
Ca rbon aeronautics

quadcopter
build and programming manual

electronics

aeronautics programming
{ };

learn 100 %
hackable

< 250 g
weight

10 min
flight time

Ca rbon aeronautics

you are about to embark on an exciting
journey... building and programming a
quadcopter from scratch.

this manual will guide you every step of the
way, explaining the essentials on aeronaut-
ics, electronics and embedded program-
ming.

all components and programs are fully
hackable, meaning that you can adapt an-
ything you want and create a quadcopter
capable of stuff that goes way beyond the
scope of this manual!

good luck and most importantly: have fun!

Carbon Aeronautics quadcopter build and programming manual

Project, text and figures by Laurens Raes

The contents of this manual are the intellectual property of the company Carbon Aer-
onautics. The text and figures in this manual are licensed under a Creative Commons
Attribution - Noncommercial - ShareAlike 4.0 International Public Licence. This li-
cense lets you remix, adapt, and build upon your work non-commercially, as long as
you credit Carbon Aeronautics (but not in any way that suggests that we endorse you
or your use of the work) and license your new creations under the identical terms.

The information in this manual is provided "As Is” without any further warranty.
Neither Carbon Aeronautics or the author has any liability to any person or entity with
respect to any loss or damage caused or declared to be caused directly or indirectly by
the instructions contained in this manual or by the software and hardware described
in it. As Carbon Aeronautics has no control over the use, setup, assembly, modification
or misuse of the hardware, software and information described in this manual, no
liability shall be assumed nor accepted for any resulting damage or injury. By the act
of use, setup or assembly, the user accepts all resulting liability.

This is not a toy but an educational product and not intended for persons below the
age of 18 years old. The user is responsible for complying with the local regulations
concerning unmanned aircraft when flying outdoors, and to fly in a responsible man-
ner. This is a sophisticated product for advanced craftsman with previous experience
in the field of electronics and programming. The purpose of the safety instructions
and warnings in this manual is to attract your attention to possible dangers. They do
not by themselves eliminate any danger, nor are they fully exhaustive. They are no
substitutes for proper accident prevention measures or for the knowledge of the
electric safety rules that are expected to be known by experienced craftsmen.

First edition, August 2022.

Project 1
Concept, parts and programming..8

PART I: rate mode
Project 2

LED control..24
Project 3

Reading your battery level...28
Project 4

Sensing the rotation rate...34
Project 5

Gyroscope calibration..46
Project 6

Take your motors for a spin...52
Project 7

Receiving commands...58
Project 8

Controlling your motors...66
Project 9

Battery management..72
Project 10

Assembling your quadcopter..80
Project 11

Quadcopter dynamics..86
Project 12

Quadcopter rate control..90
Project 13

The flight controller: rate mode...96

Contents

Part II: stabilization mode
Project 14

Measuring angles..110
Project 15

The Kalman filter - one dimension...120
Project 16

The flight controller: stabilize mode...130

Part III: velocity mode
Project 17

Measuring altitude..142
Project 18

Measuring vertical velocity..154
Project 19

The Kalman filter - two dimensions...162
Project 20

The flight controller: velocity mode..174

Part IV: quadcopter design and simulation
Project 21

Motor and sensor simulation..190
Project 22

Quadcopter dynamics simulation..200
Project 23

Quadcopter PID controller..210
Project 24

Estimate the PID values..214

Part V: expanding your horizon

8

powertrainflight controller

radio control

motor and propeller
(4 x)

electronic speed
control (4 x)

battery

energy

energy pulsesmotor
command

(4 x)

orientation
sensor

quadcopter
orientation

desired orientation
and throttle

radio waves

transmitterreceiver

microcontroller

Concept, parts and programming
 Project 1

9

Let's start your exciting journey in the world of aeronautics, electronics and
programming with the concept behind the flying machine that you will build
and the parts that you need. This manual will help you tackle the basics and
enable you to build your own quadcopter; a drone with four motors.

The creation of flying machines is a true engineering challenge and involves solving
several problems, from aerodynamics to power systems. In the case of a quadcopter,
you rely on four motors and propellers to provide enough thrust to start flying. Obvi-
ously, these are not the only necessary components. The figure to the left displays the
basic overview of a quadcopter with three major active building blocks:

•	 The radio control system, which consists of a radiotransmitter and a receiver.
The position of the sticks on the radiotransmitter are transformed into com-
mands and subsequently sent to the receiver that is situated on your quadcopter.

•	 The flight control system, which consist of a microcontroller and some sen-
sors. The bare minimum you need to stabilize the quadcopter is an orientation
sensor, but you can add various other sensors (barometer, GPS, ultrasonic,...)
to make your flight easier. The information of your sensor and the commands
from your radiotransmitter are then processed in the microcontroller, which is
the brain of your quadcopter. The microcontroller calculates the optimal speed
of each of the four motors to keep the quadcopter in the air.

•	 The third building block is the powertrain, which is the high current part of the
quadcopter. The battery is the power source of the whole system and sends en-
ergy in the form of electrical current to four electronic speed controllers (ESCs);
an ESCs converts the provided current into current pulses, with a pulse length
proportional to the motor command sent from the microcontroller. This gives
a motor speed proportional to the motor command and in turn, a certain thrust
allowing you to take off!

And basically, that’s all there is to it! With the general idea behind your quadcopter
clearly understood, let’s have a look at all different physical parts that you will use.
Your quadcopter consists of three active building blocks; a radio control system,
flight controller and powertrain. Moreover, you also need a frame on which you can
mount all these active components. Some auxiliary parts are also necessary, to charge
the battery and test your microcontroller, sensors and powertrain before fixing them
to the frame.

Ex plore the basics of your quadcopter

10

Concept, parts and programming

All necessary components are listed below and divided into parts for the frame, flight
controller, powertrain, battery and radio control. Each part is available on the con-
sumer market, so if you break a part during flight or you want to change parts, you
can easily buy it yourself. This manual is designed to guide you building your own
quadcopter while enabling you to change any aspect of it as well.

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff spacer
M3 x 20 mm

battery strap
210 mm

1b

1 frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2 flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed
controllers
HobbyKing 6A
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise
propellers
Gemfan 3018

3b

3 powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4 Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5 Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Ca rbon aeronautics

11

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff spacer
M3 x 20 mm

battery strap
210 mm

1b

1 frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2 flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed
controllers
HobbyKing 6A
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise
propellers
Gemfan 3018

3b

3 powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4 Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5 Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

12

Concept, parts and programming

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff spacer
M3 x 20 mm

battery strap
210 mm

1b

1 frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2 flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed
controllers
HobbyKing 6A
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise
propellers
Gemfan 3018

3b

3 powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4 Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5 Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Ca rbon aeronautics

13

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff spacer
M3 x 20 mm

battery strap
210 mm

1b

1 frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2 flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed
controllers
HobbyKing 6A
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise
propellers
Gemfan 3018

3b

3 powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4 Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5 Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

14

Concept, parts and programming

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff spacer
M3 x 20 mm

battery strap
210 mm

1b

1 frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2 flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed
controllers
HobbyKing 6A
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise
propellers
Gemfan 3018

3b

3 powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4 Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5 Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Alternative parts

You are not limited to the parts that are described in this paragraph and chances are
you want to choose different components for various reasons such as higher thrust,
longer flight time or lower weight. The parts that can easily be swapped are the pro-
pellers, ESC (Electronic Speed Controller), motor and battery. To give you an idea of
the possibilities, this paragraph describes some successfully tested variations on the
basic quadcopter. The PID values derived later on in this manual are a good match
for all variations, but remember that the weight of your quadcopter will be affected:
the basic quadcopter weighs 247 gram while the combination of all the heaviest com-
ponents described in this paragraph weighs 278 gram.

The battery is perhaps the easiest interchangeable component. The base part is a 2S
battery with a capacity of 1300 mAh and a weight of 70 gram. Other tested possible
batteries include a 2S battery with 1000 mAh (weight: 60 gram) or a 2S battery with a
1500 mAh capacity (weight: 80 gram). Additional capacity comes at a cost in the form
of extra weight and thus a less flexible quadcopter.

The choice of your ESC and motor combination needs some more care. You should
make sure that the maximal load current of both your ESC and motor are similar: the
part with the smallest load current limits the load current of both components. Since
a motor or ESC with a higher load current generally weighs more, the optimal com-
bination consists of motors and ESC with similar load current. The base motor and
ESC combination (GEPRC GR1105 5000 kV and Hobbyking 6A ESC with BEC)
both have a load current of around 6 A. Another tested possibility is the combination
of the GEPRC GR1206 4500 kV and Hobbyking 12A ESC, both having a load cur-
rent of around 12 A. The 6 A combination of four motors and ESCs weighs around
50 gram, while the 12 A combination weighs 66 gram.

Ca rbon aeronautics

15

Another important value is the motor kV rating: this determines how fast the propel-
ler can turn at full throttle: a 5000 kV motor turns at 5000 rpm/V. Since a 2S battery
has a nominal voltage of 7.4 V, this equals to a nominal rmp of 5000 rpm/V x 7.4
V = 37 000 rpm. To lift a quadcopter with a weight between 200 and 300 gram, you
need a motor with a kV rating between 4000 and 6000, depending on the propeller.

Once you have chosen your ESC and motor combination, the propellers are next. A
larger propeller generates more thrust: this is great because it means your quadcopter
can weigh more and can successfully combat stronger wind gusts. However, the nec-
essary load current increases and your motor and ESC have to withstand this higher
current, otherwise they will overheat and possibly start burning. Larger propellers
obviously weigh more as well.

Four different propellers are tested with the two motor/ESC combinations and tab-
ulated above together with their current at full throttle with a full 2S battery. The
colour code can be explained as:
•	 Green: the motor and ESC can withstand full throttle with this propeller for

longer periods of time - this combination is suitable for beginners.
•	 Orange: the motor and ESC can only withstand short bursts of full throttle

with this propeller - this combination is only suited for experienced flyers given
the risk of motor or ESC overheating.

•	 Red: this combination is not recommended given the high risk of motor and
ESC overheating.

For reference, the maximal dimensions for the battery and the propellers given the
frame width are included here as well:
•	 10.2 cm is the maximal diameter of the propeller (corresponds with a 4 inch

propeller).
•	 The battery bay has a 12 cm x 4 cm x 3 cm dimension, but you need to leave

some space for the receiver, electronic cables, protectors and screws. This limits
the practical space to 8.5 cm x 3.3 cm x 1.5 cm.

Gemfan propeller
(weight in gram for 4 props)

3018
(2 blade)

3.4 g

3035
(3 blade)

5.6 g

4024
(2 blade)

6.4 g

4019
(3 blade)

8.4 g

GEPRC GR1105 5000 kV
+

Hobbyking 6A ESC with BEC
5 A 7 A 9 A 12 A

GEPRC GR1206 4500 kV
+

Hobbyking 12A ESC with BEC
5 A 7 A 9 A 12 A

16

Concept, parts and programming

Additional required tools and material

To complete your build, you also require some additional tools and material. Except
for a computer, these are only necessary when starting the actual build, not when
testing the components in the first projects (except if you still need to solder headers
to your Teensy and sensors in order to test them on the breadboard).

•	 a soldering iron or station, to solder the motors wires, ESCs, resistors, LEDs
and male/ female headers to each other / the printed circuit frame on you quad-
copter frame.

•	 sufficient solder material.
•	 a soldering helping hand to clamp the parts you are soldering together.
•	 a wire stripper to strip the electrical insulation from the ESC and motor wires.
•	 a wire cutter to cut the ESC and motor wires.
•	 a computer capable of running Arduino (see arduino.cc/en/software)
•	 two hex keys (1.5 mm and 2 mm)
•	 a multimeter to check for short-circuits or bad connections.

Ca rbon aeronautics

17

Battery
•	 Read the battery and battery charger manuals carefully before use.
•	 Never charge the batteries unattended.
•	 Before connecting the battery and your motor(s) or quadcopter for the first

time, make sure there are no short-circuits between your soldered components
using your multimeter.

Electronics
•	 Before connecting the electronics to a power source (such as your computer),

make sure that there are no short-circuits between your soldered components
using your multimeter.

•	 Remove the propellers and do not touch the motors unless you are sure that
your program is working properly to avoid losing control over your quadcop-
ter.

•	 Never run your motors without propellers.

Before flying
•	 Make sure the failsafe and safety-related code lines are implemented and work-

ing correctly.
•	 Check the regulations that are applicable in your country (with regard to max-

imal altitude, speed, weight,...) when flying your unmanned quadcopter out-
doors.

General safety instructions

18

Concept, parts and programming

The core of your quadcopter project is the Teensy microcontroller that you will pro-
gram in such a way that it becomes the flight controller and thus brains of your
project. The Arduino software will be used to program the microcontroller, together
with Teensyduino.

You can find all information with regard to the installation of the necessary software
on the website of the Teensy manufacturer: www.pjrc.com/teensy. The installation
steps will be described here as well, but please refer to the pjrc and arduino websites
if you need additional troubleshooting.

1. Connect your new Teensy to your computer using the USB cable (see figure to the
right).

2. Your Teensy should come with the LED blink program pre-loaded; this means
that the orange LED on your Teensy should blink slowly after connection with your
computer.

3. Press and release the tiny pushbutton on the Teensy. The orange blinking LED
should stop and the red Teensy LED should be visible. This means your Teensy
works correctly.

4. Disconnect your Teensy from your computer by disconnecting the USB cable.

File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

Verify Upload
serial monitor

Setup your microcontroller for programming

Ca rbon aeronautics

19

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

UsB connection to
your computer

micro-B connection
to your Teensy

orange Teensy LEd
(pin 13)

red Teensy LEd
(bootloader status)

pushbutton

microcontroller
Teensy 4.02a

microcontroller connector
USB A to micro B2b

5. Download and install the Teensy Loader program, which communicates with your
Teensy board. Guidance on the installation process can be found at pjrc.com/teensy/
loader.html. Click on the operating system of your computer, read the information
and click on the Teensy Loader link to start downloading.

6. If you do not have the Arduino software (IDE) yet, download the latest version
from arduino.cc/download and install it on your computer. Guidance on the instal-
lation process can be found at arduino.cc/en/Guide/Windows or arduino.cc/en/
Guide/MacOSX or arduino.cc/en/Guide/Linux.

7. The final piece of software to install is Teensyduino, the software add-on for Ar-
duino. Download it by going to pjrc.com/teensy/td_download.html and follow the
instructions on this webpage.

8. Open the Arduino IDE; a new empty sketch should load automatically. Copy the
code in the figure to the left of this page and save the file under the name BLINK.
Now click on ‘Verify’. You will first have to save your sketch. After verification, you
should view the message ‘Done Compiling’ below on your screen. If you get an error,
verify whether you copied the code correctly.

20

Concept, parts and programming

9. Before you can upload your verified code to your Teensy, you need to setup your
Teensy in the Arduino IDE. Go to tools and:
•	 Click on ‘Boards’ and ‘Teensyduino’ and select the Teensy 4.0 board.
•	 Verify that the USB type is ‘Serial’.
•	 Verify that the CPU speed is 600 MHz.
•	 Connect your Teensy again with your computer using the USB cable. Under

Port, a USB port should be displayed. Click on it.

10. Press the upload button on the screen. The internal Teensy LED should start
blinking again. Change the blinking speed by changing the delay time of 500 (milli-
seconds) in the code to for example 100 (milliseconds) to blink faster, or 1000 (mil-
liseconds) to blink slower. Adapt and upload the code to verify that you are truly in
control of the Teensy. When this test is successful, you are ready for the next project!

male header pins (straight)
provide the connection of the

components with the breadboard

solder the male header
pins to the components

barometer
GY-BMP2802dorientation sensor

GY-521 MPU-60502cmicrocontroller
Teensy 4.02a

male headers
40 pins - 2,54 mm - straight2s

Code compatibility

The code throughout this book is compatible with the following Arduino (library)
versions:
•	 Arduino IDE: 1.8.16
•	 Teensyduino: 1.55
•	 BasicLinearAlgebra library: 3.2.0 (only necessary for part III)

Ca rbon aeronautics

21

File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+I
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101/WifiNINA Firmware Updater

Board: “Teensy 4.0”
USB Type: “Serial”
CPU Speed: “600 MHz”
Optimize: “Faster”
Keyboard Layout: “US English”
Port
Get Board Info

Programmer: “AVRISP mkll”
Burn Bootloader

Solder pins to your microcontroller and sensors

You will use a breadboard to separately test the electronic components of your flight
controller. To be able to electrically connect the components with the breadboard,
you need to use straight male header pins that are soldered to your Teensy microcon-
troller, the MPU-6050 gyroscope and the BMP-280 pressure sensor. If these parts do
not come pre-soldered with header pins, you will need to solder them yourself.

For easy soldering, you can insert the pins in your breadboard and put the component
on top such that the pins are soldered straight to the microcontroller and sensors. If
you have never soldered before, you can consult the internet for some tutorials.

PART I: rate mode

in the first part, you will build your quad-
copter and program a flight controller that
enables you to fly in rate mode; this is the
easiest-to-implement controller that gives
you full control over the performance of
your quadcopter.

complex projects such as this one are often
cut in smaller, independent pieces that are
tested separately, before all components
are put together.

you will follow this approach and start with
simple building blocks and code, to eventu-
ally arrive at the full build and flight code.

24

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

breadboard
400 points2o

green and red LEd2h

2i

jumper wires
male to male 10 cm2r

resistors
100 Ω

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

LED control
 Project 2

25

Throughout this manual, you will learn how to communicate with your quad-
copter by giving it commands. However, this communication goes only one-
way from your radiotransmitter to the quadcopter. Sometimes it is useful to
receive some feedback from the quadcopter, for example when the setup and
calibration process is finished or when the battery voltage becomes low. To do
this in an easy way without telemetry, you will use three signal LEDs.

The first led you will use is the internal led of the Teensy, which you already exper-
imented with. This orange led is controllable through pin 13 and requires no addi-
tional circuit building. Lighting this led can be useful to show that the microcontroller
receives power and is working correctly.

You will also use two additional external LEDs to signal the start and end of the setup
program. Before you are able to fly, the microcontroller will have to start the auxiliary
sensors and calibrate them. This takes about four seconds during which the quadcop-
ter is not yet able to start. During this time, you turn on the red LED to signal that
the quadcopter is still in the setup process. When the setup process is successfully
finished, you turn off the red LED and turn on the green LED. Let’s start to build
the electronic circuit necessary to light these external LEDs.

Connect two 100Ω resistors to pins
5 and 6 of your Teensy using jumper
wires. Pin 6 gives signals to the red
LED while pin 5 gives signals to the
green LED. Connect the long leg (+
side or anode) of each LED with the
resistor and the short leg (- side or
cathode) with the negative bus line.

Configure your breadboard such that
the ground G of the Teensy is con-
nected to the negative bus line as well.

The schematic view of this circuit is
shown to the right. You are now ready
to program your Teensy and to give
signals to each LED.

3V

100Ω 100Ω

Green
LED

Red
LED

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

Us e LEDs to receive feedback

26

LED control

 All arduino sketches consist of both a setup and a loop part. The code in the setup
part of the sketch only runs once, during startup of the microcontroller. The code in
the loop part of the sketch runs continuously when the setup part is finished.

As seen in the previous project, you can control the internal orange Teensy LED with
pin 13. Configure the pin as an output using the command pinMode() and use the
command digitalWrite() to give it the command HIGH, which will light the orange
LED and show that the microcontroller is powered and working.

To control the external LEDs, you will use the same commands. You already connect-
ed the red LED to pin 5 and the green LED to pin 6. To show that the setup process
is ongoing, you light up the red LED by giving it the HIGH command.

Now wait four seconds (=4000 milliseconds) using the delay() command in order to
simulate the setup process, which will take around four seconds to be completed in
your final quadcopter code.

To indicate that the setup process is finished, turn off the red LED using the com-
mand LOW and subsequently turn on the green LED.

The code in the loop part runs continuously. Because you do not write any commands
in this part, the green LED will be continuously illuminated as demanded in the last
line of the setup part.

Coding

Testing

Upload your new code to your Teensy using the USB cable and verify that all LEDs
light up in the correct order. Only the green LED should remain on after four sec-
onds.

Ca rbon aeronautics

27

 Initialize the setup
part

Turn on the internal
LED

Turn on the red LED

Wait 4 seconds

Turn off the red
LED and turn on the
green LED

Start the loop part

1 void setup() {

2 	 pinMode(13, OUTPUT);
3 	 digitalWrite(13, HIGH);

4 	 pinMode(5, OUTPUT);
5 	 digitalWrite(5, HIGH);

6 	 delay(4000);

7 	 digitalWrite(5, LOW);
8 	 pinMode(6, OUTPUT);
9 	 digitalWrite(6, HIGH);
10 }

11 void loop() {
12 }

You used the pins 5, 6 and 13 as digital pins, meaning that their output voltage is
binary: either HIGH (3V) or LOW (0V). This very simple command is sufficient
to turn on a LED (when the 3V voltage is applied) or turn off the LED (when
the 0V voltage is applied). The current necessary to light the LEDs is provided
with the resistors you placed in series; through Ohm’s law, you can calculate that
a voltage of 3V and a resistance of 100 Ω gives a current of 3V/100 Ω=0.03
Ampere or 30 mA.

Understanding digital output pins

28

Fully charged: 8.4 V

Low battery: 7.4 V

9 V

8 V

7 V
Critically low: 7.2 V

80% 60% 40% 20% 0% 100%

Battery voltage

Remaining battery energy
5%

The evolution of the battery level in function of the battery voltage is displayed by
the figure above. It is important to notice that discharging your battery to a too low
voltage can degrade the battery and lead to a reduced capacity over time. Therefore,
a good guideline for prolonged battery lifetime is to not discharge your 2S battery
below its nominal voltage of 7.4V. Because the battery voltage fluctuates during flight
and can drop temporarily when you suddenly increase the throttle, your flight control-
ler will check if the voltage is above 7.5V before starting the motors.

Now how can you measure the voltage of the battery? Easy: the voltage applied to
any pin of your microcontroller can be read digitally. Unfortunately, there is one
catch: the pins of the Teensy are only 3.3V-tolerant, meaning that applying a voltage
higher than 3.3V can damage the microprocessor. Therefore, you need to use a volt-
age divider: this electronic circuit divides the voltage of the battery to a value low
enough to be used by your Teensy. Consider the first circuit displayed on the right:
through Ohm’s law, the current I is equal to the battery voltage Vbattery divided by the
resistance R1.

In the second circuit, a second resistance R2 is used. The battery voltage is now equal
to the current divided by the sum of two resistances. With the third circuit, you con-
nect a pin of the Teensy between both resistances.

Reading your battery level
 Project 3

29

Le arn to measure voltage and battery lifetime

A critical part of your quadcopter is the battery; it stores enough energy to
let you fly for quite a while. But how do you know when the battery is almost
empty? In this project, you will learn how the battery voltage drops during the
flight and measure it in order to estimate the remaining battery lifetime.

The battery you use in this project is a 2 cell lithium-polymer battery, where the cells
are placed in Series (=2S). Each cell has a nominal voltage of 3.7V and since the cells
are placed in series, the total nominal voltage is equal to 7.4V. A 3S battery would give
you 3 x 3.7 = 11.1V. The nominal voltage is the reference voltage of the battery, but
you will always charge the battery up to the charge voltage, which is equal to 8.4V for
a 2S battery.

