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Abstract
Unmanned aerial vehicles (UAVs), commonly known as drones, have revolutionized numerous fields
ranging from aerial photography to surveillance and logistics. Achieving stable flight is essential for
their successful operation, ensuring accurate data acquisition, reliable manoeuvring, and safe operation.
This thesis explores the feasibility of employing a frontal monocamera and sensor fusion techniques to
enhance drone stability during flight.
The objective of this research is to investigate whether a frontal monocamera, combined with sensor
fusion algorithms, can be used to effectively stabilize a drone in various flight scenarios. By leveraging
machine vision techniques and integrating data from onboard gyroscopes, the proposed approach aims
to provide real-time feedback for controlling the drone.
The methodology for this study involves the Crazyflie 2.1 drone platform equipped with a frontal camera
and a Inertial Measurement Unit (IMU). The drone’s flight data, including position, orientation, and
velocity, is continuously monitored and analyzed using Kalman Filter (KF). This algorithm processes the
data from the camera and the IMU to estimate the drone’s state accurately. Based on these estimates,
corrective commands are generated and sent to the drone’s control system to maintain stability.
To evaluate the effectiveness of the proposed system, a series of flight tests are conducted under different
environmental conditions and flight manoeuvres. Performance metrics such as drift, level of oscillations,
and overall flight stability are analyzed and compared against baseline experiments with conventional
stabilization methods. Additional simulated tests are carried out to study the effect of the communication
delay.
The expected outcomes of this research will contribute to the advancement of drone stability systems.
If successful, the implementation of a frontal camera and sensor fusion can provide a cost-effective and
lightweight solution for stabilizing drones.

Keywords: Machine Vision, Sensor Fusion, Unmanned Aerial Vehicles, Drone Stabilization,
Frontal Monocamera
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1 Introduction

Over the past few decades, we have witnessed tremendous advancements in technology, and one of
the most significant developments has been the rise of Unmanned Aerial Vehicle (UAV), commonly
known as drones. Drones have gained tremendous popularity over the past few years, revolutionizing
various industries and providing unique opportunities for innovation and exploration. These UAVs have
a wide range of uses, from entertainment to military applications. However, their impact has been
most profound in industries such as agriculture, search and rescue, photography, mining, environmental
monitoring, and surveillance [1].

The growing demand for drones is primarily due to their versatility, efficiency, and affordability. Drones
are capable of accessing remote locations, performing complex tasks, and capturing high-quality data
and imagery. In addition, they can be operated from a distance, which reduces risks to human life and
makes them ideal for dangerous or challenging missions. As a result, drones have become indispensable
tools in a wide range of industries and have opened up new possibilities for research, exploration, and
development.

Due to this large variety of applications, many kinds of UAVs have been developed. UAVs can be classi-
fied in various ways, based on size, shape, capabilities, propulsion method and applications. According
to the size and weight, drones can be classified from UAV with a maximum wing span of 61 m and
weight of 15000 kg, to Smart Dust (SD) with a minimum size of 1 mm and weight of 5 mg. The drones
between these two classes are the Micro Unmanned Air Vehicles (µUAV), Micro Air Vehicle (MAV),
Nano Air Vehicles (NAV), and Pico Air Vehicles (PAV) [2].

According to the propulsion method, drones can be classified as fixed wings, single rotor, multi-rotor
and hybrid. Fixed-wing drones use forward airspeed and static wings to generate the lift. single rotor,
or helicopter, drones use a rotor to generate the vertical thrust, while multiple-rotor drones use multiple
rotors. Fixed-wing drones are more energy efficient but need more space for take-off and landing than
rotor drones. Hybrid models allow them to take off vertically while using wings to fly long distances.
There are other propulsion systems, yet much less frequent. For instance, ornithopters flap their wings
to mimic insects or birds [3][4].

One of the most popular types of drones is the quadcopter, which has four rotors and is capable of
hovering and manoeuvring in tight spaces. Quadcopters have a unique design that allows them to be
controlled with precision, making them ideal for capturing aerial footage and performing tasks that
require accurate navigation. Moreover, quadcopters are relatively simple to operate and can be pro-
grammed to perform automated tasks, making them an excellent option for businesses and individuals
looking to streamline their operations.

One of the main challenges in quadcopter design is maintaining stability during flight. Uncontrolled
motion can lead to instability, causing the drone to crash or fly erratically. To address this challenge,
researchers have developed various stabilization systems for quadcopters. These systems typically use a
combination of sensors, including an IMU, which measures the drone’s motion, and Global Positioning
System (GPS), which provides location data. These sensors are used to adjust the speed and orientation
of the drone’s rotors, ensuring a stable flight.

However, GPS-based stabilization systems have some limitations. GPS signals can be affected by envi-
ronmental factors such as interference, signal loss, obstruction, and multipath. Moreover, GPS sensors
can be expensive and add weight to the drone, affecting its manoeuvrability and battery life. To over-
come these limitations, researchers have explored the use of camera-based stabilization systems that rely
solely on visual data.

This paper proposes a stabilization system for quadcopters that uses only the data from a frontal camera
and IMU sensor. The system is based on computer vision techniques that allow the drone to sense its
surrounding movement and adjust its motion accordingly. Specifically, it is used a combination of feature
detection and motion estimation algorithms to track the drone’s movement and orientation relative to
the environment. This information is then used to adjust the speed and orientation of the drone’s rotors,
ensuring a stable flight.
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This proposed system has several advantages over GPS-based systems. It is less affected by environmental
factors, and more cost-effective. Moreover, the system can be used in indoor environments where GPS
signals are usually unavailable. This system can contribute to the development of more efficient and
reliable quadcopters for a wide range of applications. In addition, the use of a frontal camera, even
though is more challenging than a facing-down camera, can reduce costs since many drones already need
a front camera for their main purpose.

The rest of this thesis is organized as follows. A brief introduction to drones today is provided in this
first part, and the problem is presented. The second section presents all the theories and algorithms
that support this study. Part three is an explanation of similar works that have already been developed.
Following this, section four shows in detail the hardware used in this work. The methods followed are
explained in section five, followed by the development of the work, the results and the discussion. Finally,
in section nine, a conclusion about the paper is developed.

1.1 Problem Statement

As devices such as CPUs, GPUs and cameras are becoming increasingly powerful, physically smaller and
cheaper, computer vision has been steadily gaining ground in a wide range of applications, from robotic
cells in production lines and analysis in medicine to agriculture and vehicle navigation. Parallelly, drones,
and other forms of moving robotic systems, are becoming increasingly common in an almost equally wide
range of applications. These systems typically use a suite of sensors to manoeuvre in conjunction with
one, or several cameras to detect, register, and model the world around them. It could, however, be
argued that their most powerful sensor is the camera and that this sensor is underutilised in these
systems. By optimising how the system uses its available sensors it should be able to increase efficiency
and performance simultaneously, whilst possibly reducing costs.

1.2 Aim and Objectives

If drones rely solely on the IMU for stabilizing, they tend to drift due to minor measurement errors and
calculation deviations. In addition, should the disturbances be greater and/or more irregular, such as
gusty winds, an engine with a greatly impaired ability or the like, the drone will drift more.

A solution to this is to use data from another sensor that can act as a reference, such as a camera.
Using a camera with machine vision can provide data on the movement and velocity of the drone. So
the challenge is to design a sensor fusion solution adapted to the provided drone that uses the IMU and
a front camera (as observation) to estimate the local pose of the drone and stabilize it and compensate
for disturbances.

The goals of the project are:

1. Designing a sensor fusion solution based on IMU and camera to control and stabilize the drone.

2. Testing the robustness against disturbances and comparing the performance using only the IMU
sensor.

Such a system could be useful for scenarios where the vehicle requires already a frontal camera for its
main purpose. Keeping a drone steady is important to record a video from a static position that is
only accessible by a drone. For instance in theatres or different spectacles where a large and expensive
structure would waste time and money just to record some video shots. Such a drone can record it
without drifting in time and without any specialized sensors for stabilization, making it more cost-
effective. By this method local position estimation could be also improved, allowing the drone to follow
a track without diverging. This could be used for vigilance or crop supervision.

Arturo Pérez Rodríguez 2
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1.3 Test scenarios

To test the result, some case scenarios are defined. These scenarios will use only the IMU data and the
sensor fusion with the camera.

• Take off and fly up straight to a certain altitude, and wait for 30 seconds steady.

• Flying to set position (X = 1m, Y = 1m) and stop.

Other more advanced test scenarios would be:

• Flying to the centre of the room and measuring the distance between the real centre and the drone
position.

• Flying following a circular track and measuring how the drone trajectory diverges from the track.

1.4 Sustainable Development

The proposed stabilization system for quadcopters that uses only the data from the camera and IMU
sensor can have significant implications for European sustainability objectives [5]. One of the main
areas where this system can contribute is in the field of precision agriculture. Drones equipped with
this system can provide farmers with real-time information about crop health, soil moisture, and other
important variables. This can help farmers optimize their use of resources, reduce the use of pesticides
and fertilizers, and increase crop yields, leading to more sustainable and environmentally friendly farming
practices.

In addition, this system can also be used in disaster response and monitoring. During natural disasters
such as floods and earthquakes, quadcopters equipped with this system can be deployed to assess the
extent of the damage and provide information to rescue teams. This can help speed up the response
time, minimize risks to human life, and reduce the impact of disasters on the environment.

Finally, this project can also contribute to the European sustainable objectives, in particular, Goal 12:
Responsible consumption and production, by promoting the development of more energy-efficient and
eco-friendly drones. By using only the data from the camera and IMU sensor, our system reduces the
need for additional sensors and equipment, thereby reducing the weight of the drone and increasing its
battery life. This can help reduce energy consumption and emissions and components required, leading
to a more sustainable and environmentally friendly approach to drone technology.

Overall, this project has the potential to make significant contributions to the European sustainable
objectives in various fields, including agriculture, disaster response, and the development of more eco-
friendly drone technology.

1.5 Project limitations

All the computation and control will be made on a computer connected to the drone, this could lead to
a worse performance due to the delay in communication but allow more powerful computation. The full
implementation onboard of the drone will be for future work.

