solutions. For instance, the
class of topological SLAM methods saves on computation and mem-
ory by forgoing the construction of a global metric map (9, 10). A
major concern for these methods is the visual distinctiveness of dif-
ferent places in the environment because place recognition is neces-
sary to globally correct the map. This typically still requires quite
complex visual processing. Reducing the computational complexity
of visual place recognition is hence an active research area (11, 12).
Other approaches to achieve more efficient navigation leverage the
design of smaller, more powerful processors. For example, in (13),
judicious software-hardware co-design led to a 2.4-mW-consuming
custom-designed chip that was able to perform visual-inertial odom-
etry (VIO). VIO algorithms form a subset of SLAM in which there
is no recognition of already visited places (known as “loop closure”
and hence, they cannot eliminate odometric drift. Moreover, there is
still some progress in scaling down existing processors despite the
slowing down of processor miniaturization because of impending
physical limits (14). Examples of lightweight computing units in-
clude Google Coral’s tensor processing unit (TPU) (15), Intel’s Neu-
ral Compute Stick (16), and the JeVois smart camera, for example,
used in (17). Until now, these processors have not yet brought vision-
based navigation to very small robots, like lightweight nanocopters.
Furthermore, even if processing power increases in the future, it is
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Fig. 1. Tiny, 56-g drone that performs autonomous visual route following with
its panoramic camera. We propose an insect-inspired approach to visual route
following that allows tiny, resource-restricted robots to follow long routes using
only a microcontroller and exceptionally little memory.

questionable whether one will have the luxury to spend all that pro-
cessing power on navigation. Real-world applications involve many
other tasks, such as perception for obstacle avoidance or for recog-
nizing mission-relevant objects. Hence, a parsimonious solution
to navigation is and will remain highly relevant for small, autono-
mous robots.

Luckily, nature is a great source of inspiration for parsimonious
solutions to navigation. Insects such as ants and bees can navigate
over remarkable distances despite their tiny brains. For example, the
desert ant Cataglyphis (18) can forage over long distances and then
walk straight back to its nest, with journey lengths of up to 1 km. To
bring a comparable algorithm to our robots, we must first under-
stand how insect navigation works.

Biologists have studied insect navigation for more than a century
and have revealed its two core ingredients (19). The first ingredient
is path integration, which has a counterpart in robotics called
"odometry," that is, the integration of traveled distance and direc-
tion to estimate one’s position. For instance, ants determine the dis-
tance they have traveled by counting the number of steps they have
taken. Moreover, they integrate ventral optical flow, tracking how
fast the ground is seen moving past them (20). The direction is mea-
sured with respect to the sun and the corresponding polarization of
the sky (18). Using these measurements, ants can maintain an esti-
mate of their position relative to their nest (19). In recent work, the
mechanisms behind path integration have been traced back all the
way to the neural level, where ring attractors in the central complex
play an important role (21-23).

Although path integration can provide an estimate of position, it
has one major downside: It is susceptible to drift because it inte-
grates its measurement errors. To solve this, nature uses a second
mechanism: view memory. Here, the environment itself forms an
additional cue for localization or navigation. There is less consensus
on how this view of memory is used by insects (24-26). The most
relevant model for our work is the snapshot model, proposed by
Cartwright and Collet (24) to describe the homing behavior of bees.
In this model, the authors posit that bees remember the presence
and location of landmarks in their visual field, as seen at their goal
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location. Then, to return, they try to maneuver such that the
landmarks in their field of view move back to their remembered
positions.

Of course, the highly efficient nature of insect navigation has not
gone unnoticed by roboticists (27, 28). An early study focused on
visual homing with the help of artificial landmarks and showed that
visual homing can enable robots to return to a known spot in the
environment (29). However, visual homing only works within a
small region surrounding the target, called the catchment area. To
navigate longer distances, a straightforward approach would be to
home toward nearby targets in sequence. As long as the robot is in-
side the catchment area of the next snapshot, this will succeed. How-
ever, catchment areas tend to be limited in size. As a result, snapshots
need to be spaced close together, which means that a large number
of snapshots need to be stored to remember longer routes. Depend-
ing on the representation of the snapshot, which can range from
full-resolution images (30) to more compressed representations
(31), this can still require more memory than is available on tiny
robotic platforms, like the 56-g drone used in this study.

To reduce memory requirements, further proposals have been
made in two directions. The first is a reduction in the memory con-
sumption of the snapshots. Many papers already reduced the images
to a single row of pixels, where the lateral flow of features is sufficient
for visual homing. However, Stiirzl and Mallot (31) took this one
step further by transforming this line into the frequency domain
and remembering only the lowest-frequency components, thereby
markedly reducing the size of the snapshot even further. The second
direction is to increase the spacing between snapshots. In a study by
Denuelle and Srinivasan (32), an improvement was proposed in
which the homing vector was used as a position estimate relative to
the snapshot. This allowed the drone to navigate some distance to-
ward the next catchment area, provided that the vector was accurate
enough. As a result, the overlap between snapshots was reduced,
though not eliminated. A simulation study by Vardy (33) combined
odometry with visual homing. New snapshots were taken when the
odometry and visual homing estimates of the direction toward the
snapshot started to diverge. However, because this happens at the edge
of the catchment area, this method still resulted in considerable
overlap between the catchment areas of subsequent snapshots. In
this work, we propose an approach to substantially increase the dis-
tance between snapshots and combine it with a memory-efficient
homing algorithm.