When using a fully charged battery to fly your quadcopter, the battery voltage will
drop from the charge voltage of 8.4V to the nominal voltage of 7.4V and even lower
when you use more energy. This is inevitable and results in a lower thrust over time,
because the speed of the motors is proportional to the provided voltage. Fortunately
you can use this property also to your advantage, because by measuring the battery
voltage you are able to estimate the remaining battery energy.

R1

R1

R2

R1

R2

Vbattery

Vbattery

Vbattery

VTeensy

pin 15

GND

GND

GND

7.4 V

7.4 V

7.4 V

I =

I

I

I

R1

R1+R2

R2

Vbattery

I =
Vbattery

I =
VTeensy

30

Reading your battery level

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

2i resistors
510 Ω
2000 Ω

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

Coding

Lets first declare the voltage as a floating point number. To be able to measure the
voltage multiple times without rewriting the same lines of code over and over, you
will create the function battery_voltage. This function can be called as often as you
want.

The analog voltage over pin 15 can be measured using the function analogRead().
Since the default resolution for analogRead is equal to 10 bit, a voltage of 0V gives
you the digital number 0 and the maximal input voltage of 3.3V gives the digital
number 210-1=1023. Moreover you have built a 1:5 voltage divider. This means that
the battery voltage is equal to the measured voltage divided by 1023 / (3.3 x 5) = 62.

You will visualize the voltage at pin 15 in real-time on your computer with the serial
monitor. Set the speed at which the Teensy communicates with your laptop to 57600
bits per second.

Ca rbon aeronautics

31

The voltage applied to the pin of the Teensy (which will be pin 15) is equal to the
current divided by the second resistance R2. Since the current I will be the same for
the second and third circuit, the following equation holds:

By choosing the value of R1 to be equal to 2000 Ω and the value of R2 to be equal to
510 Ω, VTeensy becomes equal to Vbattery
divided by 5. You have now designed a
1:5 voltage divider! With a battery volt-
age of 8.4V, the voltage measured by
your Teensy equals 1.7V, low enough to
respect the 3.3V tolerance of the Teen-
sy pins.

To test your circuit, you will not yet con-
nect your battery but use the 5V output
pin of the Teensy as voltage source, and
measure this value with pin 15 and your
new voltage divider. Connect the 5V pin
with a 2000 Ω resistor to pin 15 and the
ground pin with a 510 Ω resistor to pin
15 as shown on the figure to the left.
You are now ready to code.

3V

510Ω

2 kΩ

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

1 float Voltage;
2 void battery_voltage(void) {
3 	 Voltage=(float)analogRead(15)/62;
4 }

5 void setup() {
6 	 Serial.begin(57600);

I = Vbattery

R1

I = Vbattery

R1 + R2

I = VT eensy

R2

Vbattery

R1 + R2
= I = VT eensy

R2

VT eensy = Vbattery · R2

R1 + R2

Read the battery volt-
age

Setup the serial mon-
itor

I = Vbattery

R1

I = Vbattery

R1 + R2

I = VT eensy

R2

Vbattery

R1 + R2
= I = VT eensy

R2

VT eensy = Vbattery · R2

R1 + R2

32

Reading your battery level

Measure the voltage each 50 milliseconds and print it to the serial monitor, with each
time the unit V behind.

Testing

Upload the code and open the serial monitor (Ctrl+Shift+M or click on the serial
monitor icon) with the USB adapter still connected to your Teensy. To see values
that make sense, you should set the baud rate such that it corresponds with the baud
rate that you have chosen in the code, namely 57600 baud. Now you should see the
measured values, who will be more or less equal to 5V. When you connect the battery
in a later stage, the measured voltage will vary between 8.4V and 7V.

Ca rbon aeronautics

33

7 	 pinMode(13, OUTPUT);
8 	 digitalWrite(13, HIGH);
9 }
10 void loop() {
11 	 battery_voltage();
12 	 Serial.print(Voltage);
13 	 Serial.println("V");
14 	 delay(50);
15 }

File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

1. upload code
2. open serial monitor

15:22:15.581 -> 4.88V
15:22:15.628 -> 4.88V
15:22:15.674 -> 4.89V
15:22:15.721 -> 4.87V
15:22:15.768 -> 4.88V
15:22:15.815 -> 4.88V
15:22:15.861 -> 4.89V
15:22:15.908 -> 4.87V

Teensymonitor

Newline 57600 baud clear output

3. check baud rate

4. check measured values

Print the battery volt-
age to the serial mon-
itor

34

Sensing the rotation rate

X

y

z

X

y

z

X

y

z

z

y

X

z

X
z

y

y

X

Roll around the
X axis

Pitch around
the y axis

yaw around the
z axis

 Project 4

35

Me asure the rotation of your quadcopter

To stabilize your quadcopter, you need measurements of its three-dimension-
al orientation. In rate control mode, it is sufficient to know the rotation rates
when rolling, pitching and yawing. A sensor able to record these rotation rates
is called a gyroscope. During this project, you will learn how to read the data
sent from your gyroscope.

The gyroscope that you will use is included in the MPU-6050, a low-cost off-the
shelve orientation sensor. While the MPU is not a very precise sensor, its accuracy is
sufficient to get great results balancing your quadcopter. You will use the gyroscope
to measure the roll rate, pitch rate and yaw rate: this means that you do not measure
absolute angles in degrees (°), but rather angular rates in degrees per second (°/s). An
angular rate of 30°/s for example, means that you rotate 30° each second and will
perform a full 360° rotation in 12 seconds (360°/ (30°/s)). You will learn later on that
you can use these rotational rates to keep the quadcopter balanced; for example when
you want the drone to stay at its current orientation, its angular rate needs to be 0°/s.

Before you continue, you need to be fully aware of the direction of the roll, pitch
and yaw rotational rates. These three rotations are visualized on the figure to the left:
•	 A roll rotation means that you rotate clockwise around the X axis of the gyro-

scope.
•	 A pitch rotation means that you rotate clockwise around the Y-axis of the gy-

roscope.
•	 A yaw rotation means that you rotate counter clockwise around the Z axis of

the gyroscope.

The respective axis around which you turn, is the only axis that keeps pointing to the
same direction during the turn: on the figure, this is each time the red axis.

Notice that the X and Y axes and their respective rotation directions are also writ-
ten physically on the MPU-6050 sensor itself. When building the quadcopter and
soldering the MPU-6050 to it, always make sure that the axes written on the sensor
are aligned with the roll, pitch and yaw axes of the quadcopter itself.

Mounting instructions of the gyroscope on your quadcopter

36

Sensing the rotation rate

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

The code for the I2C protocol is rather complex, so you use a predefined library
called Wire.h. This was normally installed automatically when you installed Teensy-
duino, but you can still install it at this point if necessary: in the Arduino IDE, go to
sketch → include library → manage libraries and type Wire in the search bar. Click on
install and you are ready to use it.

Define the roll, pitch and yaw rates in degrees/s (°/s) as global variables. You will
write the output of the measurements from the sensor to these variables.

Use once again a function to get the data from the gyro. With the I2C protocol, each
device (sensor) has its unique address. For our MPU-6050, this address can be found
in the register documentation and has a default value of 0x68. Routing function Wire.
beginTransmission to this address starts the communication with the sensor.

All information about sensors and their setup can easily be accessed online; try
and look up the MPU-6050 register map and product specification documenta-
tion.

Sensor documentation

Coding

Ca rbon aeronautics

37

How can you connect the MPU-6050 with your microcontroller? The communica-
tion protocol that you will use is I2C. This protocol needs two wires: a serial commu-
nication line (=SDA) through which the data can be transferred bit by bit, and a line
that carries the clock signal (=SCL). The exact design of this protocol is beyond the
scope of your project, but one
of its advantages is the transfer
of information from multiple
sensors using the same SDA
and SCL lines to the microcon-
troller. This will prove useful
when you will connect a baro-
metric sensor later on.

The wiring of the MPU-6050
to the Teensy is rather straight-
forward: connect 5V to Vcc and
G to GND to feed the sensor.
Subsequently, you connect the
serial communication output
SDA on the sensor to pin 18 of
the Teensy and the clock signal
output SCL to pin 19. You are now ready to start programming.

3V

XDA

VCC

INT
ADO
XCL

SDA
SCL
GND

MPU-6050

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

1 #include <Wire.h>

2 float RateRoll, RatePitch, RateYaw;

3 void gyro_signals(void) {
4 	 Wire.beginTransmission(0x68);

Include the Wire li-
brary

Declare the global
variables

Start I2C communi-
cation with the gyro

38

Sensing the rotation rate

 Some registers can be accessed to select some predefined options of the MPU-6050.
One of these options is a low pass filter, which will be necessary to filter out high fre-
quency vibrations and hence sharp increases and decreases in rotation rates that are
caused by running motors. The configuration register, where you can activate this op-
tion, has the hexadecimal address 0x1A according to the documentation (this is equal
to a decimal address of 26). The options for the low-pass filter correspond to bits 0,
1 and 2 in this address (the Digital Low Pass Filter DLPF setting). You choose a low
pass filter with a cut-off frequency of 10 Hz, which corresponds to a value for the
DLPF setting of 5. This corresponds in turn to the following binary representation:
00000101. Converting this to a hexadecimal value gives an address of 0x05.

The table from the register documentation that explains the configuration register
of the MPU-6050 is displayed on the right. The binary representation for setting the
value for the DLPF is given in the third column.

In addition to the low pass filter, you also need to set the sensitivity scale factor of the
sensor. The measurements of the MPU-6050 are recorded in LSB (Least Significant
Bit). Choose a sensitivity setting of FS_SEL=1 to set the scale factor to 65.5 LSB/
(°/s). This means that 1°/s corresponds to 65.5 LSB. You will take into account this
scale factor later on in the code. The gyroscope configuration register to activate this
option has the hexadecimal address 0x1B (or a decimal address of 27). The FS_SEL
setting of 1 corresponds to a 2-bit binary representation of 01. The other settings in
the register can be set to zero, giving a binary representation of 00001000. Converting
this to a hexadecimal value gives an address equal to 0x08.

The table from the register documentation that explains the gyroscope configuration
register of the MPU-6050 is displayed on the right. The binary representation for the
setting of the FS_SEL value is given in the third column.

Now you are ready to start importing the measurement values of the gyro. These
are located in the registers that hold the gyroscope measurements, which have the
hexadecimal numbers 43 to 48. You start writing to address 0x43 to indicate the first
register you will use.

Request 6 bytes from the MPU-6050 such that you can pull the information of the 6
registers 43 to 48 from the sensor.

Ca rbon aeronautics

39

 Switch on the low-
pass filter

5 	 Wire.write(0x1A);
6 	 Wire.write(0x05);
7 	 Wire.endTransmission();

Register
(Hex)

Register
(Deci-
mal)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1A 26 - - EXT_SYNC_SET[2:0] DLPF_CFG[2:0]

0 0 0 0 0 1 0 1

8 	 Wire.beginTransmission(0x68);
9 	 Wire.write(0x1B);
10 	 Wire.write(0x8);
11 	 Wire.endTransmission();

Set the sensitivity
scale factor

Register
(Hex)

Register
(Deci-
mal)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1B 27 XG_ST YG_ST ZG_ST FS_SEL[1:0] - - -

0 0 0 0 1 0 0 0

12 	 Wire.beginTransmission(0x68);
13 	 Wire.write(0x43);
14 	 Wire.endTransmission();

15 	 Wire.requestFrom(0x68,6);

Access registers stor-
ing gyro measure-
ments

40

Sensing the rotation rate

 Registers 43 and 44 contain the gyro measurements of the rotational rate around
the X axis, in LSB (Least Significant Bit). According to the documentation, they are
the result of a unsigned 16-bit measurement. This means you will declare GyroX as
an unsigned 16-bit integer int16_t. Because the measurement of the rotational rate
around the X axis is spread out over two registers with each 8 bits, you will have to
merge this information by calling Wire.read() twice.

You repeat the same code for registers 45 and 46 (rotational rate around the Y axis)
and registers 47 and 48 (rotational rate around the Z axis).

The measurements are expressed in LSB but you want this information in °/s, not
LSB. You have set the LSB sensitivity scale factor of the MPU-6050 equal to 65.5
LSB/(°/s). Therefore you just divide the values in LSB by 65.6 LSB/(°/s) to get the
measurement values in °/s. Take care of converting the 16-bit integer values of the
measurements in LSB to a floating point representation. As discussed earlier this pro-
ject, the roll rate corresponds to the rotation around the X axis, the pitch rate to the
rotation around the Y axis and the yaw rate to the rotation around the Z axis.

Set the clock speed of the I2C protocol to 400 kHz. This value comes from the
product specifications of the MPU-6050 which states that communication with all
registers of the device must be performed using I2C at 400 kHz. Use a delay of 250
milliseconds to give the MPU-6050 time to start.

To activate the MPU-6050, write to the power management register, which has the
hexadecimal number 6B. All bits in this register have to be set to zero in order for the
device to start and continue in power mode. Hence the hexadecimal address becomes
0x00.

Terminate the connection with the gyroscope and end the setup section.

In the loop part of the code, call your function and print the roll, pitch and yaw rates
on the serial monitor. Wait 50 milliseconds after each loop to be able to read the val-
ues on the serial monitor and close the loop function.

Ca rbon aeronautics

41

 16 	 int16_t GyroX=Wire.read()<<8 | Wire.read();

17 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
18 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

19 	 RateRoll=(float)GyroX/65.5;
20 	 RatePitch=(float)GyroY/65.5;
21 	 RateYaw=(float)GyroZ/65.5;
22 }

23 void setup() {
24 	 Serial.begin(57600);
25 	 pinMode(13, OUTPUT);
26 	 digitalWrite(13, HIGH);

27 	 Wire.setClock(400000);
28 	 Wire.begin();
29 	 delay(250);

30 	 Wire.beginTransmission(0x68);	
31 	 Wire.write(0x6B);
32 	 Wire.write(0x00);

33 	 Wire.endTransmission();
34 }

35 void loop() {
36 	 gyro_signals();
37 	 Serial.print("Roll rate [°/s]= ");
38 	 Serial.print(RateRoll);
39 	 Serial.print(" Pitch Rate [°/s]= ");
40 	 Serial.print(RatePitch);

Read the gyro meas-
urements around the
X axis

Convert the measure-
ment units to °/s

Set the clock speed
of I2C

Start the gyro in pow-
er mode

Call the predefined
function to read the
gyro measurements

42

Sensing the rotation rate

Upload the code to your microcontroller and open the serial monitor. You will notice
that not all values are equal to zero even though you do not move the MPU-6050:

Roll rate [°/s]= -8.70 Pitch Rate [°/s]= 0.89 Yaw Rate [°/s]= 1.95
Roll rate [°/s]= -8.69 Pitch Rate [°/s]= 0.92 Yaw Rate [°/s]= 1.97
Roll rate [°/s]= -8.66 Pitch Rate [°/s]= 0.87 Yaw Rate [°/s]= 1.94

It is normal when you do not have the same values as mentioned above. You will
learn more on how to solve this phenomenon through calibration in the next project.

Registers are places on a microcontroller (the Teensy but also the MPU-6050,
since this sensor has a microcontroller as well) that are used as:
•	 Fast storage locations to store data temporary.
•	 Locations where you can set predefined options.

You select a register by using its unique address, which is given in the documen-
tation of the microcontroller or sensor. With the I2C arduino library, you use the
function Wire.write(address) to select the register of choice.

If you select a register to set some predefined option, you once again use the Wire.
write function. You find the predefined options once again in the documentation.
Usually each register has a number of bits: you can set each bit to 0 or 1, which
corresponds to different options. Converting the resulting binary representation
to a hexadecimal representation gives you the argument for the Wire.write func-
tion.

If you select a register to read data, use the function Wire.read() after selecting
the address and reserving the necessary bytes. Let's go back to the example of the
low pass filter. Assume you want to set a low pass filter of 20 Hz instead of 10
Hz. You already know that the register address is 0x1A. The documentation of
the MPU-6050 says that you need to set the value of DLPF_CFG to 4 for the 20
Hz filter. Moreover, DLPF_CFG occupies the first three bits of the 0x1A register:

What are registers?

Testing

Ca rbon aeronautics

43

Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1A 26 - - EXT_SYNC_SET[2:0] DLPF_CFG[2:0]

The number 4 in a three bit binary representation is equal to 1 0 0: you just mul-
tiply each binary number with 2n, where n is the bit number:

Bit2 Bit1 Bit0

Binary representation 1 0 0

2n 22=4 21=2 20=1

Decimal representation 1 x 4 + 0 x 2 + 0 x 1 = 4

If you decide to not set an option for bit3 to bit7 and stick with the default value,
the full 8 bit binary and decimal representation becomes:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Binary representation 0 0 0 0 0 1 0 0

2n 27=128 26=64 25=32 24=16 23=8 22=4 21=2 20=1

Decimal representation 0 x 128 + 0 x 64 + 0 x 32 + 0 x 16 + 0 x8 + 1 x 4 + 0 x 2 + 0 x 1 = 4

The Wire function use hexadecimal representation: conversion from decimal to
hexadecimal is a little bit more complex, but you can use an online converter. 4 in
hexadecimal form is equal to 0x04.

41 	 Serial.print(" Yaw Rate [°/s]= ");
42 	 Serial.println(RateYaw);
43 	 delay(50);
44 }

44

Sensing the rotation rate

In line six of the code, you choose the option to send the measurement data
through a low-pass filter with a cut-off frequency of 10 Hz. This is a crucial line
of code, as the flight controller would not be able to stabilize the drone without it.
Why? Your gyroscope is a very sensitive sensor and its readings will be dramatically
affected by the vibrations caused by the brushless motors. The sample rate of the
gyroscope is equal to 8 kHz, which corresponds to a measurement each 1/8000 =
0.000125 seconds. The high frequency vibrations from the motors will cause small
but very fast accelerations of the quadcopter frame, which are recorded by the
gyroscope. The faster the motors spin, the larger the vibrations become; the figure
to the right shows the readings of the gyroscope with the motors switched off,
switched on and with increasing throttle. During all three cases, the quadcopter
stays stationary on the ground so the rotation rate should be equal to 0°/s. From
the figure you observe that once the motors are started, the unfiltered gyroscope
values start to fluctuate a lot. It is clear that it becomes impossible to stabilize your
quadcopter with measurement values that vary between 40 and -40°/s while the
quadcopter itself remains stationary and the real rotation rate is equal to 0 °/s.

To solve this issue, you use a low pass filter with a cut-off frequency of 10 Hz.
The filter attenuates the measurements of the sensor with a frequency of 10 Hz
and higher. This means that sensor variations that happen faster than 1/10=0.1
seconds will only have a limited impact on the final measurement values. The val-
ue of 10 Hz is chosen through trail-and-error during testing of the quadcopter;
motor vibration frequencies change with each brushless motor and damping of
the vibration depends on the whole frame. The blue line on the figure to the right
shows the filtered values; they are not affected by the vibrations caused by the
brushless motors and are hence suited for your flight controller.

A low pass filter?

Ca rbon aeronautics

45

60 °/s

-60 °/s

0 °/s

30 °/s

-30 °/s

Time [seconds]
2 4 6 8 100

start of motors

motor speed increase

unfiltered

filtered

Rotation rate measured by gyroscope

46

 You need four additional variables for calibration: the calibration values for the roll,
pitch and yaw rotation rate and a variable to keep track of the number of values you
have already recorded to use for the calibration.

Gyroscope calibration

Coding

 Project 5

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

47

Te ach your gyroscope the correct rotation rates

With this short project, you will teach your gyroscope the correct rotation rates
using a technique called calibration. You will use known rotation rates to cor-
rect the values given by your sensor.

At the end of the previous project, you saw that the rotation measurements given by
your gyroscope were not correct; even though you did not move the MPU-6050, it
still gave non-zero values. You still need to tell the instrument what its physical refer-
ence point is. Adjusting the measurements of a sensor such that they correspond with
real physical values is called calibration.

In the case of a gyroscope,
the easiest reference value that
you can use is the rotation rate
when the sensor is not moving:
this rotation rate should obvi-
ously be zero. Because the gyro
measurements always tend to
fluctuate due to small vibrations
in the environment, you take
the average of a large number
of uncorrected measurement
values when the sensor is not
moving, calculate their average
value and subtract this average
value from all future measure-
ment values. You can easily in-
tegrate these additional calibra-
tion steps in the code of the previous project. The electronic circuit stays the same.

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;

3 float RateCalibrationRoll, RateCalibrationPitch,
	 RateCalibrationYaw;
4 int RateCalibrationNumber;

5 void gyro_signals(void) {
6 	 Wire.beginTransmission(0x68);

Declare the calibra-
tion variables

3V

XDA

VCC

INT
ADO
XCL

SDA
SCL
GND

MPU-6050

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

48

Gyroscope calibration

 In the setup part of the program, create a loop in which you take 2000 measurement
values from the gyroscope. Each value is taken 1 millisecond after the other (hence
the delay(1)) which means this step takes 2000 x 1 ms= 2 seconds. You add all meas-
ured values in the Roll/Pitch/YawRateCalibration variables. During this measure-
ment step, it is important to not move your gyroscope as the goal is to determine the
measured values at a rotation rate of zero.

Take the average calibration value by dividing the sum of the 2000 measurement
values by 2000. Now you have the measurement values at which the rotation rates
are zero.

Once the setup is finished and you have determined the calibration values, subtract
them from the measured values in order to get the correct physical values. Print the
corrected values to the serial monitor.

7 	 Wire.write(0x1A);
8 	 Wire.write(0x05);
9 	 Wire.endTransmission();
10 	 Wire.beginTransmission(0x68);
11 	 Wire.write(0x1B);
12 	 Wire.write(0x08);
13 	 Wire.endTransmission();
14 	 Wire.beginTransmission(0x68);
15 	 Wire.write(0x43);
16 	 Wire.endTransmission();
17 	 Wire.requestFrom(0x68,6);
18 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
19 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
20 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

Ca rbon aeronautics

49

21 	 RateRoll=(float)GyroX/65.5;
22 	 RatePitch=(float)GyroY/65.5;
23 	 RateYaw=(float)GyroZ/65.5;
24 }
25 void setup() {
26 	 Serial.begin(57600);
27 	 pinMode(13, OUTPUT);
28 	 digitalWrite(13, HIGH);
29 	 Wire.setClock(400000);
30 	 Wire.begin();
31 	 delay(250);
32 	 Wire.beginTransmission(0x68);	
33 	 Wire.write(0x6B);
34 	 Wire.write(0x00);
35 	 Wire.endTransmission();
36 	 for (RateCalibrationNumber=0;
37 	 RateCalibrationNumber<2000;
38 	 RateCalibrationNumber ++) {
39 		 gyro_signals();
40 		 RateCalibrationRoll+=RateRoll;
41 		 RateCalibrationPitch+=RatePitch;
42 		 RateCalibrationYaw+=RateYaw;
43 		 delay(1);
44 	 }
45 	 RateCalibrationRoll/=2000;
46 	 RateCalibrationPitch/=2000;
47 	 RateCalibrationYaw/=2000;
48 }
49 void loop() {
50 	 gyro_signals();
51 	 RateRoll-=RateCalibrationRoll;
52 	 RatePitch-=RateCalibrationPitch;
53 	 RateYaw-=RateCalibrationYaw;
54 	 Serial.print("Roll rate [°/s]= ");
55 	 Serial.print(RateRoll);	
56 	 Serial.print(" Pitch Rate [°/s]= ");
57 	 Serial.print(RatePitch);
58 	 Serial.print(" Yaw Rate [°/s]= ");
59 	 Serial.println(RateYaw);
60 	 delay(50);
61 }

Perform the calibra-
tion measurements

Calculate the calibra-
tion values

Correct the measured
values

50

Gyroscope calibration

When you run the code and open the serial monitor, the roll, pitch and yaw rates
should be almost zero when you do not move the gyroscope. Remember that during
the setup phase, when no values are yet displayed on the serial monitor, you should
not move the gyroscope in order to ensure a correct calibration.
•	 Roll rate [°/s]= 0.09 Pitch Rate [°/s]= -0.10 Yaw Rate [°/s]= -0.03
•	 Roll rate [°/s]= 0.09 Pitch Rate [°/s]= -0.09 Yaw Rate [°/s]= -0.03
•	 Roll rate [°/s]= 0.04 Pitch Rate [°/s]= -0.04 Yaw Rate [°/s]= -0.03

Now try to experiment by moving the gyroscope in the directions displayed in the
figure to the right. When you for example pitch around the Y axis from 0 to 45°,
wait and go back to 0°, the pitch rate should first increase with a value proportional
on how fast you rotate, subsequently fall to around 0°/s and then go negative with a
value proportional on how fast you rotate back to 0°.