Other limitations could be the light conditions and background texture since machine vision techniques
are sensitive to environments without much light and poor textured surfaces. The implementation will
work under the assumption that the drone is the only object moving in the room, and that it is a small
movement.
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2 Related Work

UAVs and machine vision are two topics that have been really present in many pieces of research in the
last years. Both of them are fields with a lot of potential, and the reduction in costs of electronic devices
gives easy access to the hardware required to work on these topics. In addition, the reduction in size
and energy consumption of cameras has brought the possibility to add them to micro UAVs.

The first project to be discussed is the work of Mori and Scherer [6], in which a system for detecting
and avoiding frontal obstacles using a Parrot AR.Drone is developed. The AR.Drone, equipped with an
onboard camera, is well-suited for visual-based obstacle detection.

Figure 1: Representation of detected key points on ob-
stacles using the Speeded Up Robust Features (SURF)
algorithm

Obstacles are detected by using the SURF algo-
rithm to identify key points in the camera im-
ages. These key points are then matched with
the corresponding points in the next frame, and
the size growth of these points is measured (Fig.
1). A reactive obstacle avoidance method en-
ables the system to avoid obstacles without rely-
ing on deliberate path-planning techniques that
could slow down the computation speed of the
drone.

The quadcopter can avoid frontal obstacles by
detecting the time to the collision of approach-
ing obstacles. If the time to collision is consid-
ered too small, the quadcopter will fly sideways
to avoid the obstacle. In addition to obstacle
detection, the drone’s current position and goal
position are also known, and the yaw angle is
controlled to achieve the goal.

This system offers several advantages over other
obstacle-avoidance methods. Firstly, it is
lightweight and does not require additional sen-
sors since it only uses the onboard camera. This
can reduce cost and complexity. Secondly, the

reactive approach enables real-time obstacle avoidance without the need for path planning. Finally,
the system can be adapted to different types of quadcopters, making it a versatile solution for obstacle
avoidance in different scenarios.

Overall, the work of Mori and Scherer is an important contribution to the field of drone obstacle avoid-
ance. The use of a reactive method and only relying on the onboard camera provides a lightweight and
efficient solution that has the potential to improve safety and efficiency in various drone applications.

The SURF algorithm is also used by Mingkhwan and Khawsuk [7] to stabilize images captured from
a camera on a multi-rotor. In this project, the drone is not controlled based on the camera. Instead,
the recorded video is edited to remove the vibration caused by the drone’s movement. To achieve
motion compensation, 20 key points are extracted using the SURF algorithm, and the image frame is
compensated in the opposite direction to offset camera motion by rotating and scaling it.

Crazyflie is a drone that has been utilized in many projects due to its versatility, lightweight, and cost-
effectiveness. Lindgren’s work [8] is an example of the drone’s potential, where it is used in combination
with the AI-deck and the multi-ranger deck to achieve autonomous target recognition and tracking.

The AI-deck enables the recording of video and the implementation of an onboard MobileNet-SSD object
detector through the use of the GAP8 processor. Meanwhile, the multi-ranger deck uses five Time of
Flight (ToF) sensors to provide millimetre-precision distance measurements to the drone’s bottom, front,
back, left, and right.
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With these components, the drone is able to achieve stability in the air and detect humans. It then
moves in the horizontal plane to keep the detected person in the desired position in the camera’s field of
view and at the desired distance. Stabilization is achieved through the use of the multi-range deck and
the firmware in the Crazyflie, which implements a Kalman Filter.

Despite its successes, this project faced limitations. One of these was the performance of the detection
model, which was not as accurate as expected. Additionally, the low computation speed of the images
affected the control of the drone, resulting in oscillations in its movement. Nonetheless, this project
showcases the potential of using Crazyflie and its broad deck variety to achieve autonomous target
recognition and tracking, paving the way for further advancements in the field of drone technology.

Another project developed with Crazyflie is the one developed by Greiff, M. [9] where they research the
dynamics and motion planning of this UAV. In addition, different positioning techniques are explored.
There is only one of these methods that use no external components like cameras and anchors. This
method uses a laser ranging sensor to measure the flight height and an optical flow sensor on the bottom
of the drone to perform a position estimation of the centre of concentric circles printed on the floor. An
Extended Kalman Filter (EKF) is performed to fuse the IMU and optical flow measurement, and the
result obtained is good for the limited time of flight of the Crazyflie.

A similar project is [10] where a Parrot AR.Drone 2.0 also with a downward-looking camera implements
optical flow and EKF to estimate distance and velocity. This estimation is done by finding the corners in
an image and tracking them to the next frame. By measuring the distance between every two corners at
one image and at the next frame, the expansion and contraction of the flow are obtained. The divergence
estimated from this flow is used to control the landing.
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3 Hardware platform

In this project, the Crazyflie quadcopter is used together with the AI-deck for video recording. Most
of the computation and control is performed in a PC that communicates with the drone using the
Crazyradio PA.

3.1 Crazyflie 2.1

The Crazyflie is an open-source quadcopter developed by Bitcraze AB that weighs approximately 27 g
and has a motor-to-motor size of 92× 92× 29 mm including motor mount feet. It is designed to be used
indoors, with open-source firmware considered manageable and not too complex [11], and it allows the
addition of more hardware for different purposes such as expansion decks. All of these make this device
a great development platform for research. The flight time with full battery is around seven minutes
[12].

The control of the device can be made through Bluetooth using the phone app provided by Bitcraze.
Another option is using the Bitcraze Crazyradio PA, an open Universal Serial Bus (USB) radio dongle
for a long-range radio connection with a 20 dBm power amplifier that provides a communication range
of up to 1 km [13]. The Crazyradio PA allows connecting to the drone using the PC client installed on
the Bitcraze Virtual Machine (VM). The Python Application Programming Interface (API) developed
by Bitcraze also allows one to connect to the drone and control it easily using Python. There are four
main dimensions of control when flying the Crazyflie: roll, pitch, yaw, and thrust [14].

Figure 2: Crazyflie 2.X frame and control variables (Based on [14] distributed under a CC BY 3.0
License)

3.2 IMU and High Precision Pressure Sensor

Crazyflie 2.1 has a BMI088 IMU [15] onboard for detecting movements and rotations in 6 Degrees Of
Freedom (DOF). This device is the combination of two sensors in one device: a triaxial 16-bit gyro-
scope and a triaxial 16-bit accelerometer. It is designed for harsh vibration environments, suppressing
vibrations above a few hundred Hertzs making it a great option for drones. The output noise of the
gyro is 0.014 °/s/Hz, and the output noise density of the accelerometer is 190 µg/

√
Hz for Z-axis and

160 µg/
√
Hz for X- and Y-axis. In Figure 3 the onboard gyro, ω, and the angle, θ, are plotted for two

minutes. The. The angle is calculated as θk+1 = θk + ωTs with a sampling time, Ts, of 10 ms. It is
repeated several times to calculate different angles. Only the first gyro, ω, is plotted since there is no
observable differences among the gyro readings obtained. A drift in the angle over time is observed in
all the cases.

To measure the pressure, Crazyflie uses the BMP388 digital sensor [16] onboard. This sensor consists of
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Figure 3: Angle drift measured for two minutes

a piezo-resistive pressure sensing element and it is suitable for altitude tracking in drone applications.
The noise in pressure of the sensor without filtering is 1.2 Pa, and with the lowest bandwidth the noise
becomes 0.03 Pa.

3.3 Onboard microcontrollers

For the main application, Crazyflie 2.1 uses an STM32F405 MicroController Unit (MCU) [17]. This
unit has an ARM 32-bit Cortex-M4 Central Processing Unit (CPU), 192+4 kB of Static Random Access
Memory (SRAM) and up to 1 MB of Flash memory. The radio communication and power management is
controlled by an nRF51822 MCU [18], which uses the 32-bit ARM Cortex M0 MCU with 128kB available
for application development and 16 kB of Random Access Memory (RAM). It allows multi-protocol 2.4
GHz radio communication.

In addition, the Crazyflie 2.1 counts with a micro-USB connector that enables charging the drone thanks
to the onboard LiPo charger with 100 mA, 500 mA and 980 mA modes available. Finally, to save some
data and settings between flights, the board has an 8 kB EEPROM [12].

3.4 Control system

Crazyflie turns the sensor signals into a state estimation. The base drone, without any additional
deck, uses a complementary filter to estimate the attitude (roll, pitch, and yaw) from the gyroscope
and accelerometer signals. This filter is efficient and provides great performance for simple cases like
this. Using decks that provide velocity and/or position information (e.g. flowdeck, LPSdeck, Lighthouse
deck), the Crazyflie perform an Extended Kalman Filter to estimate not only the attitude but also the
position [x, y, z] and velocity [ẋ, ẏ, ż] [19].

Once the current state is estimated, the quadcopter uses Proportional-Integral-Derivative (PID) control
to reach the desired state. This control consists of different PID [20] controllers in cascade, controlling
the position, velocity, attitude and attitude rate (Fig. 4). For a High-Level Commander where the
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set point is the desired position, all the PID controllers will be used. The difference between desired
position signal and the current measured position is the input of the position PID. At the same time,
the difference between the output of this PID and the measured velocity is the input of the velocity
PID. And in the same way, the PID controllers for the attitude and attitude rate are concatenated. The
attitude rate controller uses the gyroscope rates slightly filtered as feedback. The controller’s final result
is the desired thrusts that will be handled by the power distribution and sent to the motors [21].

Figure 4: Crazyflie 2.X control loops as cascaded PID ([21] distributed under a CC BY 3.0 License)

It is also possible to control only the attitude using the two most inner-loop controllers. This would
be the case where there is no additional deck that provides information for the position and velocity
estimation.

3.5 Crazyflie AI-deck 1.1

AI-deck is a lightweight and low-power expansion deck developed by Bitcraze AB for the Crazyflie
drone. This board extends the computational capabilities and enables complex artificial intelligence-
based workloads to run onboard. The core used is GAP8 which allows this ultra-low power consumption.
In addition, it uses a Himax HM01B0 monochrome camera with a 320x320 pixels resolution. The table 1
[22] shows the parameters of the camera used in the AI-deck. The ESP32 onboard adds WiFi connectivity,
giving the possibility to stream images and handling control [23].