Minimal-memory approach to visual homing-based
trajectory following
To bring visual navigation to tiny robots, we present a highly memory-
efficient strategy for visual route following. We propose to traverse
longer distances by better exploiting the combination of visual hom-
ing and odometry (Fig. 2). In this framework, we assume that the
robot first performs an outbound flight toward a mission goal, fol-
lowed by an inbound flight back to the starting location. The out-
bound flight can, in principle, be performed under any control law,
including manual control. Because our focus here lies on route fol-
lowing during the inbound flight, we assume that the outbound
flight is performed without collision and that the environment is
static such that the route remains free of obstacles.

During the inbound flight, most of the distance is covered using
odometry, but without any correction, the odometric drift would
eventually become too large. To correct this drift, we let the robot
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use visual homing to periodically return to known locations in the
environment (the snapshot locations). During homing, it compares
its omnidirectional image only with the current active snapshot. Af-
ter homing, the robot is at a known position and can reset its pose
estimate, thereby eliminating any incurred odometric drift. After
this reset, the robot can start a new leg of odometry and visual hom-
ing, where the initial error only consists of the homing inaccuracies
at the last snapshot.

The proposed strategy is extremely memory efficient because the
snapshots are spaced as far apart as possible. Specifically, we propose

A Panoramic camera

Camera processor Height sensor

Autopilot, IMU

Weight: 569

Processor: STM32F4 ‘
Memory: 192-kB RAM

Clock speed: 168 MHz

Outbound (recording)

that the distance between snapshots is ultimately limited by the ac-
curacy of the odometry, in that the strategy will succeed as long as
the drone can reliably end up inside the next catchment area. Given
a reasonable odometry accuracy, this distance can be far greater
than when overlapping catchment areas for consecutive snapshots
are required.

In the remainder of this article, we implement and evaluate this
strategy step by step. First, we evaluate and compare different vi-
sual homing algorithms by their memory efficiency, where we take
both the size of the snapshot and the resulting catchment area into

Inbound (following)

Fig. 2. Proposed navigation strategy. (A) The experimental platform considered here: a tiny, 56-g Crazyflie Brushless drone. (B) Raw and unwrapped omnidirectional
camera image. (C) The route-following strategy. During the outbound trajectory, which could be performed under an arbitrary control law (i), the robot periodically takes
snapshots (ii) of its surroundings. To follow the same route in reverse, the robot first uses odometry (iii) to move toward the location of the next snapshot. For success, it is
vital that the drone ends up inside the catchment area (iv) of this snapshot. Hence, the distance between snapshots has to be proportional to the expected odometry drift
and catchment area size. After the odometry movement has been completed, the robot uses visual homing (v) to converge to the snapshot location and thereby cancel
the incurred odometric drift. These steps are repeated until the robot is back at its intended location.
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account. After selecting a suitable algorithm for efficient visual
homing, we continue with the key experiment of this article: We
implemented our strategy on a tiny 56-g drone and let it follow tra-
jectories of up to ~100 m. We show that periodically homing toward
a snapshot eliminates the buildup of odometric error over time.
Last, we demonstrate the same strategy on more complex trajecto-
ries and environments.

By implementing our strategy on a tiny, 56-g drone equipped
with a microcontroller featuring a mere 192 kilobytes of memory,
we show that the proposed algorithm is especially suitable for tiny
robots. With our contribution, we bring autonomous visual naviga-
tion to a class of robots for which this was previously unavailable.

RESULTS

Selected homing algorithms for comparison

As a first step toward memory-efficient visual route following, we
compared homing algorithms in terms of their memory efficien-
cy. To aid the search for an efficient algorithm, first, we broadly
categorized visual homing algorithms along two axes. We made a
distinction between “steering methods” or “visual compass—based
methods” and “vector methods.” Steering methods are characterized
by their calculation of a steering angle or rate for position control.
Typically, these methods depend only on features in the forward
field of view of the robot. Steering methods are often used in visual
teach-and-repeat navigation tasks and have been successfully dem-
onstrated over long distances, such as in (34-37). In addition, con-
vergence has been proven for straight-line segments (38) and more
complex paths (36, 39).

On the other hand, vector-based methods typically do not pro-
duce a steering angle but a vector toward the snapshot. In contrast to
steering-based methods, vector methods tend to not have an obvi-
ous “forward” direction and typically rely on a panoramic field of
view. Vector methods are often used to home toward a single point,
and they have also been used in visual route following such as in (40,
41), although research in this direction has been far less extensive
than for steering methods.