Pitch from 0 to 45° and hold at 45°:
•	 Roll rate [°/s]= 0.01 Pitch Rate [°/s]= 0.02 Yaw Rate [°/s]= 0.00
•	 Roll rate [°/s]= -0.06 Pitch Rate [°/s]= 185.71 Yaw Rate [°/s]= -0.10
•	 Roll rate [°/s]= -0.05 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.02

Pitch from 45° back to 0° and hold at 0°:
•	 Roll rate [°/s]= -0.05 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.02
•	 Roll rate [°/s]= 0.65 Pitch Rate [°/s]= -177.02 Yaw Rate [°/s]= 0.39
•	 Roll rate [°/s]= -0.03 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.00

Try the same test for the other directions to verify that your code is working properly.

Testing

The calibration needs to be performed during each start-up procedure, because
the gyroscope measurement values tend to drift over time. You cannot start the
motors yet during calibration, because their vibrations will impact the quality of
the calibration. This means that the setup procedure takes some seconds before
you can actually start the motors and begin your flight. That is why some projects
ago, you learned to signal the status of your quadcopter with the red and green
LEDs. Be mindful also to not move your quadcopter during this startup phase,
as this will affect the calibration quality and hence the smoothness of your sub-
sequent flight.

Time to fly?

Ca rbon aeronautics

51

X

y

z

X

y

z

X

y

z

z

y

X

z

X
z

y

y

X

Roll around the
X axis

Pitch around
the y axis

yaw around the
z axis

52

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

tape

4 x motor fastening screws
M2 x 4 mm3b

make sure the fastening screws do
not touch the motor windings to

avoid destroying the motor

2 x propeller fastening screws
M2 x 8 mm3f

counter-clockwise propeller
Gemfan 30183e

1 x lower quadcopter frame
CarbonAeronautics1a

motor
GEPRC GR1105 5000 kV3a

Battery
Turnigy 2S 1300 mAh4a

battery connector
XT602j

wire terminal strip2p
Electronic speed controller
HobbyKing 6A ESC with BEC3c

receiver
Flysky FS-iA6B4b

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

channel 1
(roll)

channel 2
(pitch)

channel 3
(throttle)

channel 4
(yaw)

channel 4
(yaw)

Radiotransmitter
Flysky FS-i65a

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

bind plug

receiver and bind plug
Flysky FS-iA6B4b

Take your motors for a spin
 Project 6

53

Te st your radio, motors and ESCs

You will now test your radiotransmitter, receiver and motors. Use this oppor-
tunity to calibrate each ESC and verify that all motors spins in the correct
direction.

Each radio, ESC (Electronic Speed Controller) and motor combination needs to be
tested, calibrated and verified before you start soldering all parts together. Let’s start
with the first motor:

a. Set up your test stand
1.	 Slide a propeller down the motor shaft and push it firmly on the top of the

motor. For motor 1, you need a counter-clockwise propeller: the leading edge
of this propeller must be the first to turn counter-clockwise as shown on the
picture to the left.

2.	 Fasten the propeller with two long M2 screws but be sure that the screw does not
touch the inner motor windings.

3.	 Attach the motor to the drone frame with four short M2 screws.
4.	 Attach the drone frame firmly to your desk using tape.
5.	 Connect the three black motor wires using a wire terminal strip with the black,

blue and red cables coming out of the ESC. It does not matter yet which motor
wire is connected with which ESC wire.

6.	 Connect the red and black cable of the XT60 plug using another wire strip with
the red and black power wires of the ESC. Do not connect the battery yet.

7.	 Connect the white, red and black cables with channel 3 of the receiver as visual-
ised on the picture.

b. Bind the receiver to the radiotransmitter through the bind plug
1.	 Make sure the throttle stick on the radiotransmitter is in the lowest possible

downward position.
2.	 Turn on the POWER button of your radiotransmitter while simultaneously

holding the BIND KEY button. The text RX Binding... should be displayed.
3.	 Connect the bind plug with the B/VCC pins on the receiver as shown on the

picture. Keep the connection between the receiver and ESC in place.
4.	 Connect your battery using the XT60 plug. The red LED on the receiver should

illuminate and your radiotransmitter should beep one time, indicating that bind-
ing is successful. The text SigS1 on the radiotransmitter confirms binding of the
receiver. Disconnect the battery again.

5.	 Remove the bind plug. When connecting the battery again, your radiotransmitter
should automatically connect to your receiver.

54

Take your motors for a spin

c. Test your motor and verify its turning direction
1.	 Turn on the radiotransmitter through the POWER button.
2.	 Connect your battery using the XT60 plug. You should hear one beep from your

radiotransmitter indicating that it is connected with the receiver, and subsequent-
ly two beeps from the motor to indicate that you are connected to a 2S battery
followed by two more beeps from the motor indicating that the ESC preparation
is completed.

3.	 Now slowly increase the throttle stick on your radiotransmitter to turn on the
motor and spin it at increasing speeds.

4.	 Verify that the propellers are spinning in the correct direction (motors 1+3:
counter-clockwise, motors 2+4: clockwise). If they do not spin in the correct di-
rection, remove the battery and switch two of the ESC wires going to the motor
with each other to reverse the spinning direction. Note: if you connect the black,
blue and red ESC wires in the correct order with the black motor wires as shown
in the figure, the spinning direction will always be correct.

d. Calibrate the ESC
ESC calibration always necessary to be able to control your quadcopter. Through cali-
bration, you tell the ESC what the upper and lower positions of the radiotransmitter
sticks are. Carry out the calibration with the help of the following steps:
1.	 Make sure your battery is not plugged in and the radiotransmitter is turned off.
2.	 Turn on the radiotransmitter and put the throttle stick to its uppermost position.

When connecting the battery, this will make sure the ESC goes in programming
mode.

3.	 Do not connect the battery yet but first read these instructions: after con-
necting the battery, you will first hear one beep from the radiotransmitter, next
you hear subsequent beeps from the motor. You will need to move the throttle
stick to its lowest position between the first and the fourth beep of the mo-
tor! If you are too late, do not attempt anymore to lower the throttle stick but
just disconnect the battery and try again starting from step 1.

4.	 When you understand the instructions from step 3, connect the battery, wait
until the beep from the radiotransmitter has passed and lower the throttle stick
to its lowest position between the first and the fourth beep of the motor.

5.	 After two seconds, the motor should give once again two times two beeps indi-
cating that the calibration is finished. Congratulations, you finished your motor
setup! Go once again to step c to test the throttle response.

c. Testing motors 2 to 4
Steps a, c and d need to be carried out for the other motors and ESC too. Try to
reverse the spinning directions of some motors by switching the ESC wires
and changing the propellers.

Ca rbon aeronautics

55

counter-clockwise propeller
Gemfan 30183e

switch two wires to reverse
motor direction

leading edge for counter-clockwise
propeller

clockwise propeller
Gemfan 3018R3d

leading edge for clockwise
propeller

Not only ESC calibration can be carried out by putting the ESC into program-
ming mode, but other settings can be adjusted as well. The first four beeps are
followed by four beeps with a slightly different noise, indicating a different setting.
By moving your throttle stick down during these beeps, you can choose to activate
the corresponding setting. Through this method, you can choose from multiple
settings; more information can be found in the datasheet of your ESC.

ESC programming

56

Take your motors for a spin

You control the speed of your motor through the ESC, which in turn gets its
commands from channel 3 (the throttle channel) of your receiver. The receiver
sends Pulse Width Modulated (PWM) signals to the ESC to this channel, indicat-
ing a desired throttle value between 0 and 100%. But what is a PWM signal, really?

In essence, a PWM signal is just a signal that varies between a HIGH voltage (for
example 5V) and a LOW voltage (for example 0V), or between 1 and 0 to keep
the concept simple. It is the time length during which the signal stays HIGH that
is used to transfer information. Suppose for example that a time length of 1 ms
HIGH corresponds with no throttle (0%) and a time length of 2 ms HIGH cor-
responds with full throttle (100%). The PWM frequency of most receivers and
ESCs is 4 ms (or 1/0.004=250 Hz), meaning that your chosen signal repeats itself
every 4 ms with a length that corresponds with your throttle command. This con-
cept is illustrated in the figure below and will be used later on to send commands
to your ESCs using your Teensy instead of directly from the receiver.

ESC control through PWM

1.5 ms 1 ms1.5 ms 2 ms

Throttle

100%

50%

0%

1

0

PWm signal

4 ms = 1/250 Hz

Time

Time

Full throttle

No throttle

Sample each
4 ms

Ca rbon aeronautics

57

58

1.5 ms 1 ms1.5 ms 2 ms

1.5 ms1.5 ms 2 ms 1 ms

Throttle

100%

50%

0%

1

0

1

0

PWm signal

PPm signal

4 ms = 1/250 Hz

Time

Time

Time

Full throttle

No throttle

Sample each
4 ms

Receiving commands
 Project 7

59

Pr ocess commands sent to the receiver

The commands that you give through your radio controller are transmitted
via radio waves and picked up by your receiver. The receiver then converts the
radio waves to a signal which can be read by your microcontroller. You will
now learn how to convert these signals from the receiver to variables that can
be used further in the flight code.

There are multiple methods to transfer information through digital signals, one of
which you already learned: Pulse Width Modulation (PWM). PWM is an easy method
to send information of one radiochannel from the receiver to the microcontroller.
However, receiving information from multiple radiochannels would require one sig-
nal cable to the microcontroller for each channel. This is cumbersome when you need
a lot of channels, meaning you will have to master another technique: Pulse Position
Modulation (PPM).

You already saw that you can use the width of a PWM signal to transfer information:
a signal width of 1 ms (=1000 µs) corresponds for example with no throttle (0%) and
a width of 2 ms (=2000 µs) corresponds with full throttle (100%). Using the tech-
nique of Pulse Position Modulation, you are able to transfer the same information
using the position of the signal in time, instead of the width. With PPM, the width of
each signal stays the same but its position changes each time depending on the value
of the radiochannel.

An example is displayed to the left: the first throttle value sampled from the radio-
channel is equal to 50%. Using PWM, this corresponds to a signal width of 1.5 ms
(=1500 µs). With PPM, the signal starts after 1.5 ms and has the same width each
time. When 4 ms have passed, another throttle value is sampled and the cycle begins
again.

The standard operating mode of your transmitter is PWM, not PPM! This means
you have to configure the transmitter to use PPM for this project with the following
steps:
Switch on the transmitter → hold the OK button for two seconds → choose Sys-
tem → go down and choose "RX setup" → go down and choose "Output mode"
→ choose "PPM" and hold the CANCEL button for two seconds to save your
choice.

Setting up your radiotransmitter in PPM mode

60

Receiving commands

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

jumper wires
male to female 10 cm2q

Now what about receiving information from multiple radiochannels? Consider a
two-channel example: you want to receive information about the throttle and the
pitch input. These inputs are independent of each other and require two separate
signal cables if you would use PWM. When receiving the two PWM signals in the
microcontroller, you will need two different analogRead() commands. Because they
cannot be processed simultaneously in the microcontroller, either the throttle or the
pitch values will be sampled (=read) first, after which the other signal follows directly.
Besides the need for two signal cables, this also requires more calculation time from
the microcontroller.

You are now ready to take advantage of the interesting property of PPM: because
only the position of the signals changes and not their width, sampling both the throt-
tle and pitch signals directly after each other allows you to keep track of their original
values by measuring the time from each rising signal value. This means that with one
signal cable, information from multiple signals can be ‘transported’.

3V

Receiver

G Vcc PPM/CH1

B/Vcc

CH2
CH3
CH4
CH5
CH6

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

channel 1
(roll)

channel 2
(pitch)

channel 3
(throttle)

channel 4
(yaw)

channel 4
(yaw)

Radiotransmitter
Flysky FS-i65a

Ca rbon aeronautics

61

Throttle
input

100%

50%

0%

1

0

1

0

PWm signal
throttle

PPm signal
throttle & pitch

Time

Time

Time

Sample throttle

Pitch
input

1

0
Time

1.5 ms 1.5 ms 2 ms

1.5 ms 1.5 ms 2 ms

1 ms 1.5 ms 1.75 ms

1 ms 1.5 ms 1.75 ms

Sample pitch

PWm signal
pitch

0°

-30°

30°

Using this knowledge, you can now easily built the connection from the receiver to
the Teensy. Channel 1 of the receiver has also "PPM” written on it, which means that
you can use these connectors to send PPM signals to your microcontroller. Use a
cable to connect the second connector of the receiver starting from above to pin 14
of the Teensy as displayed on the figure to the left. Connect the third and fourth con-
nector of the receiver to 5V and ground on the Teensy respectively. This will ensure
that the receiver is fed from the microprocessor. You are now ready to start coding.

62

Receiving commands

 The code for handling Pulse Position Modulation is rather complex, so you again
use a predefined library called PulsePosition.h. This library is normally already in-
stalled when you installed Teensyduino, but you can still install it at this point with
the "manage libraries tool" like you already did with Wire.h. Next you create a PPM
input object, which is in this case the receiver input. You track each pulse starting
from their rising edge.

Use two global variables for this project: one array which can store up to eight chan-
nel values (initialized as eight zeroes) and one integer that stores the number of chan-
nels transmitter by the receiver.

To be able to read the receiver data multiple times in the code, you create a function.
This function will first check how many channels are available by writing .available
behind the PPM input object; if there are channels available, it reads the value of each
channel and stores it in the array of receiver values.

Read the values sent from the receiver by calling the function defined in line 5. Print
the available number of channels fol-
lowed by the values for each channel.

Channels 1, 2, 3 and 4 correspond respec-
tively with the roll, pitch, yaw and throttle
inputs. Because the array numbering in
the Arduino IDE starts with 0 instead of
1, ReceiverValue[0] actually corresponds
with channel 1 or the value for roll.

Finally, you have to use a delay of 50
milliseconds to be able to read the values
that will be displayed on the serial mon-
itor.

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

channel 1
(roll)

channel 2
(pitch)

channel 3
(throttle)

channel 4
(yaw)

channel 4
(yaw)

Radiotransmitter
Flysky FS-i65a

Coding

Ca rbon aeronautics

63

 1 #include <PulsePosition.h>
2 PulsePositionInput ReceiverInput(RISING);

3 float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
4 int ChannelNumber=0;

5 void read_receiver(void){
6 	 ChannelNumber = ReceiverInput.available();
7 	 if (ChannelNumber > 0) {
8 	 for (int i=1; i<=ChannelNumber;i++){
9 		 ReceiverValue[i-1]=ReceiverInput.read(i);
10 		 }
11 	 }
12 }
13 void setup() {
14 	 Serial.begin(57600);
15 	 pinMode(13, OUTPUT);
16 	 digitalWrite(13, HIGH);
17 	 ReceiverInput.begin(14);
18 }
19 void loop() {
20 	 read_receiver();
21 	 Serial.print("Number of channels: ");
22 	 Serial.print(ChannelNumber);
23 	 Serial.print(" Roll [µs]: ");
24 	 Serial.print(ReceiverValue[0]);
25 	 Serial.print(" Pitch [µs]: ");
26 	 Serial.print(ReceiverValue[1]);
27 	 Serial.print(" Throttle [µs]: ");
28 	 Serial.print(ReceiverValue[2]);
29 	 Serial.print(" Yaw [µs]: ");
30 	 Serial.println(ReceiverValue[3]);
31 	 delay(50);
32 }

Use the PulsePosi-
tion library

Declare the variables
to store channel info

Define a function to
read the receiver data

Read and display the
PPM information on
the serial monitor

64

Receiving commands

Now you are ready to read the data send from the transmitter:
•	 Connect the Teensy to your computer through the USB cable;
•	 Upload to code to your Teensy and open the serial monitor.

If the radio transmitter is not yet switched on, the LED on the receiver should blink.
The values displayed on the serial monitor will all be zero, except for the number of
channels, which should be equal to -1. This is the default value when no channels are
discovered.

When you switch on your radio transmitter, the LED on the receiver should stop
blinking and the transmitter commands should be displayed on the serial monitor in
microseconds [µs]. Since the roll, pitch and yaw sticks are always centred, the values
you record will be around 1500 µs for the corresponding channels.

Now change the positions of the roll, pitch, throttle and yaw sticks and verify that
they vary between 1000 and 2000 µs. You have now successfully made a radio-con-
nection between your transmitter, the receiver and microcontroller!

Testing

For the next projects, the receiver needs to stay in PPM mode. However, if you
want to redo the previous project in which you controlled one motor and one ESC
through PWM without a microcontroller in between, do not forget to switch your
radiotransmitter back to its default PWM setting. This can be carried out using the
same procedure as switching to PPM mode, which you learned at the start of this
project.

Switching your radiotransmitter back to PWM mode

Ca rbon aeronautics

65

 11:26:52.994 -> Number of channels: -1 Roll [µs]: 0.00 Pitch [µs]: 0.00 ...
11:26:53.041 -> Number of channels: -1 Roll [µs]: 0.00 Pitch [µs]: 0.00 ...

11:26:53.089 -> Number of channels: 8 Roll [µs]: 1499.97 Pitch [µs]: 1498.99 ...
11:26:53.135 -> Number of channels: 8 Roll [µs]: 1498.96 Pitch [µs]: 1500.00 ...
11:26:53.181 -> Number of channels: 8 Roll [µs]: 1498.96 Pitch [µs]: 1496.99 ...

66

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

jumper wires
male to male 10 cm2r

jumper wires
male to female 10 cm2q

Controlling your motors
 Project 8

67

Us e PPM to control motor speed

As the name implies, an electronic speed controller is able to control the speed
of your brushless motor. In this project, you will learn how to send commands
to this controller and thus the motor through your microcontroller.

The electronic speed controller (ESC) is like your Teensy a microcontroller, but it
has only one purpose: adapting the voltage going to the motor in such a way that the
motor changes its speed. The speed at which a brushless motor turns depends on the
supplied voltage, according to the kV constant. A motor rated at 4000 kV turns at
4000 rpm/V. A supplied voltage of 3V gives a turning rate of 4000 rpm/V x 3V=12
000 rpm. If you would directly connect your battery to the brushless motor, it would
turn at a constant speed, as the voltage supplied by the battery does not change.

So how does the ESC adapts the voltage supplied to the brushless motor? By closing
and opening the connection between the battery and the brushless motor, you can
change the average voltage supplied to the motor. The longer the connection stays
closed, the higher the supplied average voltage will be (with the maximum being the
voltage supplied by the battery if the connection remains closed the whole time). You
can control this average voltage through pulse-width modulation. This means that
you need to sent a PWM signal from the Teensy to the electronic speed controller in
order to control the brushless motor.

You will now control the first brushless motor through the physical circuit displayed
on the left;
•	 Use some tape to make sure that the motors do not lift off.
•	 Re-use the same circuit with whom you already connected the receiver when

testing the motors.
•	 Connect the three wires coming out of the other side of the ESC to the wires of

the brushless motors using the wire terminal strip.
•	 Connect the power output of your ESC with the XT60 cables using another wire

terminal strip. Be careful not to switch the polarity of the cables!
•	 Connect the white signal cable from the ESC to pin 1 of the Teensy.
•	 Connect the 5V and 0V of the ESC to 5V and GND of the Teensy respectively.

Besides the power circuit going to the motor, your ESC has a second circuit that
stays at 5V all the time and which enables you to power both the motors and your
electronics with the same battery.

68

Controlling your motors

Only connect the battery once you uploaded the code to the Teensy and disconnect-
ed your USB cable from your computer (as a precautionary measure if something is
wrong with the wiring).

Make sure you use motor 1 (turning counter-clockwise) for this project. If you notice
during testing that it spins clockwise instead of counter-clockwise, just switch two
wires coming out of the motor with each other using the wire terminal strips.

In the code, you will control the brushless motor using a PWM signal sent from the
Teensy to the ESC but you will use a PPM signal coming from the receiver to the
Teensy. The throttle (so channel 3 or ReceiverValue[2] in Arduino language) will be
used to set the speed of the brushless motor. The PWM values that you send to the
ESC are the same as the PWM values that you get from the receiver: 1000 µs gives no
throttle (motor does not turn), while 2000 µs gives full throttle.

Define the value for the throttle as a floating point number. The future value for this
variable lies between 1000 and 2000 µs.

You will send the PWM signals from pin 1 of your Teensy to motor 1. Configuring
pin 1 to send PWM signals can be done with the function analogWriteFrequency(pin
number, PWM frequency). The PWM frequency used in most ESCs is equal to 250
Hz (=1/250=0.004 s=4000µs). This value can be found in the manual of your ESC.

Coding

Ca rbon aeronautics

69

Front

3V

XT60 plug

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

5V ESC 1
0V

2S LIPO Battery

Receiver

G Vcc PPM/CH1

B/Vcc

CH2
CH3
CH4
CH5
CH6

motor 1
counter-clockwise

1 #include <PulsePosition.h>
2 PulsePositionInput ReceiverInput(RISING);
3 float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
4 int ChannelNumber=0;

5 float InputThrottle;

6 void read_receiver(void){
7 	 ChannelNumber = ReceiverInput.available();
8 	 if (ChannelNumber > 0) {
9 	 for (int i=1; i<=ChannelNumber;i++){
10 		 ReceiverValue[i-1]=ReceiverInput.read(i);
11 		 }
12 	 }
13 }
14 void setup() {
15 	 Serial.begin(57600);
16 	 pinMode(13, OUTPUT);
17 	 digitalWrite(13, HIGH);
18 	 ReceiverInput.begin(14);

19 	 analogWriteFrequency(1, 250);

Define the throttle
variable

Send PWM signals
from your Teensy

70

Controlling your motors

 By default, the resolution of PWM signals sent by the Teensy is 8 bit. This means that
the signal ranges between 0 and 28-1=255. For our application, this would give a too
coarse control, so you will change from an 8 bit to a 12 bit resolution; the PWM signal
going from the Teensy to the ESC ranges between 0 and 212-1=4095. For a frequency
of 250 Hz=4000 µs, 0 then corresponds with 0 µs and 4095 corresponds with 4000
µs. When you want to sent a PWM command in µs to the ESC, do not forget to mul-
tiply that value with 4095/4000=1.024.