Table 1: Himax HM01B0 monochrome camera parameters

Pixel Array 320× 320
Pixel size 3.6 µm

Effective Focus Length 0.66 mm
Horizontal Field of view 87 ◦

Vertical Field of view 87 ◦

Diagonal Field of view 115 ◦

3.6 Python API

Bitcraze provides a library made in Python that gives high-level functions to communicate and control the
Crazyflie. The library is asynchronous and based on callbacks for events. Nevertheless, certain classes
have synchronous wrappers available that create a synchronous API by wrapping the asynchronous
classes. This API has interfaces for radio, serial, USB, and Transmission Control Protocol (TCP)
network connection. All communication links are identified using a Uniform Resource Identifier [24].

The library facilitates the establishment of logging configurations that enable the logging of firmware
variables. A logging configuration comprises specific variables that need to be logged and an interval
duration (in milliseconds) for transmitting the data to the host. Upon adding the log configuration
to the firmware, the data is automatically transmitted at the configured time interval. The maximum
length for a log packet is 26 bytes, and log configurations must have a time interval that is a multiple of
10 ms as the minimum period.
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The library allows for run-time reading and writing of parameters to the firmware, which should only be
done for data that is not continuously changing. Parameter values are updated only once after connecting
and the updated values are sent back to registered callbacks. Parameters can be written from the host
or during start-up, and there is experimental support for changing parameters within the firmware’s app
layer, but this may not update the host correctly.

The control setpoints are changed using the special API. The function sent_setpoint(ϕ, θ, ψ̇, T ) provided
in the API allows setting the roll, pitch, yaw rate, and thrust to control the attitude. The thrust value
corresponds to the mean force applied to the motors, with battery compensation applied to ensure
independence from the battery voltage. Roll and pitch are measured in degrees, while yaw rate is
measured in degrees per second. The quadcopter includes a safety function that will change the setpoint
of roll, pitch and yaw rate to zero to stop accelerating if no new setpoint is applied after 500 ms. In
addition, the power to the motors will be cut if no new setpoint is applied after two seconds [24].

There are other functions that allow setting the velocity or position setpoints, but this required additional
positioning systems like Loco, Flowdeck or Lighthouse [24].

4 Theoretical Framework

This section serves as the conceptual foundation for the subsequent analysis and interpretation of this
study. It presents a comprehensive overview of the key theoretical frameworks and perspectives that
inform the research. Drawing from established theories and scholarly literature, this section establishes
a framework that enables a systematic examination of the research problem and contributes to a deeper
understanding of the subject matter.

4.1 Sensors

Sensors are devices that detect a physical phenomenon and convert these changes into an electrical
signal. They play a crucial role in providing information about the environment to electronic systems.
There is a huge variety of sensors, allowing one to get signals from all the different aspects of a system.
Following this, a description of the most relevant sensors for this work will be provided.

4.1.1 IMU

IMU is a Micro Electro-Mechanical Systems (MEMS) that can be found in various applications such as
Navigation Systems, Medical Rehabilitation, Sports Learning and Quality Control, among others. This
sensor consists of an accelerometer and gyroscope. Typically each sensor has between two to three DOF
for the X-, Y- and Z-axes, giving a total of four to six DOF with both sensors. Accelerometers measure
acceleration, while gyros measure angular velocity.

Some IMUs also have magnetometers. These IMUs commonly use tri-axial sensors making a total of
9 DOF. The magnetometer is used to improve the measurement of the gyro, improving the drift issue
that this type of sensor has. But magnetometer measurements might be disturbed if it is used in an
environment surrounded by ferromagnetic metal, due to disturbances in the magnetic field [25].

A gyro has a tendency to drift over a long period of time, whereas an accelerometer is sensitive to any
acceleration, for instance, when an object has a fast rotation or translational acceleration. Sensor fusion
techniques like Complementary filters or Kalman Filters are commonly used to improve accelerometer
and gyroscope data [25].

MEMS accelerometers can work either by measuring the displacement of the mass or by measuring the
frequency of a vibrating element due to a changing mass. The displacement or vibration produces a
change in the capacitance of the sensor. MEMS gyroscopes use the Coriolis effect that declares that in
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a frame of reference rotating at angular velocity ω, a mass m moving with velocity v experiences a force
F [26],

F = −2m(ω × v). (1)

To measure this effect, rate gyros contain vibrating masses which vibrate along an axis. An additional
vibration is induced along the perpendicular of this axis, displacing the mass from its origin when the
gyro is rotated. This displacement is detected by capacitance changes [26].

4.1.2 Pressure sensor

Pressure sensors convert pressure into electrical signals using different sensing principles. These sensors
are used in a large variety of fields such as hearing aids, touch screens, health monitoring, weight and
height measurement, and weather forecasting. The sensing principle used by the sensor will depend on
the pressure range, sensitivity, linearity, and response time of the task [27]. The main principles used
are capacitive, piezoresistive, optical, resonant, and piezoelectric [28].

Piezo-resistive pressure sensors use a cavity in a material, usually silicon, to form a diaphragm. On the
top of the diaphragm, four resistors are connected in a Wheatstone bridge circuit (Fig. 5). When pressure
is applied to the diaphragm, the diaphragm is in a stress condition. These stresses are experienced by
the resistors due to piezo-resistive effects [29].

Figure 5: Wheatstone bridge circuit

4.2 Rigid Body Dynamics

The quadrotor model is formed by a frame with two arms crossing at a 90º angle. The centre of mass is
located at the crossing point where the quadrotor’s body lies. These arms have a propeller at each end,
and the direction of rotation of the propellers in the same arm is paired and opposite to the direction of
the propellers in the other arm. By rotating the propellers at the same speed and in opposite directions,
the rotational torque can be cancelled. Since there are only four independently controllable actuators,
the system is underactuated where there are only four DOF to be controlled directly. The control
variables usually selected are vertical acceleration Z̈, roll acceleration ϕ̈, pitch acceleration θ̈ and yaw
acceleration ψ̈. Roll, pitch and yaw motions can be obtained by small differences in the propellers’
rotation speed while vertical motion depends on the sum of all propellers’ speeds. By restricting the
differences in propellers’ rotation speed to small values, non-linear dynamics and motor saturation can
be avoided [30].

Two frames of reference are defined, the global frame G that is static with respect to the world and
represents the global pose, and a body frame B that moves and rotates with the drone. Both frames are
in the same pose at the initial moment, with Z axis pointing up, X pointing to the front of the drone
and Y pointing out to the left (Fig. 2).

The rotation matrix which defines the rotation between the global and the body frame is (2) [9],
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G
BR =BG RT =

 cϕcψ sψcϕ −sθ
cψsθsϕ − sψcϕ sψsθsϕ + cψcϕ cθsϕ
cψsθcϕ + sψsϕ sψsθcϕ − cψsϕ cθcϕ

 , (2)

Therefore,
G
[
p̈x p̈y p̈z

]T
= B
GR

[
u̇ v̇ ẇ

]T
. (3)

Where G[px, py, pz]
T is the position in the global frame and B [u, v, w]T is the velocity in the body frame.

From Newton’s laws and the equation of Coriolis, (4) is obtained [31],

mG dv

dt
= m

(
B dv
dt +

B
Gω × v

)
= f . (4)

Where B d
dt is the time derivative in the body frame, G d

dt is the time derivative in the global frame, BGω
is the angular velocity of the body frame with respect to the global frame, m refers to the drone’s mass
and f is the total force applied to the quadrotor. In the system coordinates, where Bv = (u, v, w)T ,
Bf = [fx, fy, fz]

T and B
Gω = [p, q, r]T , (4) becomes

 u̇v̇
ẇ

 =

rv − qw
pw − ru
qu− pv

+
1

m

fxfy
fz

 . (5)

Using Newton’s law for rotational motion and the equation of Coriolis it is obtained (6),

G dh

dt
= B dh

dt
+BG ω × h = τ . (6)

Where h is the angular momentum and τ is the applied torque. (6) is easily resolved in body coordinates
where Bh = IBGω where I is the constant inertia matrix defined as

I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 . (7)

Since the quadrotor is symmetric about all three axes, Ixy = Ixz = Iyz = 0. Defining Bτ = [τϕ, τθ, τψ]
T ,

(6) can be rewritten in body coordinates as,

ṗq̇
ṙ

 =


Iy−Iz
Ix

qr
Iz−Ix
Iy

pr
Ix−Iy
Iz

pq

+

 1
Ix
τϕ

1
Iy
τθ

1
Iz
τψ

 . (8)

Assuming that ϕ and θ, and the Coriolis terms qr, pr and pq are small, (8) can be simplified to (9) [30],

ϕ̈θ̈
ψ̈

 =

 1
Ix
τϕ

1
Iy
τθ

1
Iz
τψ

 . (9)

Where F is the thrust or amount of upward force exerted between all the propellers.

Neglecting Coriolis terms and merging (3) (5) and simplifying gives the position model (10),
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p̈xp̈y
p̈z

 =

 0
0
−g

+

cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ)
cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ)

cos(ϕ) cos(θ)

 F

m
. (10)

4.3 Control of Quadcopter

A common method to control quadcopters is PID control loops. PID controllers are used for their simple
structure and easy implementation. These controllers are defined by the following equation,

u(t) = KP [xd(t)− x(t)] +KI

∫ t

0

[xd(τ)− x(τ)]dτ +KD
d[xd(t)− x(t)]

dt
= Cpid{xd − x}. (11)

Where xd denotes the setpoint or desired signal value, x refers to the actual signal value, and KP , KI ,
and KD are the proportional, integral, and derivative parameters of the controller, respectively. This
quadcopter is a system with 6 DOF, but only four variables are controlled. The total thrust F and the
torques τ created by the rotors are derived from the dynamic equations (9) and (10). While the total
thrust F affects the acceleration in the direction of the z-axis, keeping the drone in the air, the torques
τϕ, τθ, τψ contribute to the change in roll ϕ, pitch θ and yaw ψ respectively. The controllers for the
drone are (12) [32],

F = [g + CF (zd − z)]
m

cos(ϕ) cos(θ) ,

τϕ = Ix[Cϕ(ϕd − ϕ)],

τθ = Iy[Cθ(θd − θ)],

τψ = Iz[Cψ(ψd − ψ)].

(12)

Where the torque controllers are cascade PID controllers for the attitude and attitude rate implemented
in the Crazyflie quadcopter firmware (Fig. 4). In this equations, ϕ, θ and ψ denote the estimated
attitude signal in the figure while ϕd, θd and ψd denote the desired attitude signal.