Although steering-based methods might have been an obvious
choice, for this article, we chose to focus on vector-based approach-
es. Our reasoning was as follows: First, steering-based methods re-
quire their reference images to be spaced close together. Following
the proof in (38), the distance between images must be smaller than
the distance to the dominant feature in the environment; a distance
of 35 cm was used in said article. We expected to achieve a far great-
er spacing using odometry. Second, we aimed to bring the robot as
close to the snapshot as possible, ideally on top of it. As a result, we
had no guarantee that the snapshot would be in front of the robot
after traveling with odometry; it could just as likely have been be-
hind it or to its side. Last, we thought that a vector is a more natural
way to express movement for holonomic systems like our drone.

The second axis by which we categorized homing algorithms was
the way in which snapshots are represented. We considered two
broad categories of snapshot representations for use in visual hom-
ing: landmark-based and holistic representations. Landmark-based
methods represent the snapshot as a collection of point landmarks
that each have their own bearing. Consequently, in landmark-based
visual homing, points in the environment are tracked from the cur-
rent to the target image. From the point correspondences between
these two images, a homing vector directed toward the target can be
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derived, for instance, using visual servoing (42-44). To describe and
track landmarks, keypoint detectors and descriptors from computer
vision are used. Examples include the computationally expensive
scale-invariant feature transform (45) features and the much more
efficient binary robust invariant scalable keypoints (46). In addition,
the bearing toward each landmark needs to be stored. All in all, this
still leads to a sizable memory consumption, especially when a large
number of snapshots need to be remembered. To reduce memory
consumption, it is possible to share descriptors between multiple
snapshots as demonstrated by Stelzer et al. (47). However, the size of
a snapshot remains in the order of hundreds of bytes or more.

On the other end of the spectrum are the holistic methods. Un-
like landmark-based algorithms, these operate on the image as a
whole. Instead of matching the bearings of landmarks, the entire
current and target images are matched, for instance, with the sum of
square differences. This leads to an image difference function (IDF)
(see Fig. 3), which should be zero when the current and target view
coincide and increase smoothly with distance near the target loca-
tion. By finding the direction in which the IDF decreases, homing
can be performed. One option to detect and follow the gradient
down the IDF is to make physical movements, as demonstrated by
Zeil et al. (48). Finding the gradient in this way may be time-
consuming. Therefore, Franz et al. (30) proposed an alternative
method in which small movements were simulated by warping the
image. Using this method, the authors performed a brute-force
search over multiple potential movements and selected the best
match. Hence, we term the method “Search” here. As a computa-
tionally more efficient alternative, Moller et al. (49) suggested only
predicting two perpendicular movements and using these to esti-
mate the gradient of the IDE. By following the gradient, the robot
will end up in the (local) minimum of the IDF. In later work, they
included the second-order gradient as well. They termed their ap-
proach “MFDID.” Storing entire images is not ideal in terms of
memory efficiency; it is worse than most landmark-based approach-
es. A first improvement is that the snapshot images can be vertically
averaged because just the lateral flow should already be sufficient to
find the homing vector. On top of that, Stiirzl and Mallot (31) showed
that these one-dimensional snapshots could be substantially com-
pressed while maintaining homing performance. This compression
was performed by first transforming the snapshots to the frequency
domain and then only keeping the lowest frequency components,
where most of the power is found in natural images. The authors
showed that homing was still possible using only the lower five com-
ponents. With appropriate rounding, such a snapshot could be stored
in as little as 10 bytes per snapshot. Figure 3A shows a raw pan-
oramic image and its reconstruction using the highly compressed
Fourier representation below. It can be observed that this method,
which we term “Fourier,” captures the coarse vertical structures in
the environment. Because these images can ultimately be compressed
further than the bearing-descriptor pairs of landmark-based hom-
ing, we focus on holistic algorithms for the remainder of this article.

Comparison of holistic visual homing algorithms

The selection of a specific visual homing algorithm meant exploring
a trade-off between the catchment area size, memory consumption
of snapshots, and computational demands. We evaluated the catch-
ment areas from the abovementioned holistic vector-based meth-
ods (30, 31, 49) with the help of the publicly available panoramic
image dataset by Gaffin and Brayfield (50). The dataset contains
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Fig. 3. Comparison of visual homing algorithms. (A) lllustration of the IDF with the Fourier method (37). Images were compressed using vertical averaging and a low-
passed Fourier transform. The difference between the compressed image at the current and target location increases smoothly with distance, as shown in the plot. Finding
the minimum in this IDF brought the robot back to the target position. (B) To evaluate the size of the catchment area belonging to a snapshot, we generated all homing
vectors (left), predicted the robot trajectories (center), and collected all starting points for which the end-point error was small (right; error indicated by color). (C) Homing
algorithms were compared by the size of their catchment area, given a snapshot size in bytes. At small snapshot sizes, Fourier-based homing performed best, whereas at
larger sizes, search-based homing was more effective. In terms of efficiency in square meters of catchment area per byte, Fourier-based homing performed best.