SAFETY RELATED LINES: in order to avoid a motor start when you did not yet
touch the radiotransmitter (for example when the throttle stick was not in the lowest
position after your last flight), you add some additional lines before finishing the setup
process. If the values sent from channel 3 (ReceiverValue[2] = the throttle channel)
are bigger than 1050 µs or lower than 1020 µs, the code will not continue. When you
move the throttle stick around its lowest value range (between 0.2 and 0.5%), the code
continues and you can start the motor.

You already know that the throttle corresponds to channel 3 or ReceiverValue[2]
from the radiotransmitter. The value of the throttle ranges from 1000 (no throttle) to
2000 µs (full throttle). You send this value to pin 1 and subsequently also the ESC and
motor 1 through the analogWrite function. Remember to convert the throttle values
in µs to their 12 bit equivalent by multiplying them with 1.024.

Testing

Once you uploaded the code successfully, disconnect the USB from the Teensy and
connect the battery. Normally the LEDs on both the Teensy and the receiver should
be illuminated as they receive power from the battery. Next, switch on your radio-
transmitter (remember it should still be in PPM mode, not PWM); you should hear
two times two beeps from your motor. Now slowly increase the throttle on your
radiotransmitter to start the motor. Verify that the motor spins in the correct (coun-
ter-clockwise) direction.

Troubleshooting when the motor does not start:
•	 Verify that your receiver and Teensy get power by looking at their LEDs.
•	 Verify that your radiotransmitter is connected with your receiver (the LED on

the receiver should not blink but should stay illuminated).
•	 Verify that the setting of your radiotransmitter is correct (in PPM mode).
•	 Verify the connections to the motor.

Ca rbon aeronautics

71

 20 	 analogWriteResolution(12);
21 	 delay(250);

22 	 while (ReceiverValue[2] < 1020 ||
		 ReceiverValue[2] > 1050) {
23 			 read_receiver();
24 			 delay(4);
25 		 }
26 }

27 void loop() {
28 	 read_receiver();
29 	 InputThrottle=ReceiverValue[2];
30 	 analogWrite(1,1.024*InputThrottle);
31 }

Set the PWM fre-
quency

Avoid uncontrolled
motor start

Send the throttle in-
put to the motor.

72

Battery management

High-side
switch

1 7
2
3

4
5

6

tab

Diode

Zener
diode

on

off

Slide sw
itch

3V

2S LIPO Battery

XT60 plug

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

510Ω

510Ω

2 kΩ

5V ESC 1
0V

 Project 9

73

Mo nitor and protect your battery

Batteries store energy - a lot of energy. When this amount of energy is acci-
dentally released in a short period of time, due to for example a short circuit,
it can cause significant damage. Monitoring and closely protecting the battery
is therefore very important.

A first obvious feature for each battery management system is a switch: you want to
be able to turn off the power from the battery towards your motors at all time, even
during full throttle. A standard (breadboard) slide switch can only switch off currents
less than 1 A at 12 V; these type of switches are insufficient for our application: at full
throttle, the current drawn by all four motors can easily surpass 20 A.

Additionally, you want some form of battery protection as well. When the battery
is accidentally short-circuited, all the energy in the battery will be released nearly in-
stantaneous. This causes the point with the highest resistance in the short-circuit to
heat up and start burning; this can be a cable, a trace on the printed circuit board or
the battery itself. The burning of the cable or the trace will cause the short circuit to
disappear because the conductive band is broken, at the cost of destroying the print-
ed circuit board. But when the battery itself has the highest resistance in the short
circuit, it can burn and explode causing further damage.

A third feature is some form of current measurement to be able to monitor the
battery level more closely - more about this will be explained further in this project.
For your quadcopter application, you use a special transistor that integrates all of the
above features: a high side power switch. This type of transistor is placed between
the positive side of the battery and the load (hence the name high side). An Infineon
BTS50055-1TMB or BTS50080-1TMB transistor will be used for this application
because these switches are capable of conducting rather high load currents of respec-
tively 70 and 37.5 A.

To be able to conduct these high loads, you need to use the tab of the high side
switch, then connect output pins 1, 2, 6 and 7 with each other before making the
connection with the load (which will be the ESCs in this case). You will connect pin
3 with a slide switch that is in turn connected with the high-current GND line; the
transistor is switched on when a current flows between pin 3 and the GND. When the
transistor is switched off, the voltage between pin 3 and the GND almost equals the
battery voltage (maximally 8.4V for a 2S battery). The transistor has the capability to
switch off the load current at full throttle, so you can instantaneously switch off your
quadcopter at full power using the slide switch.

74

Battery management

A downside of this high load current is the very high short circuit current limit: up to
180 A. This means that a short circuit in your printed circuit board can nonetheless
cause serious damage!

Monitoring the current

You already learned that measuring the voltage of your battery enables you to predict
its remaining lifetime. Whenever you put the battery under heavy load, which will be
the case when you throttle up the motors, the voltage will drop significantly without
a real decrease in battery level, reducing your capability to accurately monitor the
remaining battery level during flight. The only way to overcome this problem is to
directly measure the current drawn from the battery.

A special feature of your Infineon transistor is its current sensing capability: a current
that is smaller but proportional to the load current flows from output pin 5 of the
transistor. According the datasheet of the transistor, the current sense ratio is typi-
cally equal to 14 000. This means that a load current of 14 A through the transistor
corresponds with a current of 1 mA from pin 5. With your Teensy, you cannot meas-
ure a current, only voltages. That is why you use a resistor to convert the current to
a measurable voltage. Using Ohm’s law, you know that a current of 1 mA through a
resistor of 510 Ω will cause a voltage drop over the resistor of 1 mA x 510 Ω = 510
mV or 0.51 V. In other words, a current of 14 A through the transistor corresponds
to a voltage drop over the resistor of 0.1 V. Assuming this remains proportional over
the full measuring range gives a voltage to current ratio of 0.51 V/14 A or 0.036 V/A.

You will connect the 510 Ω resistor to pin 21 of your Teensy for voltage measure-
ment. Before wiring everything up, you also need to consider the effect of a short
circuit in the high current part of your current sensing circuit. In the event of a short
circuit, the load current can easily exceed 180 A for a couple of milliseconds before
the transistor switches off. Such a high current will lead to a high voltage over our
resistor: 180 A x 0.036 V/A = 6.5 V. Knowing that the input pins of our Teensy are
only 3.3V-tolerant, a voltage this high will probably destroy the microcontroller. To
solve this issue, you will use a Zener diode. A Zener is a special diode that does not
conduct any current below a certain fixed voltage, the "Zener voltage". For this pro-
ject, you use a diode that has a Zener voltage of 2.4 V and needs a minimum current
of 5 mA to start conducting at the right time. Adding the Zener diode in parallel to
the resistor will cause the voltage over your Teensy to never exceed 2.4 V, protecting
the microcontroller in the event of a short circuit on the load side. Of course the
opposite can still happen: if the battery is connected in reverse and you have a short
circuit, the Zener diode will not protect the Teensy because there is no "negative”
Zener voltage limit. That’s why you add a normal diode as well to prevent any nega-
tive voltage occurring over the Teensy.

Ca rbon aeronautics

75

Power distribution
trace short circuitVTX

trace

The installation of high side load switch does not prevent all types of short circuits
and hence damage to your battery and/or quadcopter can still occur. Therefore,
always make sure that you do not have any shorts in your circuit using your multim-
eter before connecting the battery. One example of a short circuit that the switch
does not protect against is visualized in the figure below. Your quadcopter comes
with a connection for a video transmitter (VTX), in case you want to add an FPV
camera. This VTX connection is directly connected to the positive and negative
power lines but it has a much smaller trace width than the power lines. The VTX
traces are therefore not suited to accommodate high currents, and certainly not a
short circuit current that can exceed 180 A before it is shut off by the high side load
switch. This means that if you would try to create a short circuit by connecting the
VTX Vbat and GND lines to each other and subsequently connect the battery, the
traces on your power distribution board will start to burn and be destroyed.

Beware - you are not protected from all type of short circuits!

0

1

2

3

Voltage at Teensy pin 21 [V]

Current through power switch [A]
80600 20 40

zener voltage
2.4 V

66 A

0.036 V/A with
510 Ω resistor

76

Battery management

It is not possible to test the current measurement on a solderless breadboard, since
it requires currents too high for the traces on the breadboard. Instead, this part will
explain the necessary coding and reasoning for accurate battery monitoring. All lines
will be directly implemented in the flight controller and can be tested once the quad-
copter is fully constructed.

The variables necessary for accurately monitoring the battery capacity - besides the
voltage and current - are the remaining battery capacity, the battery capacity at start,
the current that you have consumed during flight and the default battery capacity.
All battery capacity variables have the unit mAh; a battery of 1300 mAh can sustain
a current of 1 A or 1000 mA during a period of 1300 mAh/1000 mA = 1.3 hours.
The default battery used in this project has a capacity of 1300 mAh; initialize the
BatteryDefault variable with this number.

The current can be read from the voltage of pin 21 using the function analogRead.
Remember that the default resolution for analogRead is equal to 10 bit, so a voltage
of 0 V gives you the digital number 0 and the maximal input voltage of 3.3 V gives
the digital number 210-1=1023. Moreover you have built a system for which you have
a voltage of 0.036 V for each Ampere flowing through the power switch. This means
that de current flowing through the power switch is equal to the measured digital
number at pin 21 divided by ((1023 / 3.3 V) x 0.036 V/A). Or equivalently, multiply-
ing the measured digital number with 0.089.

When connecting the battery, you first need an indication of the actual battery capaci-
ty before you can calculate its evolution during flight. Luckily, the measurement of the
battery voltage using our voltage divider and pin 15 is highly accurate if the motors
are not started yet (and thus no voltage drop is present). In the setup phase, you hence
determine the battery level using pin 15. There is only a (quasi) linear relation of the
battery voltage to its capacity between 8.3 V and 7.5 V. If the voltage is higher than
8.3 V, you considered it to be at 100 % capacity (=1300 mAh) and you turn off the
red LED. If the voltage lies below 7.5 V, you consider the battery to be at a capacity
of 30% or less and the red LED stays illuminated. The following linear approxima-
tion between voltage and capacity is valid for the 1300 mAh - 2S battery:

This approximation can be extracted experimentally with a sophisticated battery
charger that indicates both the charged current and the actual voltage and subse-
quently plot it in a graph, like the one on top of the next page.

Remaining capacity [%] = 82 · Voltage − 580

CurrentConsumed(k)[mAh] = CurrentMeasured(k)[A]·
1000mA

A
3600 s

h
·0.004 s+CurrentConsumed(k−1)[mAh]

Combining current and voltage for battery monitoring

Ca rbon aeronautics

77

 1 float Voltage, Current, BatteryRemaining, BatteryAtStart;
2 float CurrentConsumed=0;
3 float BatteryDefault=1300;

4 void battery_voltage(void) {
5 	 Voltage=(float)analogRead(15)/62;
6 	 Current=(float)analogRead(21)*0.089;
7 }

8 void setup() {
9 	 digitalWrite(5, HIGH);
10 	 battery_voltage();
11 	 if (Voltage > 8.3) { digitalWrite(5, LOW);
12 		 BatteryAtStart=BatteryDefault; }
13 	 else if (Voltage < 7.5) {
14 		 BatteryAtStart=30/100*BatteryDefault ;}
15 	 else { digitalWrite(5, LOW);
16 		 BatteryAtStart=(82*Voltage-580)/100*
17 		 BatteryDefault; }
18 }

Define the battery
monitoring variables

Measure the voltage
and current of the
circuit

Determine the bat-
tery capacity prior to
flight

Fully charged: 8.4 V

Low battery: 7.4 V

8 V

7 V
Critically low: 7.2 V

80% 60% 40% 20% 0% 100%

Battery voltage

Remaining battery energy
5%

Remaining battery = 82 . Voltage - 580

30%

8.3 V

78

Battery management

 During flight, you use the measured current to follow the evolution of your battery
capacity. Since each iteration k in our main loop takes 0.004 seconds, the consumed
current can be calculated with the formula:

The remaining capacity is subsequently calculated by subtracting the consumed cur-
rent from the battery capacity at startup. When the battery capacity falls below 30%,
illuminate the red LED.

Remaining capacity [%] = 82 · Voltage − 580

CurrentConsumed(k)[mAh] = CurrentMeasured(k)[A]·
1000mA

A
3600 s

h
·0.004 s+CurrentConsumed(k−1)[mAh]

The high-side power switch is one of the more exotic components in this project and
can be hard to come by. Most quadcopters made by hobbyist do not contain such a
feature. Although it is not recommended, you can decide to exclude the power switch
by shorting the battery tab on the printed circuit board, as illustrated on the figure
to the right. Be aware that this removes any short-circuit protection and any control
over switching on and off your quadcopter, other than physically connecting or re-
moving the battery via the XT60 plug. The slide switch, (Zener) diodes and 510 Ω
resistor are not necessary anymore because you will not have any current sensing ca-
pabilities. This means that a voltage measurement is the only way of monitoring the
remaining battery energy. The code for this basic method is displayed below; once
the voltage drops below 7.5 V the red LED is illuminated. Remember that when
voltage drops during for example a sudden throttle increase, the measured voltage
does not give an accurate reflection of the remaining battery energy.

1 float Voltage;
2 void battery_voltage(void) {
3 	 Voltage=(float)analogRead(15)/62;
4 }
5 void setup() {
6 	 if (Voltage > 7.5) digitalWrite(5, LOW);
7 }
8 void loop() {
9 	 battery_voltage();
10 	 if (Voltage < 7.5) digitalWrite(5, HIGH);
11 	 else digitalWrite(5, LOW);
12 }

Operating the quadcopter without power switch

Ca rbon aeronautics

79

 19 void loop() {
20 	 battery_voltage();
21 	 CurrentConsumed=Current*1000*0.004/3600+
22 			 CurrentConsumed;
23 	 BatteryRemaining=(BatteryAtStart-
24 		 CurrentConsumed)/BatteryDefault*100;
25 	 if (BatteryRemaining<=30) digitalWrite(5, HIGH);
26 	 else digitalWrite(5, LOW);
27 }

Calculate the battery
capacity during flight

1
2

73
4
5

6

3V

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

510Ω

2 kΩ

shorting the power switch

XT60 plug

5V ESC 1
0V

2S LIPO Battery

80

Assembling your quadcopter
Fr

on
t

Hi
gh

-s
id

e
sw

itc
h

1
7

23 45 6ta
b

Di
od

e

Ze
ne

r
di

od
e

on of
f

Slide switch

3V

2S
 L

IP
O

Ba
tte

ry

XT
60

 p
lu

g

10
0Ω

10
0Ω

Gr
ee

n
LE

D
Re

d
LE

D

51
0Ω

2
kΩ

Re
ce

ive
r

G
Vc

c
PP

M
/C

H1

B/
Vc

c

CH
2

CH
3

CH
4

CH
5

CH
6

5V
ES

C
4

BM
P-

28
0

SD
C

CS
B

SD
A

SC
L

GN
D

VC
C

XD
A

VC
C

IN
T

AD
O

XC
L

SD
A

SC
L

GN
D

M
PU

-6
05

0

5V14 15 16 17 18 19 20 21 22

0 G11 10 9 8 7 6 5 4 3 2

Te
en

sy

3V

51
0Ω

0V 5V
ES

C
1

0V5V
ES

C
2

0V5V
ES

C
3

0V

m
ot

or
 1

co
un

te
r-c

lo
ck

w
ise

m
ot

or
 4

clo

ck
w

ise

m
ot

or
 3

co

un
te

r-c
lo

ck
w

ise
m

ot
or

 2

clo
ck

w
ise

 Project 10

81

Bu ild your quadcopter

Now that you understand and tested all electronic components of your quad-
copter, it is finally time to put it all together! The lower quadcopter frame
will house all power electronics and the motors, while the upper frame mainly
holds the control electronics and the power distribution.

The upper part of the quadcopter frame houses all the connections necessary for
powering and controlling your quadcopter. In essence, it is a so called Printed Circuit
Board or PCB: this is nothing more than alternating layers of insulating material and
conductive copper. Inside your PCB, all necessary connections between the compo-
nents are provided in the form of conductive traces. This means that most wires in
the schematic of your quadcopter electronics on the left are already integrated in the
upper quadcopter frame. The upper and bottom layer of your upper frame PCB are
visualized below, together with the traces which are coloured similarly to the wires
in the schematic. Notice that the power traces are much wider than the signal traces.

82

Assembling your quadcopter

1 x lower quadcopter frame
CarbonAeronautics1a

4 x frame spacers
M3 x 30 mm1c

4 x spacer fastening screws
M3 x 6 mm1d

4 x electronic speed controllers
HobbyKing 6A ESC with BEC3c

be carefull to position the EsC and
its wires correctly

the black wires are always positioned
towards the inside of the frame and

the red wires towards the outside

the motor wires should not cross each other
to ensure a correct motor rotation

4 x motors
GEPRC GR1105 5000 kV3a

16 x motor fastening screws
M2 x 4 mm3b

8 x propeller fastening screws
M2 x 8 mm3fclockwise propeller

Gemfan 3018R3d

counter-clockwise propeller
Gemfan 30183e

clockwise propeller
Gemfan 3018R3d

counter-clockwise propeller
Gemfan 30183e

make sure the fastening screws do not touch the
motor windings to avoid destroying the motor

ESC and spacer assembly

Motor and propeller assembly

You are now ready to start the quadcopter assembly. During the first two steps, you
position the four ESC and motors on the lower quadcopter frame and solder each of
the three wires coming out of the ESC and motors to the frame. To ensure a correct
rotation direction of the motors, make sure that the cables do not cross each other.
The black and red wires coming out of the ESC should match the colours indicated
on the frame itself.

Ca rbon aeronautics

83

UPdATE

LEd

PPm/CH1CH2CH3CH4CH5
CH6B/VCC

1i

5 x cable ties
16 mm1g

battery
Turnigy 2S 1300 mAh4a

battery strap
210 mm1e

receiver
Flysky FS-iA6B4b

receiver jumper wires
female to female 10 cm2k

cut a hole in the lower & upper part of the cable
protector to allow the cables to pass through

cable protector
(cut in four pieces of 30 mm)

Battery and receiver assembly

Use the lower frame to hold the receiver and the actual battery. Attach the receiver
with a cable tie to the frame and provide a future connection for its signal and power
to the microcontroller using a jumper wire. Attach the battery to the frame with a
battery strap, making future battery replacement easy. Protect the cables coming from
the ESCs using cable protectors, which you cut in pieces such that they cover the
full length of the frame spacers. Cut some additional holes to allow the cables to go
the ESC itself and to the upper frame. Once finished, start mounting the necessary
headers and switches on the upper quadcopter frame.

Headers and switches assembly

male headers
2.54 mm - right angle2n

female headers
2.54 mm2m

power switch
BTS50080-1TMB2t

upper quadcopter frame
CarbonAeronautics1b

slide switch
OS102011MS2QN1C2u

84

Assembling your quadcopter

battery connector
XT602j

diodes
Zener diode (1x) + Diode (1x)2l

resistors
100 Ω (2x) +
510 Ω (2x) + 2000 Ω (1x)

2i

orientation sensor
GY-521 MPU-60502c

4 x sensor fastening screws
M3 x 20mm2e
12 x sensor full nuts
M32g
4 x sensor locknuts
M32f

barometer
GY-BMP2802d

microcontroller
Teensy 4.02a

green and red LEd2h

Electronics assembly

Now solder the additional electronics to the upper quadcopter frame: the resistors,
diodes and battery connector. Assemble the orientation sensor and the barometer to
the frame using fastening screws, full nuts and locknuts. The use of the barometer will
be explained further in the project. Slide the microcontroller in the headers to finalize
the upper frame. To connect the upper to the lower frame, first solder the ESC power
cables to the upper frame then connect both frames using fastening screws to each
other with the spacers.

UPdATE

LEd

PPm/CH1CH2CH3CH4CH5
CH6B/VCC

8 x spacer fastening screws
M3 x 6 mm1d

2 x cable ties
16 mm1g

strip the EsC cables to fit through the upper
PCB holes and solder them from above

4 x standoff spacer (optional)
M3 x 20 mm1h

Upper and lower frame assembly

Ca rbon aeronautics

85

Now that construction is finished, it is time to check the correct wiring and solder-
ing of all components. Do this before connecting the battery. While this may
sound boring, it is an essential step after assembling any complex product and will
make troubleshooting in the next phases easier. A good test procedure would be to:
•	 Verify all connections using a multimeter and the schematic given at the be-

ginning of this project.
•	 Verify that there are no short circuits between wires/pins that should not be

connected with each other, also through the use of your multimeter. Pay extra
attention to the absence of shorts between the red and black wire of the XT60
battery connector.

•	 Next, apply power to the prototype board using the USB port of the Teensy.
Install the previous Arduino programs that you developed to illuminate the
LEDs, read the gyro data and read the receiver data. Verify that they function
correctly; this ensures a thorough check of your correct soldering and wiring.

When you are sure that there are no short circuits, connect the battery to continue
testing:
•	 Measure the battery voltage by installing the correct Arduino program.

In the last step, you will test the motors and their correct rotation direction. Con-
nect one ESC with channel 3 of the receiver, just like you did previously. Make
sure you configure your radiotransmitter back to PWM instead of PPM. Turn on
the radiotransmitter through the POWER button. Connect your battery with the
XT60 plug. You should once again hear one beep from your radiotransmitter which
indicates that it is connected with the receiver, and subsequently four beeps from
the motor. Now slowly increase the throttle stick and verify that the motor turns in
the required direction. Carry out the same test for all motors.

When (one of) the motors do not work, verify that:
•	 The battery is connected;
•	 The red LED on the receiver is illuminated continuously (a blinking led in-

dicates that the transmitter is not connected, no led means no power to the
ESC);

•	 The ESC is connected to channel 3 of the receiver;
•	 The transmitter setting is PWM instead of PPM.

If none of the above verifications solves the problem, verify that you soldered all
respective wires correctly and resolder where necessary.

Testing

86

When you want to change the direction of your drone things become more tricky;
assume you want the drone to stay at the same altitude but move sideways to the
right (= roll around the X axis). The throttle input will be equal to 50% for all motors
as you do not change altitude, but in order to initiate this sidewards movement the
power output of motors 3 and 4 (=the left motors) should be higher than the power
output of motors 1 and 2 (=the right motors). This means that you need an additional
roll input, which will lower the power of motors 1 and 2 with for example 25% and
at the same time increase the power of motors 3 and 4 with 25%. The same reasoning
holds for the pitch input and the yaw input, but with other motor combinations as
displayed in the figure on the right.