4.4 Sensor Fusion

Sensor fusion is a method that allows one to extract information from several data sources and integrate
them into a single signal. These algorithms are handy for guidance, navigation and control of vehicle
applications, where there are multiple sensors getting similar information. This information is often
integrated into a meaningful signal that can be used for control systems [33]. Sensor fusion provides
more robust and reliable measurements, increases confidence and reduces ambiguity and uncertainty on
the measured values [34].

4.4.1 Complementary Filter

Complementary filter is a computationally inexpensive sensor fusion approach that uses a low-pass filter,
usually denoted as G(s), and a high-pass filter, usually denoted as [1 −G(s)], [35]. This technique can
be used to estimate the attitude based on gyroscope and accelerometer readings. In this case, the
accelerometer reading is introduced to compensate for the error of the angular rate derived from the
random walk of the gyroscope. Using the quaternion derived from the gyro qω,t and accelerometer qa,t
readings for a time t [36], the estimated attitude qest,t applying the complementary filter will be defined
by

qest,t = [1−G(s)]qω,t +G(s)qa,t. (13)
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4.4.2 Kalman Filter

KF is a stochastic Sensor Fusion method that uses a mathematical model for filtering signals with uncer-
tainty or sensors with noise and statistical models from an initial assumption to reduce the uncertainty.
The filter uses a discrete-time algorithm and models noise from sensor signals to produce fused data.
Estimated smoothed values of position, velocity, and acceleration can be achieved using this method
[34].

The Kalman Filter consists of three phases: Prediction Phase, Observation Phase and Fusion Phase. In
the Prediction Phase an estimator x̂k+1|k of the system state x for time k + 1 is computed using the
previous estimation x̂k|k (14), where A is a non-singular state transition matrix, uk is the input vector,
and B define the relation between the system state and the input. Then, the error covariance matrix P
is predicted for discrete time k + 1 (15) where Q is the covariance matrix [34] representing the process
noise.

x̂k+1|k = Ax̂k|k +Buk, (14)

Pk+1|k = APk|kA
T +Q. (15)

In the Observation Phase, a measurement from the environment zk (16) is obtained, and it introduces
the measurement noise v that is assumed to be white noise with the normal probability distribution of
p(v)(0,R), where R refers to the measurement covariance [37].

zk = Hxk + v. (16)

Finally, in the Fusion Phase, the Kalman gain matrix K is computed (17) where H relates the mea-
surements to the internal state. The system state prediction x̂k+1|k+1 (18) is a linear combination of
the state estimation x̂k+1|k and the innovation. The innovation, or residual, reflects the discrepancy
between actual measurement and the predicted measurement (zk −Hx̂k+1|k) [37],

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +R)−1, (17)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk −Hx̂k+1|k). (18)

When R approaches zero (17), the gain K weights the innovation more heavily, so the actual mea-
surement zk is more trusted and the predicted measurement (Hx̂k+1|k) is less trusted. On the other
hand, when the estimated error covariance Pk+1|k approaches zero, the gain K weights the residual less
heavily, so the actual measurement is less trusted, while the predicted measurement is more trusted [37].

In addition, an outlier-rejection scheme can be applied in the Kalman filtering. This approach is grounded
on the assumption that observations can be considered normal based on the measurement model, while
abnormal outliers are generated by a different model. The outlier-rejection scheme aims to accept
normal measurements and reject abnormal ones. A simple, but still good-performing, method for outlier-
rejection is the Mahalanobis Distance (MD), also known as statistical distance. The MD (20) takes the
variability of the variables into account, using the covariance of the innovation S.

S = HPHT +R, (19)

dM (x,y) =
√
(x− y)TS−1(x− y). (20)

The outlier-rejection is implemented by calculating the MD between the estimation and the observation.
In order to validate the observation, the χ2 statistical test is applied to the distance. The fusion phase
is only applied if the observation is accepted, otherwise, the observation is rejected and the system state
X is not updated [38].
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4.4.3 Extended Kalman Filter

Kalman filtering is used to estimate the internal state of a discrete-time controlled process that is
governed by a linear stochastic difference equation. But the process to be estimated or the measurement
related to the process could be non-linear. In these non-linear cases, the EKF linearizes about the
current estimation and covariance to compute the estimation [39]. While the standard Kalman Filter is
optimal for linear systems and always converges, the solution provided by the EKF is only approximate
and may diverge if the consecutive linearizations are not a good approximation of the linear model in
all the associated uncertainty domain [34] [40]. Consider the non-linear dynamics,

xk+1 = fk(xk) + wk, (21)

zk = hk(xk) + vk, (22)

where wk and vk are white Gaussian, independent random noises with zero means and f(∗) and h(∗)
are non-linear functions. To apply the EKF, linearizations around the estimated points are calculated
[40],

Fk = ∇fk |x̂k|k , (23)

Hk+1 = ∇hk |x̂k+1|k , (24)

where Fk and Hk denote the Jacobian matrices of f(∗) and h(∗). Same as in the Kalman filtering, there
are three phases. In the Prediction Phase the internal state (25) and the covariance (26) are estimated,

x̂k+1|k = fk(x̂k|k), (25)

Pk+1|k = FkPk|kF
T
k +Qk. (26)

In the Observation Phase, the measure from the environment zk (22) is obtained. Finally, in Fusion Phase
the Kalman gain is computed (27) together with the predicted state (28) and the predicted covariance
(29),

Kk+1 = Pk+1|kH
T
k+1[Hk+1Pk+1|kH

T
k+1 +Rk+1]

−1, (27)

x̂k+1|k+1 = x̂k+1|k +Kk+1[zk+1 − hk+1(x̂k+1|k)], (28)

Pk+1|k+1 = [I −Kk+1Hk+1]Pk+1|k. (29)

4.4.4 Sliding-mode-based observer

The sliding-mode-based observer, or sliding observer, is a deterministic observer that, contrary to the
Kalman Filter, doesn’t need assumptions about the stochastic nature of noise or estimating the er-
ror. This method avoids the heavy computations required for the Kalman filter [41] while also having
measurement noise resilience.

This method ensures the convergence of a sliding surface defined to the origin in finite time [42]. J.P.
Barbot et al.[43] present examples of Sliding mode observer designs for different systems for more infor-
mation.
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4.5 Hough Transform

The Hough Transform (HT) algorithm parameterizes complex patterns of points in binary images. The
HT converts a difficult global detection problem in image space into a more easily solved local peak
detection problem in a parameter space [44]. This algorithm can be used to detect patterns such as
straight lines, circles, or ellipses. Straight lines can be expressed with two parameters like the slope m
and the y-intercept of the line c in the Cartesian coordinate system (30), or length ρ and orientation θ
of the normal vector to the line from the image origin (Fig. 6a) in polar coordinate system (31),

f(x, y) = y −mx− c = 0, (30)

f(x, y) = ρ(θ) = x cos(θ) + y sin(θ), (31)

where (x, y) defines a point in the image and f(x, y) defines the family of lines that goes through that
point. The HT in Cartesian coordinate system parametrization (m, c) presents a singularity with large
slopes where m→ ∞. This issue is solved using polar parametrization (ρ, θ) [44].

For a given point (x0, y0), the family of lines that goes through it define a sinusoid in a plane θ− ρ with
(ρ, θ) ∈ [0,∞) × [0, 2π). This sinusoid is calculated for all the points in the image, and if the curves of
two different points intersect in the plane θ−ρ, both points belong to the same line (Fig. 6b). A line can
be detected by finding the number of intersections between curves. The intersection point (ρ, θ) defines
the line parameters. All the intersection points with a number of intersections higher than a threshold
are considered straight lines in the image [45].

(a) HT parameters in polar coordinate sys-
tem

(b) Intersection in the θ − ρ space of three family-line
curves of Cartesian points in a straight line

Figure 6: Hough Transform

4.6 Optical Flow

Optical flow is a fundamental concept in the field of computer vision and image processing, which refers
to the pattern of motion in a sequence of images [46]. Specifically, it involves calculating the movement
of pixels or features within an image or sequence of images. This information can be used for a wide
range of applications, including object tracking and motion analysis [47].

The measurement of optical flow is a challenging problem, as it requires the computation of an approx-
imation of the 2D motion field from spatiotemporal patterns of image intensity. Many techniques have
been proposed over the years to estimate optical flow, ranging from traditional methods based on feature
tracking to more modern Deep Learning-based methods [46].
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Despite the challenges involved in measuring optical flow, it remains an important area of research in
computer vision and image processing. Advances in machine learning, particularly deep learning, have
led to significant improvements in the accuracy and robustness of optical flow estimation. As such, it is
expected that optical flow will continue to play a critical role in many applications, from autonomous
driving to robotics and beyond.

But great results can be also obtained without the necessity of complex AI methods. The classic optical
flow techniques have been shown to perform well for certain tasks. These classic methods can be grouped
into four categories [48]: Differential Techniques, Region-Based Matching, Energy-Based Methods, and
Phase-Based Techniques.

Differential Techniques provide accurate results with fast algorithms. These techniques extract the
information by making assumptions about spatial and temporal variations of the image intensity I(x, t),
or filtered versions of the image. From the assumption that the intensity is conserved dI

dt = 0. the
gradient constraint equation can be derived:

∇I(x, t) · v + It(x, t) = 0, (32)

where It(x, t) is the partial time derivative of I(x, t) with respect to t and v = (u, v)T [48]. But there
are two unknown components of v in Eq. 32, constrained by only one linear equation. Horn and Schunk
method introduces a smoothness assumption on the spatial variation of the optical flow in order to
recover a unique solution of v [49]. On the other hand, Uras, Girosi, Verri and Torre method uses the
second-order differential (33) to solve both components of v. This second-order differential adds more
constraints to calculating the 2D velocity,

[
Ixx(x, t) Iyx(x, t)
Ixy(x, t) Iyy(x, t)

] [
v
u

]
+

[
Itx(x, t)
Ity(x, t)

] [
0
0

]
. (33)

Lucas and Kanade method uses a weighted least-squares fit of local first-order constraints (32). This
method intends to minimize (34) for each small spatial neighbourhood Ω.