100 pixel-by-100 pixel grayscale images taken at 12.7-cm intervals in
a7.3 m-by-6.9 m room and part of the adjacent corridor. To evaluate
the catchment area, we generated snapshots throughout the envi-
ronment, and for each snapshot, we calculated the homing vectors
at all panoramic image locations in the room (Fig. 3B). Then, from
each starting position, homing trajectories were generated by inte-
grating the bilinearly interpolated homing vectors. These trajecto-
ries let us determine the final position of the robot after homing and
thereby find the set of starting locations from which homing would
be successful, that is, the catchment area. Because the catchment
area can have a highly irregular shape (see the dark blue area in
Fig. 3B), we took the number of successful starting cells as a mea-
sure of the size of the catchment area. The top plot in Fig. 3C shows
the relationship between the snapshot size in bytes (indicated with
the letter B) and the average catchment area in square meters. The
Fourier method led to the largest catchment areas for snapshot sizes
below 32 bytes, whereas the Search method gave the largest catch-
ment areas above. The lower plot in Fig. 3C shows the average ratio
of the catchment area with respect to the snapshot size. It shows that
the Fourier method is highly efficient for small snapshots. Because
this algorithm is both memory-efficient and computationally cheap,
it was used in our further experiments. Please note that the choice
for this representation entailed a dependence on contrasts along the
horizon line and mainly large vertical features, such as walls, doors,
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windows, and trees. Furthermore, the idea of snapshot matching re-
lies on these contrasts being static.

Visual homing and odometry

Before combining visual homing and odometry into a single naviga-
tion strategy, we examined these elements in isolation. We first vali-
dated the homing performance of the selected visual snapshot
representation on our robotic platform, a 56-g, Bitcraze Crazyflie
Brushless (Figs. 1 and 2A). This tiny 12.5-cm drone carried a 10-g
panoramic camera assembly (included in the 56-g takeoft weight).
The assembly included an STM32F4 chip for processing the omnidi-
rectional images onboard in real time. Furthermore, the drone was
equipped with a “flow deck” with a downward-looking camera and
a tiny laser ranger to measure optical flow and height, respectively.
Combining these measurements results in velocity estimates, which
were used for odometry.

In the homing experiment, the drone was first directed to the
center of our testing environment, a 10 m-by-10 m-by-7 m flight
arena termed the “Cyberzoo” (see Fig. 4C for an impression). Sub-
sequently, we commanded the drone to go to a small number of
locations away from the target, to a maximum distance of approxi-
mately 2 m. Then, the drone performed visual homing with the
Fourier method. Figure 4 shows an overhead view of the drone’s
trajectories (Fig. 4A), the distance to the target location over time
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during homing (Fig. 4B), and an overview image of the flight arena
(Fig. 4C). We observed that eight of nine runs brought the drone
close to the target location, within ~0.5 m, at which point the run
was ended. The failed run started at one of the outer positions. By
definition, the failed homing attempt means that the starting posi-
tion was outside of the (unknown) catchment area of the snapshot
in the center. The experiment also showed that the drone did not
always fly straight to the target location, an indication that the
homing vector can point in a different direction than the target vec-
tor. As long as the homing vector is within +90°, however, the dis-
tance will decrease, and the drone will eventually arrive at the target
location.

As explained earlier, our strategy relies on spacing the snapshots
as far apart as odometry allows. Specifically, the drone should end
up just inside the next catchment area. The drone’s positioning ac-
curacy depends on two main factors: the accuracy of its starting
pose after homing and the drift incurred while moving toward the
new position. This was demonstrated by a simulation of multiple
trajectories in Fig. 5A, in which the SDs of the initial position and
heading, yaw rates, and velocity errors were exaggerated to demon-
strate their effect. The model showed that at short distances, the po-
sition error was primarily caused by errors in the initial pose because

it was almost constant. For longer distances, the error begins to
grow because of integrated odometry errors. At the end of a route
leg traveled by means of odometry, the cross-track error was larger
than the along-track error. This can be seen in Fig. 5A, where there
is a larger spread orthogonal to than along the route, and in Fig. 5C,
in which this is also the case for real-world odometry experiments.
This effect is caused by the heading error, consisting of an initial
offset and subsequent drift. Figure 5B shows the absolute cross-track
errors of the drone experiment. Overall, the accuracy was quite
good, with a cross-track root mean square error of 13 cm after 5 m
of travel.

The plots in Fig. 5 (C and D) show a similar experiment but over
longer distances. The drone traversed a line of approximately 5 m
back and forth 10 times. In Fig. 5C, the drone only used odometry
for this procedure. In Fig. 5D, the drone recorded a snapshot in the
top left corner and used this to realign itself on each arrival there.
The results show that the odometry did drift and that the drift be-
came substantial for longer distances. They also show that our peri-
odic realignment scheme, while introducing some error because of
homing inaccuracies, prevented the buildup of odometric drift over
time and, as a result, kept the error bounded when traveling longer
distances.