A nice property of this definition of throttle, roll, pitch and yaw input is that you
can write all movements as a linear combination of each other, for all motor outputs:

Quadcopter dynamics

X

z
y

X

y

z

X

y

z

X

y

z

z

y X

X
z

y

X

y

z

X

y

z

X

y

z X

y

z

output motor 1 = 25% power = 50% - 25%
output motor 2 = 75% power = 50% + 25%
output motor 3 = 25% power = 50% - 25%
output motor 4 = 75% power = 50% + 25%

Pitch around
the y axis

Roll around the
X axis

yaw around the
z axis

Increase altitude
along the z axis

output motor 1 = 25% power = 50% - 25%
output motor 2 = 75% power = 50% + 25%
output motor 3 = 75% power = 50% + 25%
output motor 4 = 25% power = 50% - 25%

pitch
input

throttle
input

output motor 1 = 25% power = 50% - 25%
output motor 2 = 25% power = 50% - 25%
output motor 3 = 75% power = 50% + 25%
output motor 4 = 75% power = 50% + 25%

roll
input

throttle
input

yaw
input

throttle
input

output motor 1 = 75% power = 75%
output motor 2 = 75% power = 75%
output motor 3 = 75% power = 75%
output motor 4 = 75% power = 75%

throttle
input

output motor 1 = 50% power = 50%
output motor 2 = 50% power = 50%
output motor 3 = 50% power = 50%
output motor 4 = 50% power = 50%

throttle
input

Hover in
same position

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 4

motor 3

motor 2

motor 2

motor 1

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

 Project 11

output motor 1 = throttle input - roll input - pitch input - yaw input
output motor 2 = throttle input - roll input + pitch input + yaw input
output motor 3 = throttle input + roll input + pitch input - yaw input
output motor 4 = throttle input + roll input - pitch input + yaw input

87

Le arn how your quadcopter travels in space

With all ingredients for a control system available and tested, it is time to learn
how a quadcopter moves through space with your inputs given to the radio-
transmitter.

You already know how to control the motors with your Teensy, how to measure the
rotation rate with the gyroscope and how to receive and read commands with your
radiotransmitter and receiver. These are all essential ingredients, but you still need to
learn how they have to work together to be able to fly.

The first thing you need to understand is how you can use the four motors of your
quadcopter to steer it in the directions you want. You do this by changing the power
and thus rotation speed of the motors. Let's assume a perfect world for this project:
no wind disturbances, instantaneous motor reaction and a uniform weight distribu-
tion. To let your quadcopter hover in the same position, each motor will have to work
at around 50% of its power as shown on the left figure. To increase the altitude at
which your drone is flying, you can simply increase the power of all four motors to
for example 75%. To keep the quadcopter level, it is important that all motors should
increase their power at the same time in order to keep the quadcopter level. The
command to keep all motors at the same power level will be called the throttle input.

X

z
y

X

y

z

X

y

z

X

y

z

z

y X

X
z

y

X

y

z

X

y

z

X

y

z X

y

z

output motor 1 = 25% power = 50% - 25%
output motor 2 = 75% power = 50% + 25%
output motor 3 = 25% power = 50% - 25%
output motor 4 = 75% power = 50% + 25%

Pitch around
the y axis

Roll around the
X axis

yaw around the
z axis

Increase altitude
along the z axis

output motor 1 = 25% power = 50% - 25%
output motor 2 = 75% power = 50% + 25%
output motor 3 = 75% power = 50% + 25%
output motor 4 = 25% power = 50% - 25%

pitch
input

throttle
input

output motor 1 = 25% power = 50% - 25%
output motor 2 = 25% power = 50% - 25%
output motor 3 = 75% power = 50% + 25%
output motor 4 = 75% power = 50% + 25%

roll
input

throttle
input

yaw
input

throttle
input

output motor 1 = 75% power = 75%
output motor 2 = 75% power = 75%
output motor 3 = 75% power = 75%
output motor 4 = 75% power = 75%

throttle
input

output motor 1 = 50% power = 50%
output motor 2 = 50% power = 50%
output motor 3 = 50% power = 50%
output motor 4 = 50% power = 50%

throttle
input

Hover in
same position

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

motor 1

motor 4

motor 3

motor 2

motor 2

motor 1

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

88

Quadcopter dynamics

In reality you do not send a power percentage to the motor but rather a PWM value
between 1000 and 2000 µs, where 1000 µs corresponds with 0% motor output and
2000 µs with 100% motor output. In your code, the throttle input will vary between
1000 and 1800 µs to leave 20% motor output available at all times for rolling, pitching
and yawing.

The receiver sends commands to the microcontroller that vary between 1000 and
2000 µs according to the position of the radiotransmitter stick. For the throttle stick,
this corresponds nicely to 0 and 100% power. For the roll, pitch and yaw sticks, whose
default position is physically in the middle of the radiotransmitter at 1500 µs, you
need to transform the PWM values to physical rotation rates. You can choose your
maximal and minimal desired rotation rate; the higher the values the more agile your
drone will be, but also the harder to control. For now, take the limit values of 75 °/s
and -75 °/s. The transformation from the PWM values to the rotational rates is then
visualised in the figure below together with the corresponding linear correlation.

From receiver commands to desired rotation rates

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

channel 1
(roll)

channel 2
(pitch)

channel 3
(throttle)

channel 4
(yaw)

channel 4
(yaw)

Radiotransmitter
Flysky FS-i65a

0 °/s

75 °/s

-75 °/s

ReceiverValue[0] (=channel 1)
ReceiverValue[1] (=channel 2)
ReceiverValue[3] (=channel 4)

1000 µs 1500 µs

desiredRateRoll
desiredRatePitch
desiredRateyaw

2000 µs

desiredRate = 0.15 (ReceiverValue - 1500)

Ca rbon aeronautics

89

You might think a second transformation is necessary: from the desired roll/
pitch/yaw rotational rates to the motor roll/pitch/yaw input. This is true, but it
is very difficult to measure which rotational rates correspond to a certain motor
power level. Moreover, even if you obtain accurate data for this transformation, a
huge problem remains; the reasoning in this project holds only for a quadcopter
in a perfect world. In the real world however, even small disturbances will desta-
bilize your quadcopter if you would introduce a fixed transformation.

For example, assume that the weight of your quadcopter is slightly higher in the
back than in the front. This means that in order to hover, the back motors will
need a slightly higher power output than the front motors. Any wind disturbance
during the flight will have to be corrected immediately by varying the output of
each motor accordingly. It is impossible to adjust for both imperfections using
manual corrections within normal human reaction times; these phenomena need
to be corrected by your fast microcontroller and a technique called PID feedback
control.

Transforming desired rotation rates to motor input?

90

+
-

Controller

motor power
command

motor power

quadcopter
rotation rate

gyroscope

measured
rotation rate

desired
rotation rate

error between desired and
measured rotation rate

Now suppose that the controller just consists of the difference between the desired
and the measured rotation rate, multiplied with a constant P:

By defining the error during each iteration k of the control loop:

you can simplify the equation rewriting the motor input during iteration k as:

where Pterm is the proportional term of the controller. The response of such a con-
troller to a change in the desired rotation rate is visualised on the graph to the right:
the higher you choose the value for P to be, the faster the actual rotation rate will
approach the desired rotation rate and the smaller the settling time, which is a good
thing. However, a larger P will also give a larger overshoot, meaning that the quad-
copter might bounce violently when changing the desired rotation rate. Whatever the
value of P there might also be a steady state error: the actual rotation rate never reach-
es the desired rotation rate. You overcome this issue by adding an integral term: this
term will sum the past errors hence eliminating the steady state error.

Quadcopter rate control

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

 Project 12

91

Le arn how to stabilize your quadcopter

With normal human reaction times, it is not possible to keep a quadcopter sta-
ble in the air. In this project you learn how to use a fast control loop to stabilize
the quadcopter automatically while also taking into account the commands
you give it with the radiotransmitter.

To stabilize your quadcopter, you need to use a very fast automated control loop
that sends new commands to each of the four motors, multiple times per second.
The control system that you will use for your quadcopter will be a 250 Hz system;
this means that every 1/250 = 0.004 seconds, all four motors will receive new com-
mands. These commands are generated depending on the commands you give your-
self through the radiotransmitter, but are also generated automatically based on the
actual rotation rate of the quadcopter in space, which is measured by your gyroscope.

The closed control loop that you will use for the roll, pitch and yaw rotation rates is
displayed on the left. You use the gyroscope sensor to measure the actual rotation rate
of the quadcopter and compare it to the desired rotation rate, which you have sent
from the radiotransmitter. The error between both is transformed by the controller
to a motor power command that is sent to each of the four motors. The resulting
change in motor power changes the rotation rate of the quadcopter to a value that
should be closer to the desired rotation rate than before. The actual rotation rate is
measured once again and the process restarts. Each loop occurs every 0.004 seconds
during flight.

30 °/s

0 °/s

0 s 1 s

Rotation rate

2 s Time3 s

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - P controller

steady state error

settling time

overshoot

92

Quadcopter rate control

The addition of the integral term can be implemented in the control equation through:

where the Ts is the length of one iteration, 0.004 s for our 250 Hz control loop. Dis-
cretization of the integral can easily be done through:

The figure on the right shows the response of the Proportional-Integral (PI) con-
troller; the steady state error disappeared but the system still has a large overshoot
and a long settling time. A final improvement can be realized by adding a derivative
term. Since a derivative along a function predicts its future value, this term will help
to reduce the overshoot and hence the settling time:

the derivative will be discretized as well, giving the final discrete equation for a PID
controller:

As the figure shows, the PID controller allows the quadcopter to approach the de-
sired rotation rate quite fast with a small overshoot and settling time.

Obviously, the PID controller needs to be implemented for all three rotation rates;
roll, pitch and yaw. For the roll rotation rate for example, the PID equation becomes:

which can be further simplified by saving the Iterm and Error during each iteration
for the next iteration through the equations PrevErrorRoll=ErrorRoll (k-1) and PrevIter-
mRoll =ItermRoll(k-1). This way, the iteration indexes k can be removed from the above
equation:

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)

Ca rbon aeronautics

93

30 °/s

0 °/s

0 s 1 s

Rotation rate

2 s Time3 s

overshoot

settling time

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - PID controller

30 °/s

0 °/s

0 s 1 s

Rotation rate

2 s Time3 s

overshoot

settling time

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - PI controller

94

Quadcopter rate control

The error for the roll rate is given by the difference between the desired roll rate and
the measured roll rate by the gyroscope:

To make the notation easier, simplify the PID equation for the roll rate by saying that
the motor input for the roll rate is function of the different parameters:

The above equations can be copied for the pitch and yaw rates in order to get the full
PID controller.

In the right figure, the full control loop with equations is visualized. Start each loop
with obtaining the commands from receiver, corresponding to the position of the
sticks on your radiotransmitter. Transform these receiver values to the desired roll,
pitch and yaw rates and the value for the throttle. Next, obtain the actual roll, pitch
and yaw rates of the quadcopter from your gyroscope. These are subtracted from the
desired rotation rates to obtain the error between both. Now you have the necessary
information for the PID equations, which gives you the motor input values for roll,
pitch and yaw. Introduce these input values in the motor power commands that were
derived in project 11. With the first iteration now complete, wait until 0.004 seconds
have passed to start the next iteration.

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)

An important unknown that you did not yet determine are the values for P, I and D.
These constants need to be chosen in such a way that their combination stabilizes
the flight of your quadcopter. The following values are a good compromise be-
tween agility and stability for your quadcopter for all tested motor/ESC/propeller/
battery combinations (see project 1):
•	 PRateRoll= PRatePitch= 0.6
•	 IRateRoll= IRatePitch= 3.5
•	 DRateRoll= DRatePitch=0.03

Notice that the values for the roll and pitch rates are equal; this is evident since the
quadcopter is (almost) symmetrical in both directions. For the yaw rates, the PID
values are:
•	 PRateYaw= 2
•	 IRateYaw= 12
•	 DRateYaw=0

PID tuning

Ca rbon aeronautics

95

+

store for next iteration

InputRoll=f(ErrorRoll, PRoll, IRoll, DRoll,PrevErrorRoll,PrevItermRoll)
InputPitch=f(ErrorPitch, PPitch, IPitch, DPitch,PrevErrorPitch,PrevItermPitch)
InputYaw=f(ErrorYaw, PYaw, IYaw, DYaw,PrevErrorYaw,PrevItermYaw)

InputMotor1= InputThrottle-InputPitch-InputRoll-InputYaw
InputMotor2= InputThrottle+InputPitch-InputRoll+InputYaw
InputMotor3= InputThrottle+InputPitch+InputRoll-InputYaw
InputMotor4= InputThrottle-InputPitch+InputRoll+InputYaw

RateRoll
RatePitch
RateYaw

ErrorRoll= DesiredRateRoll-RateRoll
ErrorPitch= DesiredRatePitch-RatePitch
ErrorYaw= DesiredRateYaw-RateYaw

DesiredRateRoll = 0.15 (ReceiverValue[0]-1500)
DesiredRatePitch = 0.15 (ReceiverValue[1]-1500)
 InputThrottle= ReceiverValue[2]
 DesiredRateYaw = 0.15 (ReceiverValue[3]-1500)

ReceiverValue[0]
ReceiverValue[1]
ReceiverValue[2]
ReceiverValue[3]

PrevErrorRoll = ErrorRoll
PrevErrorPitch = ErrorPitch
PrevErrorYaw = ErrorYaw
PrevItermRoll=ItermRoll
PrevItermPitch=ItermPitch
PrevItermYaw=ItermYaw

-

radiotransmitter commands transformation to desired values

gyroscope
measurements

PId controller

motor power commands

Wait until 0.004 s
have passed to start

next iteration
250 Hz

loop

error calculation

Finding these optimal values is not easy; there exist some basic methods to obtain
them through calculations, but in the end you will always have to test and retest to
find the values that work for your quadcopter. Usually the trail and error method is
done by first choosing and testing a P value, then a value for I and finally also a value
for D. The values can be chosen with the following guidelines:

•	 A high P value increases the responsiveness of your quadcopter, but a too
high P value will cause your quadcopter to overcorrect and experience high
frequency oscillations.

•	 A high I value stops unwanted drifting of your quadcopter, but a too high I
value will cause your quadcopter to feel unresponsive.

•	 Finally the D value reduces the oscillations caused by the P value. Setting the D
value too high causes motor vibrations.

It can be quite cumbersome to test different PID values, fortunately it only needs
to be done once for each design.

96

Define the gyro vari-
ables (projects 4 and
5)

Define the receiver
variables (project 7)

Define the battery
variables (project 9)

Define the parameter
containing the length
of each control loop

All variables neces-
sary for the PID con-
trol loop are declared
in this part, including
the values for the P, I
and D parameters

1 #include <Wire.h>
2 float RatePitch, RateRoll, RateYaw;
3 float RateCalibrationPitch, RateCalibrationRoll,
4 	 RateCalibrationYaw;
5 int RateCalibrationNumber;

6 #include <PulsePosition.h>
7 PulsePositionInput ReceiverInput(RISING);
8 float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
9 int ChannelNumber=0;

10 float Voltage, Current, BatteryRemaining, BatteryAtStart;
11 float CurrentConsumed=0;
12 float BatteryDefault=1300;

13 uint32_t LoopTimer;

14 float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
15 float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
16 float InputRoll, InputThrottle, InputPitch, InputYaw;
17 float PrevErrorRateRoll, PrevErrorRatePitch,
 	 PrevErrorRateYaw;
18 float PrevItermRateRoll, PrevItermRatePitch,
	 PrevItermRateYaw;
19 float PIDReturn[]={0, 0, 0};
20 float PRateRoll=0.6 ; float PRatePitch=PRateRoll;
	 float PRateYaw=2;
21 float IRateRoll=3.5 ; float IRatePitch=IRateRoll;
	 float IRateYaw=12;
22 float DRateRoll=0.03 ; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;

The flight controller: rate mode
 Project 13

97

Cr eate your first flight controller

After a lot of hard work, you now have all the ingredients to create your first
flight controller and test it on your quadcopter. Let’s put all pieces together!

23 float MotorInput1, MotorInput2, MotorInput3,
	 MotorInput4;

24 void battery_voltage(void) {
25 	 Voltage=(float)analogRead(15)/62;
26 	 Current=(float)analogRead(21)*0.089;
27 }

28 void read_receiver(void){
29 	 ChannelNumber = ReceiverInput.available();	
30 	 if (ChannelNumber > 0) {
31 	 for (int i=1; i<=ChannelNumber;i++){
32 		 ReceiverValue[i-1]=ReceiverInput.read(i);
33 	 }
34 	 }
35 }

36 void gyro_signals(void) {
37 	 Wire.beginTransmission(0x68);
38 	 Wire.write(0x1A);
39 	 Wire.write(0x05);
40 	 Wire.endTransmission();
41 	 Wire.beginTransmission(0x68);
42 	 Wire.write(0x1B);
43 	 Wire.write(0x08);
44 	 Wire.endTransmission();
45 	 Wire.beginTransmission(0x68);
46 	 Wire.write(0x43);
47 	 Wire.endTransmission();
48 	 Wire.requestFrom(0x68,6);
49 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
50 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
51 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

Declare the input
variables to the mo-
tors

Battery function
(projects 3 and 9)

Receiver function
(project 7)

Gyro function
(project 4)

98

The flight controller: rate mode

 Define a function that is called for each PID calculation of the roll, pitch and yaw ro-
tation rates. You saw the equations for each term already in project 12. An important
addition here is the limit of 400 µs on the I term; this term is used to avoid integral
windup. Integral windup is a phenomena in which the integral term accumulates a
significant error due saturation and causes a large overshoot. For example when the
quadcopter cannot achieve the desired setpoint because it did not yet lift off the
ground. Another limit is placed on the full output, to avoid a significant imbalance
between to roll, pitch and yaw commands to the motor.

Return the values for the motor command, the error and the integral term from the
PID equations to the main program.

To ensure a bumpless restart after landing your quadcopter, the PID error and inte-
gral values that are passed to the next iterations need to be reset once you land the
quadcopter. This is also necessary to avoid any windup as well.

At the start of the setup phase, the red LED connected with pin 5 is illuminated to
show that the microcontroller is still in the setup phase. As usual, the LED on the
Teensy itself is illuminated as well to show that it receives power.

Ca rbon aeronautics

99

52 	 RateRoll=(float)GyroX/65.5;
53 	 RatePitch=(float)GyroY/65.5;
54 	 RateYaw=(float)GyroZ/65.5;
55 }

56 void pid_equation(float Error, float P , float I, float D, 	
 float PrevError, float PrevIterm) {
57 	 float Pterm=P*Error;
58 	 float Iterm=PrevIterm+I*(Error+
		 PrevError)*0.004/2;
59 	 if (Iterm > 400) Iterm=400;
60 	 else if (Iterm <-400) Iterm=-400;
61 	 float Dterm=D*(Error-PrevError)/0.004;
62 	 float PIDOutput= Pterm+Iterm+Dterm;
63 	 if (PIDOutput>400) PIDOutput=400;
64 	 else if (PIDOutput <-400) PIDOutput=-400;

65 	 PIDReturn[0]=PIDOutput;
66 	 PIDReturn[1]=Error;
67 	 PIDReturn[2]=Iterm;
68 }
69 void reset_pid(void) {
70 	 PrevErrorRateRoll=0; PrevErrorRatePitch=0;
	 PrevErrorRateYaw=0;
71 	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;
72 }
73 void setup() {
74 	 pinMode(5, OUTPUT);
75 	 digitalWrite(5, HIGH);
76 	 pinMode(13, OUTPUT);
77 	 digitalWrite(13, HIGH); 	

78 	 Wire.setClock(400000);
79 	 Wire.begin();
80 	 delay(250);
81 	 Wire.beginTransmission(0x68);
82 	 Wire.write(0x6B);
83 	 Wire.write(0x00);
84 	 Wire.endTransmission();

PID function

Return the output
from the PID func-
tion

PID reset function

Visualize the setup
phase using the red
LED

Communication with
the gyroscope and
calibration (project 4
and 5)

100

The flight controller: rate mode

 When the time consuming part of the setup process is finished, illuminate the green
LED to show that the quadcopter is able to start. However, only dim the red LED
when the battery voltage is higher than 7.5 V.

SAFETY RELATED LINES: just before finishing the setup process, you need to
check that the throttle stick is in its lowest position. Otherwise, if you accidentally
left the throttle stick in a higher position and the radiotransmitter is not nearby, the
motors could suddenly start after the setup process without you controlling it. With
these lines, you stay in an infinite while loop until you move the throttle stick between
1020 and 1050 µs (so moving it from the lowest position to a slightly higher position).

In the last line of the setup process, start a timer that will count the time in the
loop process and go to the next iteration after exactly 4000 µs or 0.004 s, to create a
1/0.004 s = 250 Hz control loop.

85 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
86 	 	 gyro_signals();
87 		 RateCalibrationRoll+=RateRoll;
88 		 RateCalibrationPitch+=RatePitch;
89 		 RateCalibrationYaw+=RateYaw;
90 		 delay(1);
91 	 }

Ca rbon aeronautics

101

92 	 RateCalibrationRoll/=2000;
93 	 RateCalibrationPitch/=2000;
94 	 RateCalibrationYaw/=2000;

95 	 analogWriteFrequency(1, 250);
96 	 analogWriteFrequency(2, 250);
97 	 analogWriteFrequency(3, 250);
98 	 analogWriteFrequency(4, 250);
99 	 analogWriteResolution(12);

100 	 pinMode(6, OUTPUT);
101 	 digitalWrite(6, HIGH);
102 	 battery_voltage();
103 	 if (Voltage > 8.3) { digitalWrite(5, LOW);
104 		 BatteryAtStart=BatteryDefault; }
105 	 else if (Voltage < 7.5) {
106 		 BatteryAtStart=30/100*BatteryDefault ;}
107 	 else { digitalWrite(5, LOW);
108 		 BatteryAtStart=(82*Voltage-580)/100*
		 BatteryDefault; }

109 	 ReceiverInput.begin(14);
110 	 while (ReceiverValue[2] < 1020 ||
	 ReceiverValue[2] > 1050) {
111 		 read_receiver();
112 		 delay(4);
113 	 }

114 	 LoopTimer=micros();
115 }

116 void loop() {
117 	 gyro_signals();
118 	 RateRoll-=RateCalibrationRoll;
119 	 RatePitch-=RateCalibrationPitch;
120 	 RateYaw-=RateCalibrationYaw;

121 	 read_receiver();

Set the PWM fre-
quency to 250 Hz
and the resolution to
12 bit for all motors
(project 8)

Show the end of the
setup process and
determine the initial
battery voltage per-
centage (project 9)

Avoid accidental lift
off after the setup
process

Start the timer

Measure the rotation
rates and subtract
the calibration values
(project 5)

Read the receiver
commands (project
7)

102

The flight controller: rate mode

 Transform the commands from the receiver in µs to the desired roll, pitch and yaw
rates in °/s as explained in project 11. The throttle command remains in µs.

Calculate the difference between the desired rotation rates and the measured rotation
rates.

Start the PID calculations for each of the three rotation rates,. The outputs of these
calculations are stored in the array PIDReturn; the roll/pitch/yaw input for the mo-
tors is stored in position 0, the error value and value for the Iterm that needs to be
used for the next iteration is stored in positions 1 and 2. Retrieve these values each
time for the corresponding rotation rate to be able to use them in the next iteration.

With the throttle stick, you are able to go to 2000 µs, which would give maximal pow-
er to all four motors. However, this would give no room to stabilize the roll, pitch and
yaw rates. That is why you limit the throttle value to 1800 µs or 80%.

Now calculate the motor inputs with the quadcopter dynamics equations you saw
during project 11. Remember to convert the throttle values in µs to their 12 bit equiv-
alent by multiplying them with 1.024.