∑
x∈Ω

W 2(x)[∇I(x, t) · v + It(x, t)]
2, (34)

where W (x) denotes a window function that gives more influence to the constraints at the centre than
at the edges. The solution to v is given as,

v = [ATW 2A]−1ATW 2b, (35)

A = [∇I(x1), ...,∇I(xn)]T ,

W = diag[W (x1), ..,W (xn)],

b = −[It(x1), ..., It(xn)]
T ,

Which is solved when ATW 2A is nonsingular [48]. According to J. L. Barron et al. [48], the most
reliable methods are the first order, local differential method of Lucas and Kanade [50] and the local
phase-based method of Fleet and Jepson [48].

4.7 SURF Algrithm

The SURF algorithm is a popular computer vision technique for detecting and describing features or
”interest points” in images. The algorithm is designed to find points in the image that are well-defined
positions, rich local image structure, and stable under various image domain perturbations. And then
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extract a set of descriptors from these interest points that can be used to recognize these features in
other images.

The algorithm is composed of two main steps: the detection and the description of features. In the
detection step, SURF uses a scale-space representation of the image to detect scale-invariant features.
The algorithm applies a series of kernels (i.e. box filters) of increasing size to the original image and
analyzes the results to find points that are consistent across scales. These points are then further
analyzed to determine their location, orientation, and scale [51].

In the description step, SURF computes a set of feature descriptors that are invariant to image trans-
formations such as rotation, scaling, and changes in lighting. This is accomplished by three sub-steps:
threshold comparison, non-maximal suppression, and interpolation of nearby data to find location, that
captures the important characteristics of the image at that point. These descriptors are then used to
match features across images or to recognize objects in an image.

The main advantages of the SURF algorithm are its speed and robustness to image transformations. The
algorithm’s high performance and accuracy are due to its use of an intermediate image representation
known as the Integral Image and the Hessian-matrix approximation, which provides highly accurate
results [51]. The algorithm also utilizes the scale-space concept and divides it into several octaves, where
each octave contains a series of response maps computed by specific filters. As a result, the SURF
algorithm has found widespread use in applications such as object recognition, image stitching, and
augmented reality.
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5 Method

5.1 Distance to the wall

To observe the drone’s linear velocity, it is necessary to estimate the distance to the reference object. In
this case, the drone is assumed to move in front of a wall that will work as a reference. Before taking
off (Fig. 8a), the drone finds the line between the floor and the wall and calculates the distance to the
wall according to the distance between the line and the centre of the picture.

Figure 7: Estimating distance to the wall

To find the line between the floor and the wall, Fig. 8, first, the Canny edge detection filter is applied to
the image to find the borders of all the objects in the image Fig. 8b. Then, Hough Transform is applied
to the filtered image to find straight lines. This method finds lines that cross through a high amount of
points. Once the lines in the picture are obtained, it is time to determine which of them corresponds
to the line between the wall and the floor, Fig. 8c. By assuming that the floor has no horizontal lines
and the camera is pointing straight to the wall, the line of interest is the closest horizontal line to the
bottom of the image.

(a) Image taken by the drone be-
fore taking off

(b) Image filtered with Canny edge
detection filter

(c) Straight lines found by Hough
Tramsform method

Figure 8: Method to find the line between the wall and the floor

The distance to the wall is calculated using the pinhole camera model [52] that relates a three-dimensional
space with a two-dimensional projection where the light rays from a point in the physical scene pass
through a pinhole and project that point on the bi-dimensional camera sensor, Fig. 9,. The relation
between the size and distance of the object in the real environment compared to the size in the projection
is given by,

hc
dc

=
h

d
. (36)
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Where d and h refer to the distance between the camera and the object and the height of the object
respectively, and dc and hc refer to the focal length of the camera and the height of the object in the
picture respectively.

Figure 9: Pinhole camera model

Applying it to the case studied (Fig. 7), the height of the drone h, the focal length dc and the size of
each pixel spx are known (Table 1). Hence the distance between the drone and the wall d is obtained
using the linear relation with the distance in pixels hpx between the centre of the image and the centre
of the line between the wall and the floor (37),

d =
h

hpxspx
dc. (37)

The performance of this method has been empirically tested and observed that the real distance and the
distance in pixels have a squared inversely proportional relationship instead of an inversely proportional
relationship as was approximated previously due to the camera lens. (37) is modified to fit the data
measured (38), obtaining a Mean Squared Error of 3.134 cm2. Fig. 10 shows the estimation and real
measurement using (38),

d = 100
h

h2pxspx
dc. (38)

Figure 10: Distance measured and the distance estimated to a wall

This distance estimation is only valid for distances under 40 cm since the pixel variation over this
distance is too small. Because of this, the noise detecting the line change greatly the distance estimated.
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Better distance approximations could be made by calibrating the camera parameters [53], but it is not
necessary for a low-quality camera as the AI-deck one.

5.2 Position, velocity and angle observation

This section delves into the techniques used for observing the position, velocity and inclination of the
drone, specifically through the use of machine vision. The section covers the various algorithms employed
to process visual data, as well as the challenges that need to be overcome to obtain accurate measurements
in a dynamic environment.

5.2.1 Optical flow method

This method consists in finding interest points or features in each frame and matching the features
between two consecutive frames. The tools used to find and match features are from the library OpenCV.
The first function used is goodFeaturesToTrack. This function identifies corners in an image that are
suitable for tracking using the Lucas-Kanade optical flow algorithm [50]. The function takes an input
image, a maximum number of corners to detect, a quality level, and a minimum distance between
detected corners. It then returns the detected corners as a set of points, ranked by their ”goodness” as
determined by the minimal eigenvalue or the Harris function response [54].

Then, the function calcOpticalF lowPyrLK is used for computing the Lucas-Kanade optical flow algo-
rithm [50] between two frames, which tracks a set of feature points across frames by estimating their
displacement in the image plane. This will provide a set of directions and angle of displacement of the
features between two consecutive frames. With this displacement, it is intended to distinguish among
three different movements (Figure 11).

The first possible case (11a) corresponds to a movement parallel to the reference background, or a yaw
variation, these two movements will trigger a horizontal image flow. The second case (11b) corresponds
to a movement of approaching or moving away from the background, triggering a feature displacement
outward or toward the centre respectively, with an increasing displacement from the centre to the edges
of the image. The final case (11c) is a rotation movement that corresponds to a variation in the roll,
triggering a rotation of the features centred in the middle of the image. There is an additional case
similar to the first case where the drone moves vertically or there is a variation in the pitch, but this
scenario is not considered since the altitude control doesn’t use the sensor fusion method. All other
image flow patrons will correspond to a combination of these basic cases.

(a) Movement on Y-axis or rota-
tion on Z-axis (b) Movement on X-axis (c) Rotation on X-axis

Figure 11: Optical flow expected on different movements

Some assumptions must be done to quantify the real drone’s movement. First, the reference object
that is observed is assumed to be a wall perpendicular to the quadcopter and it must have enough
texture details to be able to find features, the light conditions are controlled, without high contrast
lights inferring on the wall, and the real perpendicular distance to the wall is known.
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In the cases where there is a movement, the pixel displacement can be calculated as the mean displace-
ment between all the features, while in the rotation cases, the angle is the mean of the angles calculated
using the pixel displacement and distance to the centre of the image. To convert the distance in pixels
to meters, (37) is used, but this time the distance to the wall d is known and the distance between two
points on the wall h is calculated.

5.2.2 Strip method

For this method, a high-contrasted strip has been set on a wall. Each image is computed to find the
vertical strip. All the vertical lines are detected by performing the Hough Transform over the image
filtered by a Canny edge detection filter, similar to how it was done to detect the intersection between
the wall and the floor. In this case, the Hough transform is calculated just around 10◦ from the vertical
since it is assumed the drone will rotate small angles around 0◦.

To find the strip among all the lines obtained, first, the lines are sorted by the ρ parameter of the Hough
transform since this will sort them according to their position in the image. Now it is easier to check the
distance between consecutive lines. To remove all the redundant lines, lines with a ρ closer than 5 pixels
to any other line are removed. Then, the remaining lines are sorted by the θ parameter to find lines
with similar inclinations. Finally, a possible strip will be two consecutive-in-θ lines that are close. In
the beginning, if several possible strips are found, the closest strip to the middle of the image is taken as
the real strip. In future estimations, when several strips are detected, the strip taken for the estimation
is the closest one to the strip calculated in the previous iteration,

d(R,P ) =
|m · px − py + c|√

m2 + 1
. (39)

From the two lines that define the edges of the strip (represented in dark blue in Figure 12), three data
are obtained: inclination φ, position d and width w. First, it is obtained the middle line (in light blue
12) in the strip as the mean of the Hough parameters. The inclination φ is the parameter θ of this
middle strip. Then, the perpendicular distance between the middle line and the centre of the image is
calculated (39), this distance is the position d of the strip. Finally, the perpendicular distances between
each edge of the strip and the centre of the image are calculated. The absolute value of the distance
between these two distances is the width w. The perpendicular distance between a point P = (px, py)
and a line R, y = mx+ c, is given by (39).

Figure 12: Observed information from the camera
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The position, velocity and angle observation are derived from the three parameters of the strip. On
the y-axis, the position is calculated as the difference between the current strip position dk and the
initial strip position d0, while the velocity is the difference between the current strip position dk and the
previous strip position dk−1 divided by the time between the two frames. The roll, ϕ, of the drone is
defined as the difference between the current strip inclination φk and the initial strip inclination φ0.

On the x-axis, the position is calculated as the difference between the current strip width wk and the
initial width position w0, while the velocity is the difference between the current strip width wk and the
previous strip width wk−1 divided by the time between the two frames. Unfortunately, the pitch can
not be observed using this method.

To convert the distance in pixels to meters, (37) is used, but this time the distance to the wall d is known
and the distance between two points on the wall h is calculated.

5.3 Sensor Fusion

To fuse the data from the image and gyro, a Kalman Filter is implemented. First of all, the state vector
that defines the model must be derived. It is possible to simplify Eq. 10 assuming that the yaw is not
changing, and linearize around pitch and roll equal to zero.

[
p̈x
p̈y

]
=

[
ẍ
ÿ

]
=

[
θ
−ϕ

]
F

m
. (40)

Once the acceleration is obtained (40), the roll and pitch, and the linear velocity are obtained by
integrating the angular velocity and the linear acceleration. With a small sampling time, the integration
can be approximated using the sampling time, Ts, as vk+1 ≈ vk + v̇kTs.