3.5 1

3.0

2.5

2.0

Distance (m)

Flight arena

Fig. 4. Visual homing toward a single point. The drone was commanded to home over longer distances toward a snapshot at the center of the flight arena (gray circle).
(A) Homing trajectories shown as colored lines, with crosses for the end positions. (B) The decreasing distance toward the snapshot over time, shown with colored lines
corresponding to the trajectories in (A). The black line indicates the worst homing performance attained in this experiment for trajectories converging to the snapshot.
For illustration purposes, in (A), a possible catchment area is drawn with a dashed line. One of the starting positions lay outside of the catchment area and led the drone
to diverge (red cross as the end position). Homing was successful for distances well more than 1 m, whereas the odometric drift between snapshots during route following
was expected to be substantially smaller. (C) Picture of the environment setup for this experiment.

van Dijk et al., Sci. Robot. 9, eadk0310 (2024) 17 July 2024

60f13

GZ0Z ‘€2 Jequeos uo 610°80us 105 MMM//:SANY LWOJ) pepeojumo



SCIENCE ROBOTICS | RESEARCH ARTICLE

A

[ Error model, exaggerated l

C Odometry only (100m) D

0.200
Real data

0.175 RMSE (m) °

|

0.150

0.125

1

0.100

0.075

0.050

Cross-track error (abs) (m)

0.025

|

o

8
T T T T T T
1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0

Target distance (m)

0.000

Odometry + snapshot (100m) E

Flight arena

(m)

Fig. 5. Combining visual homing and odometry. Each leg of the route-following strategy consists of a homing operation toward a snapshot, followed by an inbound
maneuver toward the next snapshot using odometry. (A) The error model with exaggerated noise parameters showing both the initial pose error after homing and the
increased spread because of odometry. (B) Experimental data for real-world odometry experiments in which the traveled distance was varied. (C and D) Proof-of-concept
demonstration. The drone was commanded to fly a 5-m trajectory back and forth for a total distance of 100 m. In (C), the drone only used odometry, whereas in (D), it
periodically homed to a snapshot. Repeatedly homing toward snapshots was shown to prevent drift over longer trajectories. (E) Overview photo of the test environment.

Route following with minimal memory
With the core principles proven, we then demonstrated the com-
plete strategy on more complex trajectories and environments. We
created different types of trajectories, of which the outbound por-
tion was traversed using odometry (without any global position
feedback). After the outbound journey was completed, the drone
started its inbound journey with the help of the proposed insect-
inspired navigation strategy. We qualitatively compared the route-
following accuracy with respect to the outbound trajectory. A motion
capture system was used to record the absolute position of the drone
during its outbound and inbound flights. These measurements were
never communicated to the drone; they were only used for evalua-
tion after the experiment. The trajectories consisted of multiple tra-
versals of an S shape (Fig. 6A) or a U shape (Fig. 6B). The trajectories
were repeated to maximize the travel distance within the limited
testing area. The resulting path lengths (of the outbound route) were
40 m for the S-shaped trajectory and 56 m for the U-shaped one.
Ultimately, the length of the experiment was limited by the battery
capacity of the drone.

When introducing our minimal-memory approach to visual
homing-based trajectory following, we mentioned that snapshots
are spaced as far as odometry allows. Given the varying unknown

van Dijk et al., Sci. Robot. 9, eadk0310 (2024) 17 July 2024

shapes and sizes of catchment areas and the variable nature of drift,
choosing a spacing between snapshots has implications for the trade-
off between navigation robustness and memory expenditure (see
the “Theoretical model for spacing snapshots” section in the Supple-
mentary Materials). In our experiments, we used a fixed 1- or 2-m
spacing between snapshots during the experiments. First, these
were conservative values where the position error was primarily
dominated by homing inaccuracies, whereas the odometric drift be-
tween snapshots remained small. Second, this gave us a larger num-
ber of visual homing attempts, which allowed a better indication of
its use and robustness during route following.

Figure 6 shows the resulting trajectories for the proposed meth-
od (Fig. 6, A and B). The robot successfully and reliably followed the
outbound trajectory back to the start. The route-following memo-
ry for the U trajectory consisted of 31 16-byte snapshots and 2 to 3
2-byte odometry vectors between snapshots, leading to a total mem-
ory size of 0.65 kilobytes for a distance of 56 m. We also compared
our method with sequential visual homing on one of the trajectories
(Fig. 6C). The experiment showed that homing between successive
snapshots is a viable method of navigation. However, the snap-
shots had to be spaced at a distance of 25 cm; earlier attempts with
1-m spacing consistently failed. Because the catchment areas scale
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Fig. 6. Validation of the complete route-following strategy. The drone successfully followed long routes in complex environments where it was impossible to see the
entire route from a single point of view. The outbound route is shown in red, route following using odometry in yellow, and homing in blue (A to C). The drone traversed
the route multiple times during the outbound and inbound segments to maximize the length of the trajectory (all on the order of ~50 m). For comparison, a route-
following attempt in which the drone only used sequential visual homing as a strategy is shown (C). The drone successfully followed the route but stopped early because
the increased travel time caused the battery to run out before completing one stretch of the trajectory. A time-lapse photo of the experiment in (B) is shown in (D).

proportionally to the size of the environment (distance to the domi-
nant features, the walls in this case), they were considerably smaller
than in Fig. 4. Besides the increased memory consumption, the hom-
ing procedure was also relatively slow (to prevent overshoot or large
pitch/roll angles), and as a result, the drone traveled an appreciably
shorter distance before the battery ran out. In comparison, the pro-
posed strategy had a substantially higher average speed, whereas the
tracking error had the same order of magnitude.