Ca rbon aeronautics

103

 122 	 DesiredRateRoll=0.15*(ReceiverValue[0]-1500);
123 	 DesiredRatePitch=0.15*(ReceiverValue[1]-1500);
124 	 InputThrottle=ReceiverValue[2];
125 	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

126 	 ErrorRateRoll=DesiredRateRoll-RateRoll;
127 	 ErrorRatePitch=DesiredRatePitch-RatePitch;
128 	 ErrorRateYaw=DesiredRateYaw-RateYaw;

129 	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll,
	 DRateRoll, PrevErrorRateRoll,
	 PrevItermRateRoll);
130 InputRoll=PIDReturn[0];
	 PrevErrorRateRoll=PIDReturn[1];
	 PrevItermRateRoll=PIDReturn[2];
131 	 pid_equation(ErrorRatePitch, PRatePitch,
	 IRatePitch, DRatePitch, PrevErrorRatePitch,
 	 PrevItermRatePitch);
132 InputPitch=PIDReturn[0];
	 PrevErrorRatePitch=PIDReturn[1];
	 PrevItermRatePitch=PIDReturn[2];
133 	 pid_equation(ErrorRateYaw, PRateYaw,
	 IRateYaw, DRateYaw, PrevErrorRateYaw,
 	 PrevItermRateYaw);
134 InputYaw=PIDReturn[0];
	 PrevErrorRateYaw=PIDReturn[1];
	 PrevItermRateYaw=PIDReturn[2];

135 	 if (InputThrottle > 1800) InputThrottle = 1800;

136 	 MotorInput1= 1.024*(InputThrottle-InputRoll
	 -InputPitch-InputYaw);
137 	 MotorInput2= 1.024*(InputThrottle-InputRoll
	 +InputPitch+InputYaw);
138 	 MotorInput3= 1.024*(InputThrottle+InputRoll
	 +InputPitch-InputYaw);
139 	 MotorInput4= 1.024*(InputThrottle+InputRoll
	 -InputPitch+InputYaw);

Calculate the desired
roll, pitch and yaw
rates

Calculate the errors
for the PID calcula-
tions

Execute the PID cal-
culations

Limit the throttle
output

Use the quadcopter
dynamics equations
(project 11)

104

The flight controller: rate mode

 Make sure that the inputs to the motors do not exceed 2000 µs after the dynamic
equations to avoid overloading them.

To avoid stopping the motors in mid-flight, keep them turning at 18% when the mo-
tor input decreases below 1180 µs (= the ThrottleIdle value).

SAFETY RELATED LINES: the previous lines would mean you can never switch
off the motors, as they keep turning at minimally 18%. Just before sending the com-
mands to the motors, you add the condition that if the throttle stick is brought to its
lowest position (below 1050 µs), all four motors stop (e.g. the value of ThrottleCut-
Off is 1000 µs or 0% power). Usually you would do this after landing the quadcopter.
The PID parameters need to be reset in case you want to have a bumpless restart.

Now you are finally ready to sent the commands to each of the four motors.

The last step in the iteration is to wait until the 4000 µs or 0.004 s have passed using
a while loop. When this condition is met, reset the timer to the actual time and the
program can proceed to the next iteration. Congratulations, you created a 250 Hz
control loop!

Ca rbon aeronautics

105

 140 	 if (MotorInput1 > 2000)MotorInput1 = 1999;
141 	 if (MotorInput2 > 2000)MotorInput2 = 1999;
142 	 if (MotorInput3 > 2000)MotorInput3 = 1999;
143 	 if (MotorInput4 > 2000)MotorInput4 = 1999;

144 	 int ThrottleIdle=1180;
145 	 if (MotorInput1 < ThrottleIdle) MotorInput1 =
146 	 ThrottleIdle;
147 	 if (MotorInput2 < ThrottleIdle) MotorInput2 =
148 	 ThrottleIdle;
149 	 if (MotorInput3 < ThrottleIdle) MotorInput3 =
150 	 ThrottleIdle;
151 	 if (MotorInput4 < ThrottleIdle) MotorInput4 =
152 	 ThrottleIdle;

153 	 int ThrottleCutOff=1000;
154 	 if (ReceiverValue[2]<1050) {
155 		 MotorInput1=ThrottleCutOff;
156 		 MotorInput2=ThrottleCutOff;
157 		 MotorInput3=ThrottleCutOff;
158 		 MotorInput4=ThrottleCutOff;
159 		 reset_pid();
160 	 }
161 	 analogWrite(1,MotorInput1);
162 	 analogWrite(2,MotorInput2);
163 	 analogWrite(3,MotorInput3);
164 	 analogWrite(4,MotorInput4);

165 	 battery_voltage();
166 	 CurrentConsumed=Current*1000*0.004/3600+
			 CurrentConsumed;
167 	 BatteryRemaining=(BatteryAtStart-
		 CurrentConsumed)/BatteryDefault*100;
168 	 if (BatteryRemaining<=30) digitalWrite(5, HIGH);
169 	 else digitalWrite(5, LOW);

170 	 while (micros() - LoopTimer < 4000);
171 	 LoopTimer=micros();
172 }

Limit the maximal
power commands
sent to the motors

Keep the quadcopter
motors running at
minimally 18% pow-
er during flight

Make sure you are
able to turn off the
motors

Sent the commands
to the motors

Keep track of battery
level (project 9)

Finish the 250 Hz
control loop

106

The flight controller: rate mode

Imagine you are flying your quadcopter and suddenly, your radiotransmitter loses
power or signal. What will happen to your quadcopter? Well, you did not program
any return to home function, so it will just keep flying until it runs out of battery or
crashes. To avoid this, your radiotransmitter can tell the receiver to give a throttle
command of 1000 µs when it loses connection. This means that the motors of
your quadcopter will stop turning an it will fall to the ground - not the ideal solution
but better to have some damage then a quadcopter on the loose.

Power on the transmitter → hold the OK button for two seconds → choose Sytem
→ go down and choose "RX setup" → go down and choose "Failsafe". Choose
channel 3 (the throttle channel) then click UP or DOWN to activate the failsafe of
channel 3 (ON). Now lower the throttle stick to its lowest position and press and
hold the CANCEL function to tell the receiver it should sent a throttle command
of 1000 µs or 0% when it loses contact with the radiotransmitter. Return to the
previous screen on the transmitter, which should show -100% at channel 3. The
failsafe is now set.

Before you fly... radiotransmitter failsafe

When you have set the radiotransmitter failsafe, it is time to start flying. After you
connect the battery and turn on the slide switch, the red LED should be lighted
indicating the ongoing startup process. Wait a couple of seconds without touch-
ing your quad (to avoid calibration errors). When the green LED illuminates, you
can move the throttle stick slightly upward and each motor will beep four times
indicating that you are ready to go. Increase the throttle stick to 30% power such
that the motors are turning but the quad is not yet taking off, then turn off the
radiotransmitter to test the failsafe. If after a second all motors turn off, the
test is successful.

You can now start your first flight. Flying in rate control mode is rather difficult,
so be sure to fly outside at a large grass field without any people nearby to mini-
mize any damage to the quadcopter or others in the event of a crash. You can play
with the PID values to optimize the quadcopters response to your liking.

Start-up and flying your quadcopter

Ca rbon aeronautics

107

Part II: stabilization
mode

flying in rate mode is difficult for begin-
ners, because you have to manually adjust
your quadcopter back to a level position.

in this part, you will learn how to combine
different measurements to get the absolute
angles of your quadcopter. This allows you
to create a more advanced flight controller
that levels itself automatically when you re-
lease the roll and pitch sticks.

You will build and expand upon the code
you developed earlier, and your analytical
skills will be challenged further

110

z

y

X

Pitch angle: -45°
Roll angle: 0°

z

y

X

Pitch angle: 0°
Roll angle: 45°

yaw around
z axis

(negative direction)

Pitch angle: 0°
Roll angle: -45°

yaw around
z axis

(positive direction)

z

X

y

z

X

y

45°

Measuring angles
 Project 14

111

Le arn to measure angles - twice

At this point the rotation rates of your quadcopter have no more secrets for
you. Now it is time to explore a more difficult topic; how can you measure the
absolute roll and pitch angles of your quadcopter?

The absolute roll and pitch angles of your quadcopter are a key component for a
flight controller that works in stabilize mode; knowing the angles allows you to level
the quadcopter exactly and make flying a lot easier. But how can you measure the ab-
solute roll and pitch angles? In this project, you will explore two methods, both with
their own (dis)advantages.

1. Integrating the gyro rotation rates

A first and very easy solution to obtain the absolute angles consists of integration
of the rotation rates that are measured by the gyroscope. For the pitch, this can be
represented with the equation;

With Ratepitch in degrees per second (°/s), Anglepitch in degrees (°), Ts the duration of
one (0.004 s) iteration and k the number of iterations. Discretization of this integral
to use in your code gives the equation:

If this looks too easy... well that’s because unfortunately it is. When the quadcopter
is yawing left (or right) around the Z axis without any pitch rotation rate around the
Y axis, the pitch angle will nonetheless decrease (or increase) as the direction of the
Y axis changes. During this yaw movement, the roll angle will increase (or decrease)
as well because the direction of the X axis also changes. Hence even with a zero roll
or pitch rotation rate, the roll and pitch angles can change. This phenomenon is vis-
ualized in the figure to the left for a pure yaw movement using an inclined plate with
a fixed angle of 45°.

You can integrate the change of the roll and pitch angle with the yaw movements in
the equations, but you will fortunately not need to do this for this application; as you
will see later, this error is not the only issue with integrating the gyro measurements.
For now, let's explore the second method to obtain angles; using an accelerometer.

Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




112

Measuring angles

Your MPU-6050 sensor is not only a gyroscope but also contains an accelerometer.
As the name implies, the accelerometer measures the acceleration of the sensor along
the X, Y and Z directions. Remember that the gyroscope measures the rotation rates
around the X, Y and Z directions, not along. From basic physics, you remember that
we experience a gravitational acceleration anywhere on earth and that this gravita-
tional acceleration is equal to the gravitational constant; 1 g or 9,81 m/s². This means
that when you let your MPU-6050 sensor lie flat on a table without moving it, the
measurement of the acceleration along the Z direction (or AccZ) is equal to 1 g. The
acceleration along the X and Y axes will be zero in this case. Similarly, when you po-
sition the sensor such that one of the other axes lies perpendicular to the surface of
the table, the corresponding acceleration is equal to 1 g.

Off course, any other direction not along one of the three main axes will result in
a nonzero acceleration value for all three directions AccX, AccY and AccZ. Through
some clever mathematical equations, this accelerometer property will enable you to
calculate the exact roll and pitch angles of your quadcopter. Let’s assume you roll
around the X axis until you reach the angle θroll. To visualize this transformation, a box
bounded by the X, Y and Z directions is sketched on the figure below.

X
y

z

AccX = 0
Accy = 0
Accz = 1 g

AccX = 0
Accy = 1 g
Accz = 0

AccX = 1 g
Accy = 0
Accz = 0

z

X

y

y

X

z

VCCGNDSCLSDA
XDAXCLADOINT X

Y

VCC
G

N
D

SCL
SD

A
XD

A
XCL

AD
O

IN
T

X

Y

X Y

VCCGND
SCLSDAXDA

XCL
ADO

INT

VCC

G
N

D

SCL
SD

A
XD

A

XCL

AD
O

IN
T

X

Y

Accz

AccX

Accy

AccX

-AccX

Accz

Accy

s2=Accz
2+Accy

2s

θpitch

θpitch

θpitch

tan θpitch = s
-AccX

Accz

Accy

AccX
Accy

Accz
s2=Accz

2+AccX
2s

θroll

θroll

θroll

tan θroll = s
AccyAccX

Roll around
the X axis

Pitch around
the y axis

2. The accelerometer

Ca rbon aeronautics

113

From your basic trigonometry knowledge, you know that the tangent of the angle
of a triangle is equal to the length of the opposite side of the triangle divided by the
length of the adjacent side of the triangle. In the case of the angle θroll, the opposite
side is equal to AccY while the adjacent side is equal to a certain length s:

Using the Pythagoras rule on the triangle formed by s, AccX and AccZ, you are able
to derive that s²=AccX²+AccZ², thus the angle θroll can be expressed by the equation:

Through similar reasoning and with the help of the next figure you can express the
pitch angle by:

And that’s it, you are now able to calculate the roll and pitch angles from the values of
your accelerometer! Now transform this into a working code. For this part, you only
need your Teensy and MPU-6050; you can choose to test on a breadboard, or directly
on your assembled quadcopter.

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




114

Measuring angles

Modify the code that you have already developed to read the gyroscope in order to
extract the accelerometer measurements of the MPU-6050 as well.

Start with defining the variables that will hold the acceleration values in the X, Y and
Z direction, together with the roll and pitch angles.

First configure the accelerometer output. This can be done by choosing the AFS_
SEL setting using register 0x1C (see the MPU-6050 documentation). The options
for the accelerometer correspond to bits 3 and 4. You will choose a full scale range
of ±8 g, which corresponds to an LSB sensitivity of 4096 LSB/g and a value for the
AFS_SEL setting of 2, or a 0 for bit 3 and a 1 for bit 4. This corresponds in turn to
the following 8 bit binary representation: 00010000. Converting this to a hexadecimal
value gives 0x10.

The values of the accelerometer are located in the registers with hexadecimal num-
bers 3B to 40. Start writing to address 0x3B to indicate the first register and request 6
bytes from the address of the sensor, 0x68. The accelerometer measurements in LSB
are once again spread out over two registers with each 8 bits.

Coding

Ca rbon aeronautics

115

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;

3 float AccX, AccY, AccZ;
4 float AngleRoll, AnglePitch;

5 float LoopTimer;
6 void gyro_signals(void) {
7 	 Wire.beginTransmission(0x68);
8 	 Wire.write(0x1A);
9 	 Wire.write(0x05);
10 	 Wire.endTransmission();

11 	 Wire.beginTransmission(0x68);
12 	 Wire.write(0x1C);
13 	 Wire.write(0x10);
14 	 Wire.endTransmission();

15 	 Wire.beginTransmission(0x68);
16 	 Wire.write(0x3B);
17 	 Wire.endTransmission();
18 	 Wire.requestFrom(0x68,6);
19 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
20 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
21 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();

22 	 Wire.beginTransmission(0x68);
23 	 Wire.write(0x1B);
24 	 Wire.write(0x8);
25 	 Wire.endTransmission();
26 	 Wire.beginTransmission(0x68);
27 	 Wire.write(0x43);
28 	 Wire.endTransmission();

Define the acceler-
ometer variables

Switch on the low-
pass filter (project 4)

Configure the accel-
erometer output

Pull the accelerom-
eter measurements
from the sensor

Configure the gyro-
scope output and pull
rotation rate meas-
urements from the
sensor (project 4)

116

Measuring angles

 To convert the accelerometer measurements from LSB to g, remember that you con-
figured the AFS_SEL setting to an LSB sensitivity of 4096 LSB/g. To get the meas-
urements in g, just divide the measurements in LSB by 4096 LSB/g.

At the start of this project, you learned how to calculate the roll and pitch angles
from the accelerometer values. You can use these equations at this point, as long as
you take into account that the arctangens calculated by Arduino returns a result in
radians, not in degrees. To convert the angles from radians to degrees, just divide the
results by �/180.

When you run the code with the MPU-6050 flat on a table without moving and open
the serial monitor, you will notice that the acceleration values in the X, Y and Z direc-
tions are not exactly 0, 0 and 1 g as they should be but rather:

Acceleration X [g]= 0.04 Acceleration Y [g]= -0.02 Acceleration Z [g]= 1.11
Acceleration X [g]= 0.04 Acceleration Y [g]= -0.03 Acceleration Z [g]= 1.11
Acceleration X [g]= 0.03 Acceleration Y [g]= -0.03 Acceleration Z [g]= 1.10

It is normal when you do not have the same values as mentioned above, because each
sensor is slightly different. Calibration is once again necessary to correct these values.
Because the MPU-6050 has to be exactly level when doing the accelerometer calibra-
tion, it recommended to do this beforehand;
•	 Normally your MPU-6050 lies already flat on the table. The acceleration in the

Z direction should be 1 in this case; for the above values for example, this would
give a correction value of 0.11.

•	 For the calibration of the acceleration in the X direction, you have to tilt the
MPU-6050 vertically along the X axis. You should now get a value close to 1.
Note once again the difference between the value you get and 1 g.

•	 Now do the same for the acceleration in the Y direction.

Testing and calibration

Ca rbon aeronautics

117

29 	 Wire.requestFrom(0x68,6);
30 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
31 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
32 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
33 	 RateRoll=(float)GyroX/65.5;
34 	 RatePitch=(float)GyroY/65.5;
35 	 RateYaw=(float)GyroZ/65.5;

36 	 AccX=(float)AccXLSB/4096;
37 	 AccY=(float)AccYLSB/4096;
38 	 AccZ=(float)AccZLSB/4096;

39 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);
40 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
41 }

42 void setup() {
43 	 Serial.begin(57600);
44 	 pinMode(13, OUTPUT);
45 	 digitalWrite(13, HIGH);
46 	 Wire.setClock(400000);
47 	 Wire.begin();
48 	 delay(250);
49 	 Wire.beginTransmission(0x68);	
50 	 Wire.write(0x6B);
51 	 Wire.write(0x00);
52 	 Wire.endTransmission();
53 }

54 void loop() {
55 	 gyro_signals();
56 	 Serial.print("Acceleration X [g]= ");
57 	 Serial.print(AccX);
58 	 Serial.print(" Acceleration Y [g]= ");
59 	 Serial.print(AccY);
60 	 Serial.print(" Acceleration Z [g]= ");
61 	 Serial.println(AccZ);
62 	 delay(50);
63 }

Convert the meas-
urements to physical
values

Calculate the abso-
lute angles

Communication with
the gyroscope and
calibration (project 4
and 5)

Print the accelerome-
ter values

118

Measuring angles

 The three calibration values you get should be subtracted from lines 36 to 38 in the
code, so insert your own valuesyour own values in the yellow spaceyellow space. Run the program again and verify
that the acceleration in all directions is correct.

Next, verify that the calculated roll and pitch angles are correct. You can easily check
this by replacing lines 56 to 61 the code with the lines written on the right. When the
MPU-6050 lies level on a table, the value for both angles should be very close to zero
if you have done a correct calibration.

You explored two different methods to calculate the roll and pitch angles; one meth-
od integrated the rotation rates coming from the gyroscope, and the second method
used trigonometry on accelerometer measurements. It is now time to evaluate the
advantages and disadvantages of each method. Most disadvantages come with the
gyro integration method;
•	 Pure integration of the roll and pitch rotation rates does not take into account

roll and pitch angle changes when yawing, as you already saw before. This means
that the calculated angles will not be fully correct during flight.

•	 With integration, you add the change in angle to the previous angle for each
iteration. Because each measurement has an error, this also means that you will
add the errors of each measurements. This causes an ever increasing error as
shown on the picture to the right; after three minutes, the angle deviation is
already equal to 1°.

•	 Your integration always starts from an angle equal to zero. If the surface on
which the quadcopter sits is not level, the angles will be wrong.

By testing the accelerometer and the resulting angles calculated through trigonom-
etry, you will see that none of the above disadvantages occur for this type of meas-
urement. So why all this trouble, why can’t you just use the accelerometer? Well,
unfortunately the accelerometer is extremely sensitive to vibrations; it measures ac-
celeration after all. So sensitive, that even with the low pass filter you already con-
figured in the MPU-6050, the resulting angles cannot be handled by your PID con-
troller. This is visible in the picture to the right; the gyro integration over time stays
quite continuous, while the accelerometer angles are not continuous at all. This effect
will be magnified when the motors are running. The disadvantages of both methods
necessitate a different solution, which you will explore with the next project.

Accelerometer trigonometry or gyro integration?

Ca rbon aeronautics

119

 36	 AccX=(float)AccXLSB/4096-0.05-0.05;
37	 AccY=(float)AccYLSB/4096+0.01+0.01;
38	 AccZ=(float)AccZLSB/4096-0.11-0.11;

54 void loop() {
55	 gyro_signals();
56	 Serial.print("Roll angle [°]= ");
57 	 Serial.print(AngleRoll);
58	 Serial.print(" Pitch angle [°]= ");
59	 Serial.println(AnglePitch);
60	 delay(50);
61 }

Angle

Time [minutes]

0°

1°

-0,5°

0,5°

1 2 30

gyro integration

accelerometer trigonometry

Correct the acceler-
ometer values after
calibration

Check the measured
roll and pitch angles

120

The Kalman filter - one dimension

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

 Project 15

A final equation is necessary to update the uncertainty on the new angle prediction,
once again by using the Kalman Gain:

Congratulations, you now learned how to combine the two methods, each with their
own uncertainties and errors, to predict the most accurate value for the angle. This
approach can be followed for both the roll and pitch angles.

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

121

Co mbine two imperfect measurements

During the previous project you explored two methods of measuring and cal-
culating angles and found out that the disadvantages of both make them un-
suitable for a flight controller. However, what if you can combine both meas-
urements to get rid of their individual disadvantages? This is exactly what you
are going to do during this project, through an iterative mathematical concept
called the Kalman filter.

Let’s begin by rewriting the equation that you used to transform the rotation rate of
the gyroscope to the angle, with Ts the time of one iteration k (0.004 s in our case):

Assume now that this calculation gives you a prediction for the angle, but not its final
value, because it is prone to a number of errors. Calculate the uncertainty on the pre-
diction of the angle as the sum of the uncertainty on the previous angle prediction
(iteration k-1) and the uncertainty on the evolution of the angle:

The uncertainty on the evolution of the angle is estimated as Ts
2 . 42 because:

•	 The standard deviation σ of the rotation rate measurement error is 4°/s, giving
a variance σ² of 4²=16. The rotation rate measurement error is an estimation; it
includes the actual imperfection of the sensor itself, but also the fact that you do
not take into account the yaw rotation rate in the angle calculation.

•	 Because the rotation rate is multiplied with Ts (=0.004 s) in the equation, this has
to be taken into account in the variance calculation as well, using the factor Ts

2.

In the next step you determine the so-called Kalman gain. This gain weighs your
prediction of the angle (Anglekalman(k)) as calculated above with the measured angle
(Angle) using our accelerometer to obtain a new prediction for the angle:

Now how do you calculate this Kalman gain? The gain is defined as the relative ratio
of the uncertainty on the predicted angle to the uncertainty on the measured angle
with the accelerometer:

In the equation, you assume that the standard deviation σ of the accelerometer meas-
urement error is equal to 3°.

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

122

The Kalman filter - one dimension

General form of the Kalman filter
The Kalman filter that you derived in this project is specifically adapted to predict
the roll or pitch angle. This is a one dimensional Kalman filter, as the so-called
‘state’ of the system consists of only one value: the roll (or pitch) angle. This ap-
proach can be expanded to multi-dimensional states using vectors and matrices.
The ‘general’ form of the Kalman filter is written below and will be used when
you are estimating the altitude of the quadcopter further on. For comparison, the
values for all vectors and matrices in our current example are also written.
1. Predict the current state of the system:

2. Calculate the uncertainty of the prediction:

S=state vector (Anglekalman)
F=state transition matrix (1)
G=control matrix (0.004)
U=input variable (Rate)

P=prediction uncertainty vector (Un-
certaintyangle)
Q=process uncertainty (Ts

2 . 42)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Coding

Connect your MPU-6050 to your Teensy to test the Kalman filter.