ẋk+1

ẏk+1

θk+1

ϕk+1

 ≈


ẋk + ẍkTs
ẏk + ÿkTs
θk + θ̇kTs
ϕk + ϕ̇kTs

 . (41)

Using (40) and (41), the state vector Xk of the filter for a discrete time k is obtained. To correct the
drift in the gyro, a biases in x- and y-direction [by, bx] a added to the state,

Xk+1 =



yk+1

ẏk+1

ϕk+1

by|k+1

xk+1

ẋk+1

θk+1

bx|k+1


=



yk + ẏkTs

ẏk − ϕkTs
F
m

ϕk + (by|k + ωx|k)Ts
by|k

xk + ẋkTs

ẋk + θkTs
F
m

θk + (bx|k + ωy|k)Ts

bx|k


. (42)

For small attitude angles uk = [ωx|k, ωy|k] ≈ [ϕ̇k, θ̇k] as it is rate gyro readings, the system input.

To estimate the relative position and velocity of the drone, two Kalman Filter are implemented to fuse
the data from the IMU sensor and the camera observation. Each Kalman Filter aims to estimate the
movement on a different axis, x and y. The output expected from the filter is the drone’s speed on the
horizontal plane [ẋ, ẏ]. Using two different Kalman Filter for the two axes allows to validate and reject
the observations independently, taking advantage of the fact that the estimation of the movement in
each axis is independent.
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5.3.1 Y-axis Kalman Filter

The input for the prediction is the roll rate gyro readings U = ωx ≈ ϕ̇ and the observation is the
observed position, speed and inclination by the camera on the y-axis, Z = [y, ẏ, ϕ]T .

The transition matrix A, relation matrix B for the prediction phase and state vector X (18) are defined
as

A =


1 Ts 0 0
0 1 −Ts Fm 0
0 0 1 Ts
0 0 0 1

 ; B =


0
0
Ts
0

 ; X =


y
ẏ
ϕ
by

 . (43)

And the matrix H that relates the measurements to the inertial state (16) is defined as,

H =

1 0 0 0
0 1 0 0
0 0 1 0

 . (44)

5.3.2 X-axis Kalman Filter

There are only small variations in this filter compared to the filter developed for the y-axis. The input
for the prediction is the pitch rate gyro readings U = ωy ≈ θ̇ and the observation is the observed position
and speed by the camera on the x-axis, Z = [x, ẋ]T . In this case, the angle is not observed, hence the
observation matrix must be modified.

Where ωy = uk is the input vector of the filter. The transition matrix A and relation matrix B for the
prediction phase and the state vector X (18) are defined as,

A =


1 Ts 0 0
0 1 Ts

F
m 0

0 0 1 Ts
0 0 0 1

 ; B =


0
0
Ts
0

 ; X =


x
ẋ
θ
bx

 . (45)

And the matrix H that relates the measurements to the inertial state (16) is defined as

H =

[
1 0 0 0
0 1 0 0

]
(46)

5.4 Control

The first attempt to control the attitude (ϕ, θ, ψ) and elevation pz is using PID control based on the
position and attitude model. Crazyflie firmware provides a function sent_setpoint(ϕ, θ, ψ̇, F ) that takes
the desired roll, pitch, yaw rate and thrust F and controls the drone using already tuned PID controllers.
The attitude rate is measured with the gyro sensor onboard the aircraft, and from it, the attitude is
estimated. Since we want to control the attitude to make the drone stay stable, this function can be
used to set roll, pitch and yaw rate to zero.

5.4.1 Altitude Control

To control the altitude it is required to implement a new PID controller. The position pz is estimated
using the onboard pressure sensor. This estimation is provided already by the drone. The control
function used is (12) for altitude control.
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5.4.2 Attitude Control

Attitude control is done using a cascade control architecture with PID controllers, as presented the Figure
4. The Attitude PID and Attitude Rate PID are already integrated into Crazyflie firmware using the
function sent_setpoint(ϕ, θ, ψ̇, T ), so only the position PID and velocity PID have to be implemented.
The estimated velocity and position are obtained from the Kalman Filter developed previously. Two
different cascade controllers are developed for the x and y axes, and the output of the velocity PID is
introduced as parameters ϕ and θ in the function sent_setpoint(ϕ, θ, ψ̇, T ). No significant drift has been
observed on the yaw, ψ, so it is not necessary to control it more than set the ψ̇ parameter to zero in the
previous function.
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6 Development

This section covers the development process of quadcopter stabilization and how machine vision and
sensor fusion were used to estimate the position and control the movement of the drone. The quadcopter
was carefully selected to ensure that the drone could be programmable and teleoperable, and that the
data obtained by it could be received by an external computer. Machine vision algorithms were used to
analyze real-time images, allowing the quadcopter to estimate the relative position and velocity. Sensor
fusion techniques were employed to combine data from multiple sensors for more accurate control and
stabilization.

6.1 Research

The initial phase of this project focused on conducting research to identify the optimal hardware for
the quadrotor. Several factors were considered during this process, including the potential for accidents
and harm to individuals. After careful evaluation, it was recommended that a light drone be used since
this would reduce the likelihood of damage or harm occurring. Additionally, small drones were deemed
more suitable for use in enclosed spaces, further contributing to their appeal. Other requirements for
the quadrotor were an embedded IMU, a front camera and the possibility of being easily programmed.

Several options for the quadrotor were considered, including Parrot Mambo FPV [55], Sky Viper [56],
Drona Aviation Pluto [57], and Bitcraze Crazyflie [12]. Ultimately, the Bitcraze Crazyflie was selected
due to its lightweight and the availability of a Python API. This feature allows the drone to receive
all sensor readings and camera images, as well as to be controlled remotely from a computer. While
Bitcraze does provide tools for modifying the drone’s firmware, an external drone control was chosen to
take advantage of the versatility and machine vision tools available in Python.

After acquiring the necessary hardware for the project, assembling, setting up, and connecting the drone
to a computer did not present any significant challenges. However, a major obstacle was encountered
when attempting to run the AI-deck, which is responsible for recording and sending images captured
from the drone.

The primary issue with the AI-deck was that it needed to be flashed before it could be used, which
was not an intuitive process. This caused some initial confusion and delay in the project’s progress.
Nonetheless, this challenge was overcome through research and consultation with technical experts.
Overall, the process of assembling, setting up, and connecting the drone to a computer was relatively
straightforward.

Many similar projects use optical flow and feature detection methods, even though most of them use
a facing-down camera instead of a front camera. Facing-down cameras allow for easily detecting the
horizontal movement of the drone in both X and Y-axes and the yaw rate using some optical flow
methods.

One crucial aspect of optical flow methods is calculating the distance between the camera and the
reference object to translate the distance in pixels into real-world distance. Facing-down cameras estimate
the movement of the drone based on the floor’s reference point, which makes it easy to obtain the distance
to the floor using an embedded pressure sensor commonly used in drones.

In contrast to a facing-down camera, a front camera requires a different method to estimate the distance
to reference objects, such as walls. One approach is to calculate the distance to the object before the
take-off and estimate the position of the reference while flying. Optical flow methods in these systems
allow for estimating movement on all three axes, including the attitude rate. However, in most cases, it
is not possible to distinguish between pitch rate and movement in the Z-axis, or yaw rate, and movement
in the Y-axis solely based on optical flow data.

Despite this challenge, many drones require a front camera for their primary function. Therefore, using
it for stabilization would eliminate the need for additional sensors, simplifying the design and reducing
the weight of the drone. However, it is important to note that using a front camera for stabilization may

Arturo Pérez Rodríguez 25



Quadcopter stabilization based on IMU and frontal Monocamera Fusion 6 Development

not be as effective as using a facing-down camera due to the limitations of optical flow data.

Overall, while a front camera presents some unique challenges for estimating distance and movement, it
remains an essential component of many drone applications. Utilizing a front camera for stabilization
has the potential to simplify the drone design and reduce its weight, but careful consideration should be
given to the limitations of optical flow data in accurately estimating movement on all three axes.

6.2 Drone’s first steps

The Crazyflie can be controlled using the library provided by Bitcraze. This library gives basic in-
structions for adjusting the drone’s attitude, which includes adjusting its roll (ϕ), pitch (θ), yaw rate
(ψ̇) and thrust (T ). By using a PID controller, it is possible to regulate the drone’s altitude. This is
done by setting a desired altitude and using the pressure sensor as a feedback signal to calculate the
thrust required to maintain that altitude. The technique used for regulating the altitude of the drone is
explained in detail in Section 5.4.2 of the paper.

However, once the drone reaches the desired altitude, it is observed that it begins to drift in the horizontal
plane. This drift is due to errors in the estimation of its roll and pitch angles, and can occur in both the
X and Y axes, but it is not observed in the yaw. To counteract this drift, it is necessary to adjust the
drone’s roll and pitch angles according to the velocity and position of the drone.

The library’s control loop and image rate operate at a frequency of 10 Hz, which provides a balance be-
tween control accuracy and computational efficiency. The gyro reading rate, which measures the drone’s
rotational velocity, is much faster at 100 Hz, allowing for precise control of the drone’s orientation.
However, when sending images, there is a delay of 360 ms, which can impact the drone’s responsiveness
to adapt to observed conditions.

6.3 Machine Vision

The first method (Section 5.2.1) involves finding points of interest or features in the image and matching
them with the points found in the previous frame. This optical flow between two consecutive frames is
used to observe the velocity and roll rate. However, the main problem encountered with this method is
that the algorithm used to match points between two frames is not able to find enough quality points
on the image. Most of the matches detected are grouped in a few clusters, Fig. 13, which does not
provide information about the global image. Moreover, the matches are not consistent in time, making
the prediction of movement unreliable, particularly for the movement on the X-axis. This is because it
needs points from the entire image to compare the flow direction of pixels.

Figure 13: Example Optical Flow matched points
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Although another algorithm such as the SURF could solve this issue, due to the lack of time and the
uncertainty of whether a better algorithm could solve the problem, it was decided to look for a different
approach. The strip method (Section 5.2.2) is an alternative approach that ensures the detection of
the required features in the image. While this method differs more from a real-case scenario since not
all environments will have a vertical strip to use as a reference, it provides the necessary information
from the images to continue with the project. This method provides different observations, including the
velocity on the X- and Y-axes, as well as the relative position and roll. This multi-observation approach
can improve the estimation of the Kalman Filter, making it more reliable.