We also performed a number of experiments to evaluate the ro-
bustness of the proposed approach. One important characteristic of
the chosen snapshot representation (with vertical averaging and
Fourier compression) is that it depends on prominent vertical fea-
tures (contrasts along the horizon line). Such features are common-
ly present in both indoor and outdoor environments. To illustrate
this, we made a set of snapshots in various places in the building of
the Faculty of Aerospace Engineering at TU Delft (see the “Presence
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of texture in different environments” section in the Supplementary
Materials). The low resolution of the snapshots may initially seem
purely disadvantageous for accurate homing but actually brings
some robustness against small, dynamic objects. This is illustrated
with an experiment in which we monitored the resulting home vec-
tor, whereas we moved objects around the robot (tables S1 to S4).
Sometimes in indoor environments, there are corridors with purely
uniform walls. In that case, the current approach will not be able to
correct the drift in the direction of the corridor (lateral drift can be
canceled because of the different appearance of the floor and walls).
Furthermore, to show that the drone is also able to follow routes in
different indoor environments, we performed additional experiments
in three different places at the Faculty of Aerospace Engineering: close
to an airplane simulator SIMONA (51), in an office hallway, and in
our laboratory space (Fig. 7). Videos of these flights can be found in
the Supplementary Materials. Last, because the flight time of the real
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drone is limited, we performed simulation experiments to show that
also longer distances can be covered with the proposed strategy. Spe-
cifically, in the AirSim simulator (52), a simulated Parrot augmented
reality (AR) drone was able to use the strategy to successfully track
a 300-m trajectory in a forest environment (fig. S2).

DISCUSSION
We have proposed an insect-inspired navigation strategy for route
following, which extensively depends on odometry to reduce mem-
ory usage. The strategy was demonstrated on the lightest robot to date
to perform vision-based navigation, a 56-g Crazyflie drone, leading
to successful navigation for as long as the battery lasted.

The experiments show that even tiny robots can navigate autono-
mously. Of course, the strategy studied here is a route-following

Fig. 7. Flights in different indoor environments. To test the robustness of the proposed visual navigation method,
we performed tests in various indoor environments. A time-lapse image of each test is shown for three environments:
(A) a large indoor test facility for airplane simulation (SIMONA), (B) an indoor office hallway, and (C) the Micro Air Ve-
hicle Laboratory space (the bright spot on the floor is due to direct, bright sunlight). The outbound trajectory is indi-
cated by red arrows, odometry-based indoor trajectories by yellow arrows, and homing maneuvers by blue arrows.
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strategy. This sets it apart from SLAM-based navigation approaches
and has two important implications. First, the robot will perform an
inbound route that is identical to the outbound route. This is similar
to other teach-and-repeat methods in robotics (37, 53). By not going
straight back to the starting location, as insects are known to do
(18), the robot follows a trajectory that is suboptimal in terms of
path length. In contrast, robots performing metric SLAM can plan
and execute optimal paths at the expense of considerable processing.
How to perform straight returns to the initial location while coping
with odometric drift without metric maps is an important topic for
future study. Second, the current algorithm is unable to combine mul-
tiple paths to move between arbitrary locations in the environment.
It will not be able to fly to another previously visited place that
is relevant to its task without first returning to the home loca-
tion. Also, insects can do this, and it is hypothesized that insects may
store different places in a nest-centered
reference frame (19). Such a representa-
tion is reminiscent of topological map-
ping approaches, which may provide
fertile ground for integration with the
method proposed here. For example, in
(54), new nodes (places) were created in
a topological map by estimating online
whether the robot was about to leave
the catchment area of the previous node.
This led to overlapping catchment areas,
an idea very similar to that of Vardy (33)
in the insect route-following literature.
The proposed idea of further spacing
snapshots (or nodes in the topological
graph) apart is directly relevant to such a
topological mapping approach.

In terms of biological plausibility, we
do not believe that the proposed strategy
is an accurate model for explaining in-
sect navigation behavior. Although some
switching between path integration and
visual homing occurs when insects move
from unknown to known environments,
behavioral experiments show that they
mostly use these cues simultaneously (55,
56), in contrast to our strategy. However,
our results do support the general idea
that path integration and visual hom-
ing are best used in combination. Even
more, they suggest that path integration
has a marked effect on the efficiency and
parsimony of navigation even when oth-
er (visual) cues are present and encour-
age further research into the integration
of these cues (19, 56, 57).