Define the roll and pitch angles coming from our Kalman filter. Your initial guess for
the angle values is zero, because the quadcopter will generally take off from a rather
level surface. Off course, the surface will never be exactly level, so you take the uncer-
tainty (=variance σ²) on the initial guess for the angles to be (2°)². If you take off from
a surface that is not level at all, the Kalman filter will use the accelerometer values to
quickly correct this initial wrong guess.

Define the output from the Kalman filter; this are two variables: the Kalman predic-
tion for the state (the angle in our case) and the uncertainty on this prediction. Both
variables are updated during each iteration.

Ca rbon aeronautics

123

3. Calculate the Kalman gain from the uncertainties on the predictions and
measurements:

4. Update the predicted state of the system with the measurement of the
state through the Kalman gain:

5. Update the uncertainty of the predicted state:

L= Intermediate matrix
K=Kalman gain
H=Observation matrix (=1)
R=Measurement uncertainty (Ts

2 . 32)

M=measurement vector (Angle)

I=unity matrix (=1)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;
3 float RateCalibrationRoll, RateCalibrationPitch,
	 RateCalibrationYaw;
4 int RateCalibrationNumber;
5 float AccX, AccY, AccZ;
6 float AngleRoll, AnglePitch;
7 uint32_t LoopTimer;

8 float KalmanAngleRoll=0,
	 KalmanUncertaintyAngleRoll=2*2;
9 float KalmanAnglePitch=0,
	 KalmanUncertaintyAnglePitch=2*2;

10 float Kalman1DOutput[]={0,0};

Define the gyroscope
and accelerometer
variables

Define the predicted
angles and the uncer-
tainties

Initialize the output
of the filter

124

The Kalman filter - one dimension

 11 void kalman_1d(float KalmanState,
 float KalmanUncertainty, float KalmanInput,
 float KalmanMeasurement) {
12 	 KalmanState=KalmanState+0.004*KalmanInput;
13 	 KalmanUncertainty=KalmanUncertainty + 0.004
	 * 0.004 * 4 * 4;
14 	 float KalmanGain=KalmanUncertainty * 1/
	 (1*KalmanUncertainty + 3 * 3);
15 	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
16 	 KalmanUncertainty=(1-KalmanGain) *
 	 KalmanUncertainty;

17 	 Kalman1DOutput[0]=KalmanState;
	 Kalman1DOutput[1]=KalmanUncertainty;
18 }

19 void gyro_signals(void) {
20 	 Wire.beginTransmission(0x68);
21 	 Wire.write(0x1A);
22 	 Wire.write(0x05);
23 	 Wire.endTransmission();
24 	 Wire.beginTransmission(0x68);
25 	 Wire.write(0x1C);
26 	 Wire.write(0x10);
27 	 Wire.endTransmission();
28 	 Wire.beginTransmission(0x68);
29 	 Wire.write(0x3B);
30 	 Wire.endTransmission();
31 	 Wire.requestFrom(0x68,6);
32 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
33 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
34 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();
35 	 Wire.beginTransmission(0x68);
36 	 Wire.write(0x1B);
37 	 Wire.write(0x8);
38 	 Wire.endTransmission();

Create the function
that calculates the
predicted angle and
uncertainty using the
Kalman equations

Kalman filter output

Read the rotation
rates, acceleration
and angles from the
MPU-6050 (project
14)

Ca rbon aeronautics

125

 The next step is to create the function for the Kalman filter. Four variables are nec-
essary to initiate this function;
•	 the Kalman prediction for the previous state (the angle in this case);
•	 the uncertainty on the Kalman prediction for the previous state;
•	 the input for the new Kalman prediction of the state (the rotation rate from the

gyroscope in this case);
•	 the measurement that will be compared with the new Kalman prediction of the

state (the angles measured by the accelerometer in this case).

You use these four variables to solve the five equations that were explained on the
previous pages.

The output of the Kalman filter function consists of a prediction for the state (the
angle) and the corresponding uncertainty.

39 	 Wire.beginTransmission(0x68);
40 	 Wire.write(0x43);
41 	 Wire.endTransmission();
42 	 Wire.requestFrom(0x68,6);
43 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
44 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
45 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
46 	 RateRoll=(float)GyroX/65.5;
47 	 RatePitch=(float)GyroY/65.5;
48 	 RateYaw=(float)GyroZ/65.5;

49 	 AccX=(float)AccXLSB/4096-0.050.05;
50 	 AccY=(float)AccYLSB/4096+0.01+0.01;
51 	 AccZ=(float)AccZLSB/4096-0.11-0.11;

52 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);
53 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
54 }
55 void setup() {
56 	 Serial.begin(57600);
57 	 pinMode(13, OUTPUT);
58 	 digitalWrite(13, HIGH);
59 	 Wire.setClock(400000);

Do not forget to put
your own accelerom-
eter calibration values
here here (project 14)

126

The Kalman filter - one dimension

 When the rotation rates from the gyro and the angles from the accelerometer are
measured, start the iteration for the Kalman filter. As already seen, the output of the
filter will be the Kalman prediction for the roll and pitch angles together with their
uncertainties.

60 	 Wire.begin();
61 	 delay(250);
62 	 Wire.beginTransmission(0x68);	
63 	 Wire.write(0x6B);
64 	 Wire.write(0x00);
65 	 Wire.endTransmission();
66 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
67 	 	 gyro_signals();
68 		 RateCalibrationRoll+=RateRoll;
69 		 RateCalibrationPitch+=RatePitch;

-4°

-2°

0°

2°

4°

Angle

Time [s]
20155 10

motor speed increase

motors stopped

kalman filter

accelerometer
trigonometry

motors started

Communication with
the gyroscope and
calibration (project 4
and 5)

Ca rbon aeronautics

127

70 		 RateCalibrationYaw+=RateYaw;
71 		 delay(1);
72 	 }
73 	 RateCalibrationRoll/=2000;
74 	 RateCalibrationPitch/=2000;
75 	 RateCalibrationYaw/=2000;
76 	 LoopTimer=micros();
77 }
78 void loop() {
79 	 gyro_signals();
80 	 RateRoll-=RateCalibrationRoll;
81 	 RatePitch-=RateCalibrationPitch;
82 	 RateYaw-=RateCalibrationYaw;
83 	 kalman_1d(KalmanAngleRoll,
 KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
84 	 KalmanAngleRoll=Kalman1DOutput[0];
 KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
85 	 kalman_1d(KalmanAnglePitch,
 KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
86 	 KalmanAnglePitch=Kalman1DOutput[0];
 KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

87 	 Serial.print("Roll Angle [°] ");
88 	 Serial.print(KalmanAngleRoll);
89 	 Serial.print(" Pitch Angle [°] ");
90 	 Serial.println(KalmanAnglePitch);
91 	 while (micros() - LoopTimer < 4000);
92 	 LoopTimer=micros();
93 }

The measurement results for the angles coming directly from the accelerometer and
the angles as predicted by the Kalman filter are shown in the figure to the left, without
any vibrations from the motors and when the motors are started. In both cases the
quadcopter stayed stationary on the ground; you can observe the noisiness of the
accelerometer values, with angles that vary between plus and minus 3° around the real
quadcopter angle. The angle calculation from the Kalman filter on the other hand
stays very stable and is therefore more suited as input for your new flight controller.

Testing

Calculate the rotation
rates

Start the iteration
for the Kalman fil-
ter with the roll and
pitch angles

Print the predicted
angle values

128

The Kalman filter - one dimension

What is the Kalman gain, physically?

A key element of the Kalman filter is the Kalman gain. This gain weighs the im-
portance of the angle prediction, through the gyro integration, with the measured
angle using the accelerometer. As the gain is a weighting factor, its value always
lies between zero and one. A high Kalman gain gives a large importance to the
measurement (e.g. the accelerometer), while a low Kalman gain gives a larger im-
portance to the prediction (e.g. the integration of the rotation rate).

For the angle Kalman filter, the evolution of the gain in time is given in the fig-
ure below. As you can see, the Kalman gain is high initially, because of the initial
importance of the absolute accelerometer values. But rather quickly, the angle
prediction using the integration of the rotation rate becomes more important.
Essentially the Kalman filter uses the gyroscope integration prediction most of
the time during the flight. The accelerometer pitch angles are used to make sure
that the gyroscope integration does diverge too much from the accelerometer
pitch angles, for example due to drift. You now truly have a method to combine
best of both measurements!

0

0.1

0.2

0.3

kalman gain
(angle calculation)

Time [s]
0.80.60 0.2 0.4

steady state ≈ 0.005

Ca rbon aeronautics

129

130

+
-

Rate
Controller

motor power
command motor

power

quadcopter
rotation rate

gyroscope

measured
rotation rate

desired
rotation rate

rotation
rate errorAngle

Controller
+

-

angle
error

Accelerometer

quadcopter
angle

measured
anglekalman filter

desired
angle

kalman
angle

0°

50°

-50°

ReceiverValue[0] (=channel 1)
ReceiverValue[1] (=channel 2)

1000 µs 1500 µs

desiredAngleRoll
desiredAnglePitch

2000 µs

desiredAngle = 0.10 (ReceiverValue - 1500)

The flight controller: stabilize mode
 Project 16

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

: 4.80 V
: 4.99 V
: 10

TX.V1
IntV1
sigs1

BInd kEy

channel 1
(roll)

channel 2
(pitch)

channel 3
(throttle)

channel 4
(yaw)

channel 4
(yaw)

Radiotransmitter
Flysky FS-i65a

131

St abilize your quadcopter based on its angles

With your previous flight controller, you stabilized your quadcopter based on
its rotation rates measured by the gyroscope. You experienced that this made
your quadcopter rather difficult to fly. An easier-to-fly flight controller stabiliz-
es your drone based on its angles. To achieve this stabilization, you will use a
so-called cascaded controller.

Flying a quadcopter with a flight controller based on rotation rates is rather difficult,
because each time you have to manually adjust the quadcopter back to a level position;
releasing the roll and pitch sticks stops the rotation rate because the command sent
from the radiotransmitter becomes 0°/s, but the flight angle remains the same and
does not return to 0°. So if you were flying with a roll angle of 30° at the moment
you release the stick, the angle would remain equal to 30°.

You will now implement a controller that stabilizes the quadcopter based on its an-
gles; this will be easier to fly because when you release the roll and pitch stick of the
radiotransmitter, the quadcopter will self-level itself to a roll and pitch angle of 0°.
Angle control is not necessary for the yaw direction, as you usually do not want the
yaw angle to go back to a reference point during flight. To implement roll and pitch
angle control, you will keep the PID controller that you used for the rate mode as the
so-called inner control loop, and add a second PID controller in front that uses the
angles instead of the rotation rates as outer loop. This is a cascaded controller.

The idea for this cascaded controller is illustrated with the figure on the left. You have
already programmed the inner loop with the rate PID controller in your first flight
controller; the desired rotation rate will not be given by the radiotransmitter values
in this case, but by the angle controller through the outer loop. The angle is calculat-
ed using the Kalman filter from the gyroscope and accelerometer measurements as
learned in the previous project. For this controller, only a P term is necessary; the P
values for roll and pitch can be set equal to 2 for good stability & performance.

The last thing that you need to do, is to transform the values sent from the receiver to
physical roll and pitch angles, as you did before with the roll, pitch and yaw rotation
rates. In this case, you will choose the minimal and maximal values for the desired
angles to be -50° and +50°; this will be sufficient to achieve high speeds with your
quadcopter. Since you already programmed an angle Kalman filter and a PID control-
ler has no more secrets to you, you are now ready to develop a stabilize-mode flight
controller.

132

The flight controller: stabilize mode

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;
3 float RateCalibrationRoll, RateCalibrationPitch,
	 RateCalibrationYaw;
4 int RateCalibrationNumber;
5 #include <PulsePosition.h>
6 PulsePositionInput ReceiverInput(RISING);
7 float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
8 int ChannelNumber=0;
9 float Voltage, Current, BatteryRemaining, BatteryAtStart;
10 float CurrentConsumed=0;
11 float BatteryDefault=1300;
12 uint32_t LoopTimer;
13 float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
14 float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
15 float InputRoll, InputThrottle, InputPitch, InputYaw;
16 float PrevErrorRateRoll, PrevErrorRatePitch,
	 PrevErrorRateYaw;
17 float PrevItermRateRoll, PrevItermRatePitch,
	 PrevItermRateYaw;
18 float PIDReturn[]={0, 0, 0};
19 float PRateRoll=0.6; float PRatePitch=PRateRoll;
	 float PRateYaw=2;
20 float IRateRoll=3.5; float IRatePitch=IRateRoll;
	 float IRateYaw=12;
21 float DRateRoll=0.03; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;
22 float MotorInput1, MotorInput2, MotorInput3,
	 MotorInput4;
23 float AccX, AccY, AccZ;
24 float AngleRoll, AnglePitch;

25 float KalmanAngleRoll=0,
	 KalmanUncertaintyAngleRoll=2*2;
26 float KalmanAnglePitch=0,
	 KalmanUncertaintyAnglePitch=2*2;
27 float Kalman1DOutput[]={0,0};

Coding

Initialize the same
variables that you al-
ready needed for rate
mode (project 12)

Initialize the accel-
erometer variables
(project 14)

Define the Kalman
variables (project 15)

Ca rbon aeronautics

133

 28 float DesiredAngleRoll, DesiredAnglePitch;
29 float ErrorAngleRoll, ErrorAnglePitch;

30 float PrevErrorAngleRoll, PrevErrorAnglePitch;
31 float PrevItermAngleRoll, PrevItermAnglePitch;

32 float PAngleRoll=2; float PAnglePitch=PAngleRoll;
33 float IAngleRoll=0; float IAnglePitch=IAngleRoll;
34 float DAngleRoll=0; float DAnglePitch=DAngleRoll;

35 void kalman_1d(float KalmanState,
 float KalmanUncertainty, float KalmanInput,
 float KalmanMeasurement) {
36 	 KalmanState=KalmanState+0.004*KalmanInput;
37 	 KalmanUncertainty=KalmanUncertainty + 0.004
	 * 0.004 * 4 * 4;
94 	 float KalmanGain=KalmanUncertainty * 1/
	 (1*KalmanUncertainty + 3 * 3);
38 	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
39 	 KalmanUncertainty=(1-KalmanGain) *
 	 KalmanUncertainty;
40 	 Kalman1DOutput[0]=KalmanState;
	 Kalman1DOutput[1]=KalmanUncertainty;
41 }

42 void battery_voltage(void) {
43 	 Voltage=(float)analogRead(15)/62;
44 	 Current=(float)analogRead(21)*0.089;
45 }
46 void read_receiver(void){
47 	 ChannelNumber = ReceiverInput.available();	
48 	 if (ChannelNumber > 0) {
49 	 for (int i=1; i<=ChannelNumber;i++){
50 		 ReceiverValue[i-1]=ReceiverInput.read(i);
51 	 }
52 	 }
53 }

Define the desired
roll and pitch angles
and corresponding
errors for the outer
loop PID controller

Define the values
necessary for the out-
er loop PID control-
ler, including the P, I
and D parameters

The Kalman filter
function (project 15)

Battery voltage func-
tion (project 9)

Receiver function
(project 7)

134

The flight controller: stabilize mode

54 void gyro_signals(void) {
55 	 Wire.beginTransmission(0x68);
56 	 Wire.write(0x1A);
57 	 Wire.write(0x05);
58 	 Wire.endTransmission();
59 	 Wire.beginTransmission(0x68);
60 	 Wire.write(0x1C);
61 	 Wire.write(0x10);
62 	 Wire.endTransmission();
63 	 Wire.beginTransmission(0x68);
64 	 Wire.write(0x3B);
65 	 Wire.endTransmission();
66 	 Wire.requestFrom(0x68,6);
67 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
68 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
69 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();
70 	 Wire.beginTransmission(0x68);
71 	 Wire.write(0x1B);
72 	 Wire.write(0x8);
73 	 Wire.endTransmission();
74 	 Wire.beginTransmission(0x68);
75 	 Wire.write(0x43);
76 	 Wire.endTransmission();
77 	 Wire.requestFrom(0x68,6);
78 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
79 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
80 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
81 	 RateRoll=(float)GyroX/65.5;
82 	 RatePitch=(float)GyroY/65.5;
83 	 RateYaw=(float)GyroZ/65.5;

84 	 AccX=(float)AccXLSB/4096-0.050.05;
85 	 AccY=(float)AccYLSB/4096+0.01+0.01;
86 	 AccZ=(float)AccZLSB/4096-0.11-0.11;

87 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);

Gyro and accelerom-
eter function (project
14)

Do not forget to put
your own accelerom-
eter calibration values
here here (project 14)

Ca rbon aeronautics

135

88 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
89 }
90 void pid_equation(float Error, float P , float I, float D, 	
 float PrevError, float PrevIterm) {
91 	 float Pterm=P*Error;
92 	 float Iterm=PrevIterm+I*(Error+
		 PrevError)*0.004/2;
93 	 if (Iterm > 400) Iterm=400;
94 	 else if (Iterm <-400) Iterm=-400;
95 	 float Dterm=D*(Error-PrevError)/0.004;
96 	 float PIDOutput= Pterm+Iterm+Dterm;
97 	 if (PIDOutput>400) PIDOutput=400;
98 	 else if (PIDOutput <-400) PIDOutput=-400;
99 	 PIDReturn[0]=PIDOutput;
100 	 PIDReturn[1]=Error;
101 	 PIDReturn[2]=Iterm;
102 }
103 void reset_pid(void) {
104 	 PrevErrorRateRoll=0; PrevErrorRatePitch=0;
	 PrevErrorRateYaw=0;
105 	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;

106 	 PrevErrorAngleRoll=0; PrevErrorAnglePitch=0;
107 	 PrevItermAngleRoll=0; PrevItermAnglePitch=0;
108 }

109 void setup() {
110 	 pinMode(5, OUTPUT);
111 	 digitalWrite(5, HIGH);
112 	 pinMode(13, OUTPUT);
113 	 digitalWrite(13, HIGH); 	

114 	 Wire.setClock(400000);
115 	 Wire.begin();
116 	 delay(250);
117 	 Wire.beginTransmission(0x68);
118 	 Wire.write(0x6B);
119 	 Wire.write(0x00);
120 	 Wire.endTransmission();

PID function (pro-
ject 12)

PID reset function
(project 12)

Reset the PID error
and integral values
for the outer PID
loop as well

Visualize the setup
phase using the red
LED

Communication with
the gyroscope and
calibration (project 4
and 5)

136

The flight controller: stabilize mode

121 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
122 	 	 gyro_signals();
123 		 RateCalibrationRoll+=RateRoll;
124 		 RateCalibrationPitch+=RatePitch;
125 		 RateCalibrationYaw+=RateYaw;
126 		 delay(1);
127 	 }
128 	 RateCalibrationRoll/=2000;
129 	 RateCalibrationPitch/=2000;
130 	 RateCalibrationYaw/=2000;

131 	 analogWriteFrequency(1, 250);
132 	 analogWriteFrequency(2, 250);
133 	 analogWriteFrequency(3, 250);
134 	 analogWriteFrequency(4, 250);
135 	 analogWriteResolution(12);

136 	 pinMode(6, OUTPUT);
137 	 digitalWrite(6, HIGH);
138 	 battery_voltage();
139 	 if (Voltage > 8.3) { digitalWrite(5, LOW);
140 		 BatteryAtStart=BatteryDefault; }
141 	 else if (Voltage < 7.5) {
142 		 BatteryAtStart=30/100*BatteryDefault ;}
143 	 else { digitalWrite(5, LOW);
144 		 BatteryAtStart=(82*Voltage-580)/100*
		 BatteryDefault; }

145 	 ReceiverInput.begin(14);
146 	 while (ReceiverValue[2] < 1020 ||
	 ReceiverValue[2] > 1050) {
147 		 read_receiver();
148 		 delay(4);
149 	 }
150 	 LoopTimer=micros();
151 }

Set the PWM fre-
quency to 250 Hz
and the resolution to
12 bit for all motors
(project 8)

Show the end of the
setup process and
determine the initial
battery voltage per-
centage (project 9)

SAFETY RELAT-
ED LINES: Avoid
accidental lift off af-
ter the setup process
(project 12)

Ca rbon aeronautics

137

152 void loop() {
153 	 gyro_signals();
154 	 RateRoll-=RateCalibrationRoll;
155 	 RatePitch-=RateCalibrationPitch;
156 	 RateYaw-=RateCalibrationYaw;

157 	 kalman_1d(KalmanAngleRoll,
 KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
158 	 KalmanAngleRoll=Kalman1DOutput[0];
 KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
159 	 kalman_1d(KalmanAnglePitch,
 KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
160 	 KalmanAnglePitch=Kalman1DOutput[0];
 KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

161 	 read_receiver();

162 	 DesiredAngleRoll=0.10*(ReceiverValue[0]-1500);
163 	 DesiredAnglePitch=0.10*(ReceiverValue[1]-1500);

164 	 InputThrottle=ReceiverValue[2];
165 	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

166 	 ErrorAngleRoll=DesiredAngleRoll-
	 KalmanAngleRoll;
167 	 ErrorAnglePitch=DesiredAnglePitch-
	 KalmanAnglePitch;

168 	 pid_equation(ErrorAngleRoll, PAngleRoll,
	 IAngleRoll, DAngleRoll, PrevErrorAngleRoll,
	 PrevItermAngleRoll); 		
169 	 DesiredRateRoll=PIDReturn[0];
	 PrevErrorAngleRoll=PIDReturn[1];
	 PrevItermAngleRoll=PIDReturn[2];
170 	 pid_equation(ErrorAnglePitch, PAnglePitch,
 	 IAnglePitch, DAnglePitch, PrevErrorAnglePitch,
 	 PrevItermAnglePitch);
171 	 DesiredRatePitch=PIDReturn[0];
	 PrevErrorAnglePitch=PIDReturn[1];
	 PrevItermAnglePitch=PIDReturn[2];

Measure the rotation
rates and subtract
the calibration values
(project 5)

Calculate the roll and
pitch angles through
the Kalman filter
(project 15)

Calculate the desired
angles from the re-
ceiver values

Calculate the differ-
ence between the de-
sired and the actual
roll and pitch angles

Calculate the desired
roll and pitch angles
through the outer
loop PID controller

138

The flight controller: stabilize mode

172 	 ErrorRateRoll=DesiredRateRoll-RateRoll;
173 	 ErrorRatePitch=DesiredRatePitch-RatePitch;
174 	 ErrorRateYaw=DesiredRateYaw-RateYaw;

175 	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll,
	 DRateRoll, PrevErrorRateRoll,
	 PrevItermRateRoll);
176 InputRoll=PIDReturn[0];
	 PrevErrorRateRoll=PIDReturn[1];
	 PrevItermRateRoll=PIDReturn[2];
177 	 pid_equation(ErrorRatePitch, PRatePitch,
	 IRatePitch, DRatePitch, PrevErrorRatePitch,
 	 PrevItermRatePitch);
178 InputPitch=PIDReturn[0];
	 PrevErrorRatePitch=PIDReturn[1];
	 PrevItermRatePitch=PIDReturn[2];
179 	 pid_equation(ErrorRateYaw, PRateYaw,
	 IRateYaw, DRateYaw, PrevErrorRateYaw,
 	 PrevItermRateYaw);
180 InputYaw=PIDReturn[0];
	 PrevErrorRateYaw=PIDReturn[1];
	 PrevItermRateYaw=PIDReturn[2];

181 	 if (InputThrottle > 1800) InputThrottle = 1800;

173 	 MotorInput1= 1.024*(InputThrottle-InputRoll
	 -InputPitch-InputYaw);
174 	 MotorInput2= 1.024*(InputThrottle-InputRoll
	 +InputPitch+InputYaw);
175 	 MotorInput3= 1.024*(InputThrottle+InputRoll
	 +InputPitch-InputYaw);
176 	 MotorInput4= 1.024*(InputThrottle+InputRoll
	 -InputPitch+InputYaw);

182 	 if (MotorInput1 > 2000)MotorInput1 = 1999;
183 	 if (MotorInput2 > 2000)MotorInput2 = 1999;
184 	 if (MotorInput3 > 2000)MotorInput3 = 1999;
185 	 if (MotorInput4 > 2000)MotorInput4 = 1999;

Calculate the differ-
ence between the de-
sired and the actual
roll, pitch and yaw
rotation rates. Use
these for the PID
controller of the in-
ner loop (project 12)

Limit the throttle val-
ue to 80% (project
12)

Use the quadcopter
dynamics equations
(project 11)

Limit the maximal
power commands
sent to the motors
(project 12)

Ca rbon aeronautics

139

186 	 int ThrottleIdle=1180;
187 	 if (MotorInput1 < ThrottleIdle) MotorInput1 =
	 ThrottleIdle;
188 	 if (MotorInput2 < ThrottleIdle) MotorInput2 =
	 ThrottleIdle;
189 	 if (MotorInput3 < ThrottleIdle) MotorInput3 =
	 ThrottleIdle;
190 	 if (MotorInput4 < ThrottleIdle) MotorInput4 =
	 ThrottleIdle;

191 	 int ThrottleCutOff=1000;
192 	 if (ReceiverValue[2]<1050) {
193 		 MotorInput1=ThrottleCutOff;
194 		 MotorInput2=ThrottleCutOff;
195 		 MotorInput3=ThrottleCutOff;
196 		 MotorInput4=ThrottleCutOff;
197 		 reset_pid();
198 	 }
199 	 analogWrite(1,MotorInput1);
200 	 analogWrite(2,MotorInput2);
201 	 analogWrite(3,MotorInput3);
202 	 analogWrite(4,MotorInput4);

203 	 battery_voltage();
204 	 CurrentConsumed=Current*1000*0.004/3600+
		 CurrentConsumed;
205 	 BatteryRemaining=(BatteryAtStart-
		 CurrentConsumed)/BatteryDefault*100;
206 	 if (BatteryRemaining<=30) digitalWrite(5, HIGH);
207 	 else digitalWrite(5, LOW);

208 	 while (micros() - LoopTimer < 4000);
209 	 LoopTimer=micros();
210 }

Keep the quadcopter
motors running at
minimally 18% pow-
er during flight

SAFETY RELAT-
ED LINES: make
sure you are able to
turn off the motors

Sent the commands
to the motors

Keep track of battery
level (project 9)

Finish the 250 Hz
control loop

To start and fly your quadcopter with the new stabilize-mode controller, follow the
same steps as you did with your rate-mode controller. You should notice that fly-
ing the quadcopter with your new flight controller is much easier than with the old
one. To further simplify flying, a third and final flight controller will be developed
in the next part to give you a better control over the altitude of the quadcopter.