Both optical flow and strip methods bring a new problem since they can only calculate the distance
in pixels in the image and require additional information to calculate the distance in the real world.
Traditionally, this problem is solved using another sensor that can measure the distance between the
drone and the reference captured by the camera. For instance, the stabilization systems where the camera
used is pointing downwards take the altitude information from an onboard pressure sensor. In systems
with front cameras, an ultrasonic front sensor could estimate the distance. However, the objective of
this work is to eliminate all sensors that are not strictly necessary, so we calculated the distance using
only the camera (Section 5.1).

The distance to the reference object is calculated when the drone has not taken off yet to ensure that
the drone is completely horizontal and to have a precise knowledge of the altitude of the camera (since
it will be the height of the drone). The accuracy of this calculation will drop for distances over 40 cm
since a difference of one pixel can significantly change the distance estimate in that range.

6.4 Sensor fusion

The decision to implement the Kalman Filter in this study was primarily based on prior knowledge and
experience using this method, and many similar works use Kalman Filtering in these cases. For simple
cases where the drone only needs to remain stable around the initial conditions, it is possible to linearize
the system, rendering the EKF unnecessary. However, for more advanced drone behaviours, EKF is
required. Two Kalman Filters were implemented in this study (Section 5.3), one to estimate movement
on the X-axis and another to estimate movement on the Y-axis.

There is a significant delay in the observations due to a communication delay of 350 ms and a computa-
tion delay of 100 ms. The communication delay is the time that passes from when a frame is taken until
that frame is received in the computer. And the computation delay is the time required to process and
obtain the parameters from a frame. As a result, the estimation in the Kalman Filter is done using an
observation out of phase. To address this issue, a buffer is created to store the last IMU inputs. Before
estimating the new state using the observation, a prediction of the state is computed using the closest
IMU readings to the time when the observed image was taken. Although this method cannot completely
eliminate the effect of the significant delay, it can mitigate it and improve the estimation.

6.5 Control

After estimating the drone’s position and velocity, the control system can be implemented. The control
system in this study is divided into three independent control loops. The first one is responsible for
controlling the altitude, while the other two are cascade control loops for controlling the displacement
on the X- and Y-axis, respectively.

The altitude control (Section 5.4.1) controls the thrust and uses the pressure sensor reading as feedback
signal. The goal of this control loop is to develop a simple system that can keep the drone in the air
to evaluate the primary focus of this study, the attitude control system. Although the pressure sensor
readings are not always accurate and robust, the performance is sufficient to keep the drone stable at a
constant altitude.

For the main control systems, the attitude controllers (Section 5.4.2), two cascade architectures are
implemented, one for each axis to control. These controllers use the same architecture as the controllers
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used by the Crazyflie quadcopter when using certain decks that provide position and velocity data.
However, the frequency of the position and velocity controllers in this study is slower than the onboard
controllers developed by Bitcraze. While the onboard controllers run at 100 Hz, the controllers in this
study operate at a slower rate of 10 Hz. This slow rate, combined with the delay in observation, can
significantly reduce the control system’s performance.

6.6 Simulation

In order to study the performance of the system neglecting the effect of the delay, a simulation using
Simulink has been suggested. This simulation used the Crazyfly model developed by Peter Corke [58].
The simulation uses a Kalman Filter with noisy real position, angle and angle rate data to estimate the
position and velocity. The angle rate signal has an offset to simulate the measurement noise that usually
produces the drift in these systems. Two cascade controllers are implemented to control the position
and velocity since the model already controls the angle and angle rate as the real drone.
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7 Results

Some of the test scenarios presented in Section 1.3 are performed and presented in this section. Some of
the tests have been done in a simulated environment, while others were performed in a real environment
using the Crazyflie quadcopter.

7.1 Results from Time Test

This test aims to study the computation and communication times in the different systems in order to
find bottlenecks that can affect performance. The mean measured time during a test of the full system
is represented in Table 2.

Table 2: Time results table

System Time (s)
Kalman Filter Fusion 0.0029

Kalman Filter Prediction 6.73e-5
Control Loop 0.101

Feature extraction 0.0112
IMU communication rate 0.019

Camera communication delay 0.357
Camera communication rate 0.13

It is observed that all the systems can perform under the control loop time, but the camera communi-
cation delay. This large delay makes the system not controllable by current controllers.

7.2 Results from Altitude Tests

For the results in the altitude control, it is important to distinguish two different scenarios, since different
behaviours have been observed depending on the battery level of the drone. In the first scenario, the
drone is completely charged, resulting in proper altitude stabilization (Fig. 14a). In the second scenario,
the battery lacks full charge, causing the drone to be incapable of maintaining a consistent altitude.
(Fig. 14b).

(a) Battery fully charged (b) Battery not fully charged

Figure 14: Real Scenario: Altitude Control

In Fig. 14 the blue line represents the pressure sensor reading, while the orange line represents the
setpoint.
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7.3 Results from Position Tests

Some of the tests in this section compare the results of flying with position and velocity control, in
addition to the attitude and attitude rate controllers already integrated into the drone, or flying using
only the attitude and attitude rate controllers onboard. In this first situation, the Kalman filter has been
implemented to estimate the position and velocity thanks to the image and IMU data fusion, allowing
position control. The second situation uses only the IMU data, and position and velocity can not be
accurately estimated only with this information, hence the position can not be controlled directly.

The first test carried out on the real quadcopter consists of making the drone fly around 25 cm away
from a wall with a vertical high-contrast strip pasted on it. In addition, a light pointing to the wall has
been set up to keep high and constant brightening levels.

For this test, the drone is expected to fly up to 20 cm and stay still in the air (Fig. 15a) until the strip
on the wall is not detected for 10 iterations in a row. The test is repeated with the deactivated position
and velocity control system, just using the attitude and attitude rate controllers onboard (Fig. 15b).

(a) Using position control (b) Without position control

Figure 15: Real Scenario: Stabilization test

The orange and blue lines represent the estimated position and velocity by the Kalman Filter respectively,
while the green and red lines are the output signal of the position and velocity controllers, respectively.
In Figure 15b the velocity control signal is zero since the control is deactivated. In the first image
(15a) the system tries to compensate for the error in position and velocity, but it becomes unstable and
overcompensates the error, while in the second image (15b) the system does not try to compensate the
error, so it just drifts away.

No ground truth data can be shown for this experiment since this would require external sensor equip-
ment, flash camera, or good GPS-receiver, and there was no external ground truth equipment in this
project. Instead, an internal estimation of the position and velocity are computed. Even when it is not
possible to know exactly how good it is the estimation since there are no external sensors, the KF uses
a covariance that tells within some confidence that the quadcopter is where it is estimated to be.

No further experiments were tested on the Crazyflie since it can not successfully pass the first scenario
stabilizing the drone. The following tests are carried out on a simulated model on Simulink.

Three different scenarios are tested in the simulation using the parameters in Table 3. These parameters
have been selected in order to fit the noise model used for the KF, behave with a similar drift when there
is no additional control, and the sampling time used in the real drone. The offset and noise introduced
in the angle rate simulate the IMU measurement error that produces the drift while the noise on the
position and attitude of the KF simulated the error in the measurement of the position and inclination of
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the strip. The communication delay added to the output of the Kalman Filter simulates the computation
and communication delay between the drone and the computer. This delay is smaller than the delay
measured in the real system to be able to control the system. Finally, the sampling time refers to the
working rate of the Kalman Filter and position and velocity controllers. The global position and velocity
are computed in the simulation, hence they are used in the graphics as a ground truth.

Table 3: Simulation parameters

Parameter Value
Position X noise power KF 1−5 m
Position Y noise power KF 1−5 m

Roll noise power KF 10−6 rad
Roll rate offset −10−3 rad/s

Pitch rate offset −10−3 rad/s
Roll rate noise power 5 10−7 rad/s

Pitch rate noise power 10−7 rad/s
Communication delay 0.11 s

Sampling time 0.1 s

The noise frequency has been calculated using the maximum frequency of the system where the noise is
applied [59] (47),

fnoise = 100
fmax
2π

. (47)

In the first scenario, Fig. 16, the drone is expected to stay stable in the air for 30 s, using a setpoint of
0 (for position while using the position control and for attitude while using only the attitude control).
In the results, it is observed how the drone stays stable around the initial point (0, 0) compensating the
noise and drift when the position is estimated and controlled (16a and 16b). On the other hand, the
drone drifts over time (16c and 16d) when the position control is not introduced.

This experiment is repeated using a communication delay of 0.35 s instead of 0.11 s, Fig. 17. When the
delay in communication increases, the system becomes unstable, oscillating more and more around the
setpoint.

In the second scenario, Fig. 18, the drone gets a step setpoint of 1 m at time t = 4 s for X-axis and
t = 7 s for Y-axis. This test can not be performed without position control. The drone follows the step
setpoints successfully after 15 s.

The final test consists of introducing a sinusoidal setpoint of frequency 1 Hz on X and Y-axes to make
the drone perform a circular trajectory. The yaw is not changed in this or any other test, since the drone
is supposed to point to the wall all the time. This experiment was repeated with a communication delay
of 0.01 s and then, without the noise in the position and angle observed to observe their effect on the
performance. To quantify the error the Mean Square Error (MSE) between the trajectory reference and
the position is used. This error in the trajectory in the three cases is presented in Table 4. In Case A
(19a) the system can follow the circular trajectory without becoming unstable. The error, in this Case,
is the highest (0.188 m2).

In the second Case (19b), the communication delay between the position estimation and the control
is reduced from 0.11 s to 0.01 s, highly improving the error at the beginning of the flight, since the
quadcopter reaches the steady state faster, but the steady-state error is still high so the overall MSE is
not that low. It is also important to have into consideration that even when the delay in communication
is 0.01 s, the controllers and Kalman filter sampling time is 0.1 s. In the final Case (19c), The noise in
the Kalman Filter is removed, obtaining the lowest MSE. Contrary to the previous Case, the system
takes longer to reach a steady state, but the steady-state error is smaller since there is no noise in the
position estimation.