In the field of robotics, the performed
experiments are highly encouraging be-
cause they show that tiny robots are also
able to perform vision-based autonomous
navigation. Future work could focus on
improved robustness by introducing
obstacle-avoidance capabilities. For in-
stance, the omnidirectional image could
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be used to determine optical flow for collision avoidance (58, 59).
Moreover, the robot could estimate the catchment area size online
and be endowed with a search procedure when losing the route. Ad-
ditional experiments in varying environments could identify which
elements of the method need the most improvement. Still, as al-
ready hinted above, the choice for route following implies a cost
in terms of tracking accuracy and flexibility in navigation targets.
Even if we further approach the impressive navigation capabilities
of insects, it may be that for these characteristics, a traditional
SLAM-based navigation approach remains superior. However, for
autonomously navigating robots, optimality in terms of mass and
energy expenditure is also important. This is definitely the case for
applications such as greenhouse monitoring by flying robots. The
driving factors for that application are safety and navigation in nar-
row, cluttered environments. Tiny, lightweight flying robots are
hence ideal for such an application, in which it is most important
that the robots fly out, gather data, and come back to a fixed charg-
ing station. The data can then be uploaded to a server for mission-
specific processing, such as evaluating crop growth or disease
detection. We expect that the best navigation solution will eventu-
ally be task-dependent and venture that even for much bigger ro-
bots on the order of kilograms, insect-inspired navigation may be
the best option when efficiency is more important than high posi-
tioning accuracy along the trajectory. If orders of magnitude in
computation and memory can be saved from the task of naviga-
tion, this computation can be used for onboard mission-relevant
tasks such as the recognition of diseases or pests in a greenhouse
application or the counting of products in a warehouse monitoring
application. Hence, the current work will not only benefit tiny ro-
bots, such as the 56-g drone used here or even the insect-sized
Harvard RoboBee (60), but much larger robots as well.

MATERIALS AND METHODS

Hardware

The experiments here were performed on a prototype of the Crazyflie
Brushless drone provided by Bitcraze. The Flowdeck V2 (PMW3901
optical flow sensor, VL53L1x laser ranger) was used for velocity and
altitude control and odometry. For navigation, the drone was equipped
with a TCM8230MD camera with a Kogeto Dot 360 panoramic lens.
Processing was performed using two STM32F4 microcontrollers, one
on the autopilot and one on the camera assembly. Visual processing
was performed on the camera microcontroller; state estimation and
control were performed on the autopilot. Logging was performed off-
board using the radio link.

The default Crazyflie firmware was used as autopilot. State esti-
mation was performed with the default extended Kalman filter. A
custom onboard app communicates with the camera over a UART
link and sends position set points and measurement updates to the
autopilot’s controller and estimator.

Image processing
Image processing began with the preprocessing of the camera frames.
Raw images were captured at a 128 pixel-by-96 pixel resolution
(Fig. 2B). A custom autoexposure routine adjusted the shutter time to
keep the horizon’s mean luma at a fixed value (80 out of 255) while
ignoring the rest of the image (including the lens fixture).

The image was then reprojected to cylindrical coordinates at a
128 pixel-by-16 pixel resolution. We used a look-up table and
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nearest-neighbor sampling for computational efficiency. The cylin-
drical images were aligned with the drone’s north estimate by offset-
ting the sampling angle. Derotation of pitch and roll angles was
implemented but not used because the angles during the experi-
ment remained sufficiently small. The images were then converted
to grayscale and vertically averaged to produce a one-dimensional
periodic signal. We used the fast Fourier transform from the ARM
CMSIS DSP library to transform this signal to the frequency do-
main. For memory efficiency, the direct current (DC)- and higher-
frequency components were dropped. The remaining complex
coeflicients were quantized to pairs of 8-bit signed integers, with a
fixed per-frequency scaling to cover most of the 8-bit range.

Homing implementation

For the comparison of homing methods, we implemented the algo-
rithms by Franz et al. (30) (Search), Moller et al. (49) (MFDID), and
Stiirzl and Mallot (31) (Fourier) as described in the respective pa-
pers. For each choice of snapshot size, the parameters were retuned
using a grid search to maximize the size of the catchment area. For
the Search algorithm, we used a bearing-distance search grid, be-
cause the exact grid was not described in the article. For MFDID, we
included the use of the Newton-based correction (61) as part of the
parameter search but found little difference in this dataset, which
mainly consists of a square, open room.

The Fourier-based homing algorithm by Stiirzl and Mallot (31)
was also implemented on the experimental hardware. For efficient
implementation, we wish to highlight an important property of this
algorithm. To find the homing vector, Stiirzl and Mallot (31) derived
and minimized an “approximate IDF” &, in terms of hypothetical
movement h € R’ in the form of a quadratic surface:

& (h)=2hTAh+bTh+c
2 2

Here, A, b, and c are fully defined by the complex coefficients of
the Fourier-transformed, derotated images. As a result, the hom-
ing vector can be found using only the fast Fourier transform
and a three-by-three matrix inversion, which makes this algorithm
highly efficient in terms of run time. For the full definition, we re-
fer to (31).

Although the images are already coarsely aligned with respect to
the north estimate, we did include the coarse rotation alignment
step of the algorithm. However, we replaced the phase-based algo-
rithm with a brute-force search over all possible rotations, because
we found that this provided more robust results in practice. The
phase-based algorithm appeared to lack robustness when symme-
tries were present in the environment or when lower frequencies
were absent in the panoramic images, although we did not fully in-
vestigate this further.

For the sequencing of snapshots, it is important to detect arrival
after homing. This was initially determined by observing the differ-
ence between the currently relevant snapshot and the current obser-
vation. If this difference did not reach a new minimum during the
last 10 frames (~1 s), the drone was considered to have arrived. Al-
though this worked, it resulted in long hover times near the snap-
shots. In the final experiments, this detection was replaced by a simple
timeout. This considerably reduced hovering times and thereby al-
lowed longer travel distances, at the cost of a slightly higher homing
position error.
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Route memory

The “route memory,” containing the snapshots and odometry vec-
tors, was implemented in memory using two stacks (Fig. 8). The
odometric trajectory was recorded as a sequence of translation vec-
tors. While recording, a new vector was pushed onto the stack every
0.3 m. These vectors were stored as a pair of 8-bit signed integers,
with a resolution of 10 cm. Each new vector was calculated by com-
paring the current position estimate with the sum of all previous
vectors; this prevented the buildup of rounding errors. To reduce
memory consumption, the recorded trajectory was simplified when
a new snapshot was taken. At that time, the complete trajectory
since the last snapshot was decimated using the Ramer-Douglas-
Peucker algorithm (62, 63) (e = 0.1 m). This strongly reduced the
number of odometry vectors while keeping the resulting deviation
within strict bounds. Additional vectors may be stored to keep the
lengths within 8-bit integer bounds. After simplifying the trajectory,
the snapshot was pushed onto its own stack together with the size of
the odometry stack at that time so that its position in the odometry
frame could be retrieved during route following.

During route following, after each odometry segment, the drone
should be close to the true position of the snapshot on top of the
stack (Fig. 8). The drone then started a homing maneuver toward
this snapshot, removing the need for along-route localization. Once
the homing maneuver was completed, the drone realigned its posi-
tion and heading estimate to those of the snapshot as recorded by
the odometry vectors and the north alignment of the snapshot. In
practice, this realignment was implemented as an absolute position
and heading measurement with a small covariance for easier inte-
gration with the Kalman filter.

Experimental setup
During the flight experiments in Figs. 4 to 6, the true position of
the drone was measured using an OptiTrack motion capture sys-
tem. These position data were not communicated to the drone at
any time; they were only recorded for analysis after the flight. The
time stamps were aligned by maximizing the cross-correlation be-
tween the north or east positions in both log files. The outbound
trajectories during the flight experiments did not use the true po-
sition either; these relied entirely on the onboard position estimate.
The experimental flights shown in Figs. 4 to 6 were performed
over artificial grass. Judging by the performance of odometry-only
navigation, this provided sufficient texture for the Crazyflie’s optical
flow sensor. The drone used its downward-facing laser range sensor

Snapshot stack:

20dm North
0dm West

20dm North
0dm West

Odometry stack:

10dm North

to maintain a constant height during the experiment. On the sides of
the flight area, canvas panels with mostly natural scenes provided
additional texture for navigation. For the U- and S-shaped trajecto-
ries, these panels were also placed in the center of the flight area to
block the line of sight between the extreme points.

The experimental flights shown in Fig. 7 were performed at differ-
ent locations in the Faculty of Aerospace Engineering: in a large open
space of the SIMONA airplane simulator, a narrow corridor, and the
Micro Air Vehicle Laboratory. Each experiment started with a manu-
ally designed, preprogrammed outbound flight that was executed on
the basis of odometry. The outbound flight was followed by an au-
tonomous inbound flight. Figure 7 contains stitched time-lapse im-
ages, in which we show the drone when making the snapshot during
the outbound flight (red arrows), when the drone estimates arriving
at the snapshot location with odometry during the inbound flight
(yellow arrows), and after homing to the snapshot (blue arrows). The
videos can also be found in the Supplementary Materials.

Simulation setup

Figure 5A shows the results of elementary simulation experiments
to illustrate the effects of odometry drift. The simulation included
both an initial position and heading offset because of imperfect
homing and odometry drift along the route leg. Hence, we initial-
ized the pose as x, y, W < x + N (0,9), ¥y + N(0,), Wy + N (0,0),
where (xo, Y0, Wo) is the actual snapshot position and N'(c) is a nor-
mally distributed random variable with zero mean and SD o. Then,
for each time step, the state was updated as follows:

Y <y +N(o,)
x < x + Axcosy + N (6,)
y <y +Axsing +N(c,)

For the simulation in Fig. 5A, the following values were used: Ax =
0.25m, Gy = Gy9=0.10m, Gy =5, 6, = 6, = 0.025 m, and 5, = 2.
Please note that these values are large compared with the real hom-
ing and drift errors so that the figure shows the effects they have on
the position error at the end of the route leg.

Statistical tests
No statistical tests were performed for this article.

0dm North
10dm West

0dm North
15dm West

5dm South
0dm West

0dm West

Fig. 8. Route representation in memory. The trajectory was represented using two stacks: one holding snapshots and one holding odometry vectors. When a new
snapshot was pushed, it was stored together with the number of odometry vectors that were present at that time. This allowed the snapshot position to be found by
adding all odometry vectors before it and aided in the sequencing of odometry and homing maneuvers. A single odometry vector consisted of two int8 numbers at
decimeter resolution (2 bytes). A snapshot consisted of eight complex coefficients (2x int8, so 16 bytes in total) plus a uint16 odometry count (2 bytes).
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Supplementary Materials
The PDF file includes:

Methods

Figs. S1to S8

Tables S1 to S4

Other Supplementary Material for this manuscript includes the following:
Data file S1
Movies S1to S13
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