An additional experiment is carried out in the simulated model to test a system without position estima-
tion and control, using only the velocity estimation and control, Fig. 20. This control method requires
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(a) Position and velocity using position control (b) Movement on XY plane using position control

(c) Position and velocity without position control (d) Movement on XY plane without position control

Figure 16: Simulation First Scenario: Stabilization test

one less controller and a simpler Kalman Filter, but it can not compensate for all the drift.
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(a) Position and velocity with position control and
0.2 s of delay

(b) Movement on XY plane with position control and
0.2 s of delay

Figure 17: Simulation First Scenario: Stabilization test with higher communication delay

Table 4: Circular trajectory test error

Circular tests MSE (m2)
Case A 0.188
Case B 0.167
Case C 0.139

(a) Position and velocity with position control and
step setpoints

(b) Movement on XY plane with position control and
step setpoints

Figure 18: Simulation Second Scenario: Flying to set position and stop
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(a) Case A: Communication delay
of 0.11 s and noise

(b) Case B: Communication delay
of 0.01 s and noise

(c) Case C: Communication delay
of 0.11 s and no noise

Figure 19: Simulation Third Scenario: Circular trajectory

(a) Position and velocity using velocity control
(b) Movement on XY plane using velocity
control

Figure 20: Simulation Velocity control: Stabilization test
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8 Discussions

All the ideas that have been built during this work, together with opinions after having experience with
this specific hardware, discussions about the results obtained above and the ethical and social effects of
this work will be commented on in this section.

8.1 Discussions on Hardware

The Crazyflie 2.1 platform, despite being an excellent option for research and development, has some
drawbacks. First, the battery has a brief flying time, draining the whole charge in around 5 minutes
while using the AI-deck. This is a common and understandable issue in this kind of micro quadcopter,
but the real problem with it is that the thrust command does not completely adapt to the battery level,
getting different thrust outputs with the same input and different battery levels. This makes that tuning
a not-super-robust controller takes too much time since the battery level decays continuously.

The AI-deck is a great addition to the drone that allows real-time machine vision applications and sends
the images recorded. But making it start working was a bit more complex than expected since the GAP8
processor must be flashed to start using it. The lack of experience flashing these products, the lack of
the materials to do it and the fact that it was not completely clear if it was necessary or not to flash
it, delayed the process of making it run the first time. Once some guidance was obtained from Bitcraze
and the flashing tools (ARM-USB-TINY-H and ARM-JTAG-20-10) were acquired, booting the deck was
fast and easy. In addition, the communication delay in sending the images through Wi-Fi has been a
great limitation in the performance of the system developed in this work.

About the camera in the AI-deck, the quality and resolution are the ones expected for a camera of that
size. But this camera seems too sensitive to light, making any spot where some direct light is received
appears like a completely white region in the image. It is recommended to use this device indoors with
a controlled light source.

8.2 Discussions on Methods

The method used to calculate the distance to the wall allows to estimate of the distance to the reference
wall fast without the necessity of additional sensors. The main withdraw of this method is that even
improving the image quality, the object reference can not be far away.

For the optical flow method, the algorithm used to find interesting points in the image is fast but quite
limited in performance. It is hard to find points for this algorithm in some detailed environments, and
many points will be detected in regions that became completely white due to the effect of direct light
or reflections. All of this provides as a result clustered detected points that do not provide general
information about the image. An alternative to this method could be the SURF algorithm since some
projects have presented promising results using this algorithm [6] [7]. The main advantage of this method
is that it is much more general than the Strip method that was finally implemented, even though the
optical flow method is more sensitive to the background texture and light conditions.

As has already been highlighted, the Strip method performs well, but its practical use in real scenarios
is limited. The environment needs to have some vertical and high-contrast structure that needs to be in
front of the camera to make this method work properly, and in real cases, it is not possible to depend
on these references. This method was meant to give the drone the information required to perform the
sensor fusion, but it was never meant to be the final solution to this problem. Due to the time limitation
in developing this project, no other method could be successfully developed.

About the sensor fusion, Kalman Filter has shown good performance for this case, allowing to estimate
the position and velocity of the drone by using the position, velocity and angle low-frequency observation
and an angle rate high-frequency input. The computation speed to perform the filter is high enough to
do all the image computation and state estimation faster than the communication rate.
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The control system, although simple, it is effective, performing a robust control even with noisy position
and velocity estimations, and noisy and biased gyro readings. Although the communication and compu-
tation delay can be a problem, it can even lead to making the system unstable. To reduce the effect of
the delay, other more advanced control systems could be implemented instead of a PID cascade control
loop.

Another way of reducing the delay effect would be to perform the computations onboard. This would
remove the communication delay but could increase the computation time since the quadcopter has
much less computational power than a computer.

8.3 Discussions on Results

By studying the tests performed on the real quadcopter, that has a communication delay in the camera of
0.35 s, Fig. 15a, and the simulation with high communication delay, Fig. 16a, it becomes clear that the
probable reason that makes the system unstable despite all the tuning tests is the high communication
delay. In addition, Fig. 16 shows how the system can still keep the drone stable despite the drift
introduced by the error in the gyro measurement. This system is stable in time and allows a delay in
the position estimation equal to the measured time computation of the method developed.

Further experiments show how the error in the estimation and the delay in the communication affect
the ability of the system to follow a track, Fig. 19. The results show how the system is able to follow a
circular track when the communication delay is 0.11 s even when the position estimation is noisy. An
improvement in the steady-state error can be achieved by reducing the error in the position estimation,
while a faster response can be obtained reducing the communication delay.

The velocity control, Fig. 20, while being better than attitude control alone in eliminating drift, does
not provide a significant advantage over position control, which completely eliminates drift.

8.4 Discussions on Social and Ethical considerations

The development of new technologies requires careful consideration of their social impacts, as well as
their ethical implications. This project has the potential to impact society in various ways, and it is
essential to analyze its effects and consider how to address any ethical concerns.

One of the most significant social impacts of the project is the potential for the technology to be used
for surveillance purposes. With its camera, the quadcopter can monitor people’s movements, raising
concerns about privacy and surveillance. The ethical implications of using such technology must be
considered, and measures must be taken to protect individuals’ privacy. The images captured by the
drone can be processed in real-time, so they are not saved. In addition, the data extracted from the
pictures are exclusively about the drone’s relative position, so no privacy is violated.

Another social impact of the project is its potential impact on the job market. The development of
drones and related technologies could lead to the automation of certain jobs, particularly the jobs that
require 4-D tasks (Dull, Dirty, Dangerous and Dear) [60]. This technology could be used for instance in
the delivery and transportation sectors. While this could increase efficiency since the drone can follow
more straightforward paths than a truck that needs to follow the road, it could also lead to job losses and
unemployment. It is important to consider the potential impact on the workforce and take measures to
mitigate any negative effects. A possible point of view on this aspect is that even if this device can risk
some jobs like delivery men or women, it will create new positions to supervise, repair and design these
drones. On the other hand, as there is a shortage of people in the current job market, the increased
automation can be beneficial as it frees people to work in areas that lack people.

In addition to social impacts, the ethical effects of the quadcopter project are analyzed. Roboethics,
an applied ethics that aims to develop scientific, cultural, or technical tools that can be shared by
different social and technological groups and beliefs [61], provides a valuable framework for addressing
ethical concerns related to the project. This project raises issues related to privacy, transparency, and

Arturo Pérez Rodríguez 36



Quadcopter stabilization based on IMU and frontal Monocamera Fusion 8 Discussions

accountability, among others. It is important to ensure that the technology is developed and used in a
way that aligns with ethical principles and values.

The IEEE Code of Ethics [62], a set of principles and guidelines established by the Institute of Electrical
and Electronics Engineers (IEEE) to promote ethical conduct in the engineering profession, provides
additional guidance on ethical issues related to technological developments. The code emphasizes the
importance of prioritizing the safety and well-being of society and being transparent about any potential
risks associated with technology development.

In conclusion, the social effects and impacts of the project are significant, and the ethical implications
should be carefully considered in the development of a project like this. The principles of Roboethics
and the IEEE Code of Ethics provide valuable frameworks for addressing ethical concerns related to
the project. By considering the social and ethical implications of the project, we can ensure that the
technology benefits society while minimizing potential negative impacts.
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9 Conclusions

This work presented the implementation and evaluation of a stabilizing method for a quadcopter to
eliminate the drift due to IMU measurement error. The quadcopter used was a Crazyflie 2.1 with an
AI deck, and the sensor fusion algorithm combined camera information and IMU data to estimate the
quadcopter’s position and velocity. The control used was a PID cascade control to control the position,
velocity, attitude, and attitude rate, and the Kalman Filter estimated the position and velocity.

The results showed that the Kalman filter worked well for this situation, and the quadcopter was success-
fully stabilized in a simulation. However, it was not possible to implement the system on the real drone
due to the delay in the camera communication. The feature extraction was also found to be sensitive to
background texture, light conditions, and the feature extraction algorithm used. The feature extraction
algorithm used at the end, the strip method, worked well but is not useful for a real case.

Despite the inability to implement the system on an actual drone, this study has important implications
for future research in the field of drone stabilization. The use of a sensor fusion algorithm like the
Kalman Filter can improve the accuracy of drone positioning compared to using only the data from
IMU sensor and can help stabilize the drone even in the presence of external disturbances. Moreover,
using a PID cascade control can improve the drone’s control performance, denying the drift effect and
enabling it to follow a desired trajectory.

In conclusion, this study demonstrated the potential of sensor fusion algorithms like the Kalman Filter
and Machine Vision methods for stabilizing quadcopters in the air. While the system was not successfully
implemented on a real drone, the results obtained in the simulation showed promising results. Further
research is needed to overcome the limitations encountered in this study and to fully exploit the potential
of sensor fusion algorithms and Machine Vision for drone stabilization.

10 Future Work

Future work could focus on improving the feature extraction algorithm used to make it more robust
to changing environmental conditions and more useful for real cases. Some possible solutions could be
SURF algorithm or Machine Learning methods. Additionally, investigations could be carried out to find
alternative camera systems with better image quality or communication protocols that can reduce the
delay in-camera communication and allow for the implementation of the design on a real drone.

Other ways to implement this system could be using onboard computation to avoid communication
delay, or exploring better control systems to mitigate the effect of the delay.
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