Start-up and flying your quadcopter

Part III: velocity mode

stabilization mode is a major step to re-
duce the pilot’s effort necessary to keep the
quadcopter in the air. But there is one fea-
ture which would make flying even more
easy; being able to hold your altitude auto-
matically.

in this third part, you will explore the pos-
sibilities of a barometric sensor and adapt
your flight controller accordingly.

this flight controller will be optimized for
indoor navigation only; outdoors the need
for such a controller is limited, because you
generally stay a lot higher above ground.

142

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

VCC

GND

SCL

SDA

CSB

SDC

Measuring altitude
 Project 17

3VBMP-280

SDC
CSB
SDA
SCL
GND
VCC

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

143

Us e a barometer to measure the altitude

To help you holding your quadcopter at a constant altitude, you first need to be
able to measure the altitude. You will use a barometric sensor for the altitude
measurements: the BMP-280.

A barometric sensor is a sensor that measures the atmospheric pressure. Because the
pressure decreases with increasing altitude, the relation between both can be used to
measure the altitude. One of the advantages of a barometric sensor is its ability to
detect very small pressure changes, making it a suitable measurement for your flight
controller. The relation between the atmospheric pressure and the altitude is given
through the barometric formula, which assumes in its standard form a constant tem-
perature of 15°C and a standard pressure at sea level of 1013.25 hPa:

Where the altitude is given in meter and the pressure in hPa. Off course, the tem-
perature when flying your drone is not always 15°C and the pressure at sea level also
differs from 1013.25 hPa, depending on the weather. However, since you are only
interested in the relative change of altitude between startup and a certain position,
both the actual temperature and pressure at sea level does not matter for your flight
controller. The relation between the altitude and pressure as given in the equation is
plotted below.

0

8000

12 000

Altitude [m]

Atmospheric pressure [hPa]
1000800200 400 600

standard pressure
1013.25 hPa

4000

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

Now you understand this essential piece of theory, let’s connect the BMP-280 pres-
sure sensor to your Teensy. Normally you already installed the sensor on your quad-
copter: you can either choose to test directly on the printed circuit board of your
quadcopter, or you can connect the sensor separately using your breadboard.

144

Measuring altitude

As with your MPU-6050, the SCL and SDA pins are connected to pins 19 and 18 of
the Teensy respectively to be able to communicate through the I2C protocol. Because
the BMP-280 sensor has a different address than the MPU-6050 sensor, you can use
the same Teensy pins for communication with both sensors. Connect the ground of
the sensor to the ground of the sensor. Be very carefull to connect the VCC pin
of the sensor to the 3V output on your Teensy, not the 5V output! The BMP-280
sensor is only 3V tolerant so powering it with 5V might damage it. When you’re all
wired up, let’s start programming.

Each individual sensor is calibrated beforehand by the manufacturer. The calibration
values are stored on the sensor’s memory in the form of twelve trimming parameters;
three for the temperature and nine for the pressure. They are all 16-bit signed or
unsigned integers (see datasheet BMP-280). The names of the variables used in this
part of the code correspond to the names in the datasheet of the BMP-280 sensor.

Define the altitude measured by the barometer as a global variable, together with the
altitude at startup. To have a steady value for the altitude at startup, the average of
a large integer number of altitude readouts will be taken (RateCalibrationNumber).

The I2C address for the BMP-280 is 0x76. The pressure and temperature data is read
by starting a burst read from the 6 registers 0xF7 to 0xFC; the measurement of the
raw temperature and pressure is spread out over three registers each. Request 6 bytes
to read the registers; the data comes in unsigned 32 bit format.

The three registers for the temperature and three for the pressure are combined to
form the raw, uncompensated and uncalibrated pressure (adc_P) and temperature
(adc_T). The msb register contains bits 19 to 12, the LSB register contains bits 11 to
4 and the xlsb register contains bits 3 to 0 of the raw measurements.

Coding

Ca rbon aeronautics

145

1 #include <Wire.h>

2 uint16_t dig_T1, dig_P1;
3 int16_t dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
4 int16_t dig_P6, dig_P7, dig_P8, dig_P9;

5 float AltitudeBarometer, AltitudeBarometerStartUp;
6 int RateCalibrationNumber;

7 void barometer_signals(void){

8 	 Wire.beginTransmission(0x76);
9 	 Wire.write(0xF7);
10 	 Wire.endTransmission();
11 	 Wire.requestFrom(0x76,6);
12 	 uint32_t press_msb = Wire.read();
13 	 uint32_t press_lsb = Wire.read();
14 	 uint32_t press_xlsb = Wire.read();
15 	 uint32_t temp_msb = Wire.read();
16 	 uint32_t temp_lsb = Wire.read();
17 	 uint32_t temp_xlsb = Wire.read();

18 	 unsigned long int adc_P = (press_msb << 12) | (
	 press_lsb << 4) | (press_xlsb >>4);
19 	 unsigned long int adc_T = (temp_msb << 12) | (
	 temp_lsb << 4) | (temp_xlsb >>4);

Define the pressure
sensor calibration
values

Define the altitude
variables

Make connection
with the pressure
sensor and read the
raw uncombined
pressure and temper-
ature measurements

Construct the raw
temperature and
pressure measure-
ments

146

Measuring altitude

 To calculate the compensated and calibrated pressure, first the fine resolution temper-
ature value t_fine needs to be determined from the raw temperature values and the
trimming parameters. These calculations are entirely given by the manufacturer in the
datasheet of the BMP-280 and are therefore not further explained here.

The compensated and calibrated pressure p (in Pa) is calculated with these lines from
the raw pressure values and the trimming parameters. Once again, these lines are en-
tirely given by the manufacturer in the datasheet of the BMP-280 and are therefore
not further explained here.

Convert the pressure in Pa to the pressure in hPa and calculate the altitude from the
standard pressure to the barometric formula. Multiply by 100 to convert from meter
to centimetre. This marks the end of the barometric function; continue with the setup
part of the code.

Ca rbon aeronautics

147

 20 	 signed long int var1, var2;
21 	 var1 = ((((adc_T >> 3) - ((signed long int)dig_T1
	 <<1)))* ((signed long int)dig_T2)) >> 11;
22 	 var2 = (((((adc_T >> 4) - ((signed long int)dig_T1
)) * ((adc_T>>4) - ((signed long int)dig_T1)))
 	 >> 12) * ((signed long int)dig_T3)) >> 14;
23 	 signed long int t_fine = var1 + var2;

24 	 unsigned long int p;
25 	 var1 = (((signed long int)t_fine)>>1) - (signed
 	 long int)64000;
26 	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed
	 long int)dig_P6);
27 	 var2 = var2 + ((var1*((signed long int)dig_P5))
	 <<1);
28 	 var2 = (var2>>2)+(((signed long int)dig_P4)
	 <<16);
29 	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13
))>>3)+((((signed long int)dig_P2) *
	 var1)>>1))>>18;
30 	 var1 = ((((32768+var1))*((signed long int)dig_P1))
	 >>15);
31 	 if (var1 == 0) { p=0;}
32 	 p = (((unsigned long int)(((signed long int)
	 1048576)-adc_P)-(var2>>12)))*3125;
33 	 if(p<0x80000000){ p = (p << 1) / ((unsigned
	 long int) var1);}
34 	 else { p = (p / (unsigned long int)var1) * 2; }
35 	 var1 = (((signed long int)dig_P9) * ((signed long
	 int) (((p>>3) * (p>>3))>>13)))>>12;
36 	 var2 = (((signed long int)(p>>2)) *
 	 ((signed long int)dig_P8))>>13;
37 	 p = (unsigned long int)((signed long int)p +
	 ((var1 + var2+ dig_P7) >> 4));

38 	 double pressure=(double)p/100;
39 	 AltitudeBarometer=44330*(1-pow(pressure
	 /1013.25, 1/5.255))*100;
40 }

Construct the fine
resolution tempera-
ture value

Construct the com-
pensated and cali-
brated pressure p

Calculate the altitude

148

Measuring altitude

 In the setup phase, you configure the BMP-280 in such a manner that the sensor is
optimized for indoor navigation. The datasheet recommends to set the power mode
of the sensor in normal mode, with an oversampling setting for the pressure (osrs_p)
of x16 and the similar setting for the temperature (osrs_t) of x2. According to the
datasheet, these settings correspond to osrs_t[2:0] bits of 010, osrs_p[2:0] bits of 101
and mode [1:0] bits of 11 in the data acquisition control register 0xF4, which has a
layout that is visualised in the table:

Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

F4 244 osrs_t[2:0] osrs_p[2:0] mode[1:0]

Binary representation 0 1 0 1 0 1 1 1

Converting the resulting binary representation of 01010111 to a hexadecimal value
gives an address of 0x57.

The configuration register 0xF5, with a layout shown in the second table, sets the
standby time t_sb[2:0], the internal IIR filter filter[2:0] and the SPI interface spi3w_
en[0]. For indoor navigation, the manufacturer recommends to set the IIR filter co-
efficient to 16 (101). As you do not use the SPI interface and the standby time is only
helpful to reduce the power the device needs (which is anyway much smaller than the
power the motors need), these remain on their default values (0):

Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

F5 245 t_sb[2:0] filter[2:0] read only spi3w_en[0]

Binary representation 0 0 0 1 0 1 0 0

Converting the resulting binary representation of 00010100 to a hexadecimal value
gives an address of 0x14.

Import the twelve calibration (e.g. trimming) parameters from the sensor’s memory.
As they are stored in two’s complement, you need to foresee 2x12 or 24 variables. The
i variable will be used to indicate the trimming parameters in the subsequent while
loop during import.

Ca rbon aeronautics

149

41 void setup() {
42 	 Serial.begin(57600);
43 	 pinMode(13, OUTPUT);
44 	 digitalWrite(13, HIGH);
45 	 Wire.setClock(400000);
46 	 Wire.begin();
47 	 delay(250);

48 	 Wire.beginTransmission(0x76);
49 	 Wire.write(0xF4);
50 	 Wire.write(0x57);
51 	 Wire.endTransmission();

52 	 Wire.beginTransmission(0x76);
53 	 Wire.write(0xF5);
54 	 Wire.write(0x14);
55 	 Wire.endTransmission();

56 	 uint8_t data[24], i=0;

Optimize the barom-
eter for indoor navi-
gation

Setup the configura-
tion register

Import the calibra-
tion parameters

150

Measuring altitude

 The register address of the first trimming parameter is 0x88 according to the data-
sheet. Request 24 bytes such that you can pull the information from the 24 registers
0x88 to 0x9E.

Rearrange the trimming parameters, that are split in their two’s complement values,
such that they are readable in one single parameter. You need to carry out this step
for all twelve parameters.

Before you will start your quadcopter, you need the altitude level from which you take
off. Take the average of 2000 iterations to get a steady altitude reference level.

Now it is finally time to read the barometer in the loop part. Call the function and
subtract the average startup altitude to get the altitude variation in flight.

Ca rbon aeronautics

151

 57 	 Wire.beginTransmission(0x76);
58 	 Wire.write(0x88);
59 	 Wire.endTransmission();
60 	 Wire.requestFrom(0x76,24);
61 	 while(Wire.available()){
62 		 data[i] = Wire.read();
63 		 i++;
64 	 }
65 	 dig_T1 = (data[1] << 8) | data[0];
66 	 dig_T2 = (data[3] << 8) | data[2];
67 	 dig_T3 = (data[5] << 8) | data[4];
68 	 dig_P1 = (data[7] << 8) | data[6];
69 	 dig_P2 = (data[9] << 8) | data[8];
70 	 dig_P3 = (data[11]<< 8) | data[10];
71 	 dig_P4 = (data[13]<< 8) | data[12];
72 	 dig_P5 = (data[15]<< 8) | data[14];
73 	 dig_P6 = (data[17]<< 8) | data[16];
74 	 dig_P7 = (data[19]<< 8) | data[18];
75 	 dig_P8 = (data[21]<< 8) | data[20];
76 	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);

77 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
78 		 barometer_signals();
79 		 AltitudeBarometerStartUp+=
		 AltitudeBarometer;
80 		 delay(1);
81 	 }
82 	 AltitudeBarometerStartUp/=2000;
83 }

84 void loop() {
85 	 barometer_signals();
86 	 AltitudeBarometer-=AltitudeBarometerStartUp;
87 	 Serial.print("Altitude [cm]: ");
88 	 Serial.println(AltitudeBarometer);
89 	 delay(50);
90 }

Calculate the altitude
reference level

Read the barometer
and print the altitudes

152

Measuring altitude

Testing the barometric sensor

Test the barometric sensor by moving your breadboard or quadcopter up and
down. You will notice that the readings do not change very fast, are not very con-
stant over a longer time and are overall not very accurate. This is illustrated by the
figure below for changes in altitude between 50 cm and -30 cm. The reason for this
poor performance are rapid pressure changes in the atmosphere, for example due
to wind gusts or opening/closing windows when flying indoors.

The ‘jumpy’ performance of the sensor readings also mean that if you only use a
barometer for your vertical velocity PID, its performance will not be very good. By
now you have probably guessed already how you can solve this issue; use Kalman
filter with another, complimentary measurement. In this case, the additional meas-
urement will be the vertical velocity, obtained through the accelerometer.

-100

-50

50

0

Altitude [cm]

Time [s]
0 30252015105

real altitude

100
barometric sensor

Ca rbon aeronautics

153

154

AccX,i

Accy,i

Accz,i

Accz,i

Accz,i

Accy,i

AccX,i

sin θpitch = AccX

-Accz,i

cos θpitch = Accz,1

Accz,i

AccX

Accz,1

-Accz,i

AccX,i

Accy,i

-AccX,i

AccX

θpitch

θpitch

 Accz,i = Accz,1 . cos θpitch = Accy . sin φroll . cos θpitch

Accz,i = Accz,1 . cos θpitch = Accz . cos φroll . cos θpitch

sin φroll = Accy

Accz,1

cos φroll = Accz

Accz

AccyAccz,1

Accz,1

Accz,1

-Accy,i φrollφroll

Pitch around the inertial y axis
with angle θpitch

Roll around the new X axis
with angle φroll

Accz,i = -AccX . sin θpitch

Measuring vertical velocity

AccX,i

Accy,i

Accz,i

Accz,i

Accz,i

Accy,i

AccX,i

sin θpitch = AccX

-Accz,i

cos θpitch = Accz,1

Accz,i

AccX

Accz,1

-Accz,i

AccX,i

Accy,i

-AccX,i

AccX

θpitch

θpitch

 Accz,i = Accz,1 . cos θpitch = Accy . sin φroll . cos θpitch

Accz,i = Accz,1 . cos θpitch = Accz . cos φroll . cos θpitch

sin φroll = Accy

Accz,1

cos φroll = Accz

Accz

AccyAccz,1

Accz,1

Accz,1

-Accy,i φrollφroll

Pitch around the inertial y axis
with angle θpitch

Roll around the new X axis
with angle φroll

Accz,i = -AccX . sin θpitch

 Project 18

155

The results from measuring the altitude using your barometer are not suffi-
ciently accurate. Fortunately, your quadcopter hovers not only when the alti-
tude stays the same, but also when the vertical velocity is equal to zero. Meas-
uring this vertical velocity is surprisingly easy using your accelerometer.

Imagine that there exist three inertial directions for the acceleration of your quad-
copter: AccX,i, AccY,i and AccZ,i. These are always aligned respectively horizontally and
vertically to the surface of the earth and are coloured in red in the figure to the left.
If your accelerometer or quadcopter turns, these red inertial axes keep pointing in
the same direction. This means that AccZ,i will always be perpendicular to the earth’s
surface and is hence suitable for measuring the vertical velocity after integration.

When your quadcopter and its accelerometer rolls and pitches, it does not measure
the acceleration in its inertial axes anymore, but it measures along the axes that are
defined on the accelerometer itself. These are the acceleration vectors AccX, AccY
and AccZ. All three vectors will have a component that can be related back to the
acceleration along the inertial Z axis AccZ,i. Using basic trigonometry and the roll φrol
and pitch θpitch angles, you can calculate the total acceleration along the inertial Z axis
AccZ,i by adding the components of the acceleration AccX, AccY and AccZ along this
axis. This is visualized on the figure to the left. The acceleration in the X direction
gives the following component in the inertial Z axis:

The acceleration in the Y and Z direction of the accelerometer give the following
components in the inertial Z axis:

This means that the total acceleration in the inertial Z axis can be calculated by adding
all separate components:

Let's test this mathematical representation for the acceleration in the inertial Z axis
with the MPU-6050 and your Teensy.

Me asure vertical velocity with an accelerometer

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

156

Measuring vertical velocity

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

To run this code, you once again need to connect your accelerometer to your Teensy.
You can test this part either on a breadboard or directly on the printed circuit board
of your quadcopter.

Define two additional variables for this part: the acceleration in the inertial Z axis
AccZ,i and the velocity in the inertial Z direction, which will be obtained by integrating
AccZ,i.

Coding

3V

XDA

VCC

INT
ADO
XCL

SDA
SCL
GND

MPU-6050

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

Ca rbon aeronautics

157

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;
3 float AngleRoll, AnglePitch;
4 float AccX, AccY, AccZ;

5 float AccZInertial;
6 float VelocityVertical;

7 float LoopTimer;
8 void gyro_signals(void) {
9 	 Wire.beginTransmission(0x68);
10 	 Wire.write(0x1A);
11 	 Wire.write(0x05);
12 	 Wire.endTransmission();
13 	 Wire.beginTransmission(0x68);
14 	 Wire.write(0x1C);
15 	 Wire.write(0x10);
16 	 Wire.endTransmission();
17 	 Wire.beginTransmission(0x68);
18 	 Wire.write(0x3B);
19 	 Wire.endTransmission();
20 	 Wire.requestFrom(0x68,6);
21 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
22 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
23 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();
24 	 Wire.beginTransmission(0x68);
25 	 Wire.write(0x1B);
26 	 Wire.write(0x8);
27 	 Wire.endTransmission();
28 	 Wire.beginTransmission(0x68);
29 	 Wire.write(0x43);
30 	 Wire.endTransmission();
31 	 Wire.requestFrom(0x68,6);
32 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
33 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
34 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

Initialize the gyro and
accelerometer varia-
bles (project 14)

Define the accelera-
tion and velocity var-
iables

Define the gyro/ac-
celerometer function
(project 14)

158

Measuring vertical velocity

 The acceleration in the inertial Z axis is calculated through the formula you have
developed on the first page of this project. Do not forget to transform the roll and
pitch angles from degrees to radians by multiplying them with �/180, as the sines and
cosines functions in Arduino only accept radians. The resulting acceleration AccZIn-
ertial has the same units as AccX, AccY and AccZ, namely the gravitational constant
equivalent g. Be mindful that for the flight controller, the angles will come from the
one-dimensional Kalman filter to eliminate the effect of the quadcopter vibrations.

The acceleration in the inertial Z axis is equal to 1 g even when the accelerometer is
stationary because of the gravitation. Therefore you need to subtract 1 g from the ac-
celeration in order to obtain the values for the vertical acceleration of the quadcopter.
Because 1 g is equal to 9.81 m/s², you can multiply the acceleration with this constant
to get the values in m/s². The unit m/s² is too large to be practical so multiply the
value with 100 cm/m to get the acceleration in cm/s².

To obtain the vertical velocity, perform an integration by adding the previous velocity
to the acceleration multiplied with the length of one loop, 0.004 seconds. You now
have the velocity in cm/s.

Print out the value for the vertical velocity to be able to test your code.

35 	 RateRoll=(float)GyroX/65.5;
36 	 RatePitch=(float)GyroY/65.5;
37 	 RateYaw=(float)GyroZ/65.5;

38 	 AccX=(float)AccXLSB/4096-0.050.05;
39 	 AccY=(float)AccYLSB/4096+0.01+0.01;
40 	 AccZ=(float)AccZLSB/4096-0.11-0.11;

41 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);
42 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
43 }

Do not forget to put
your own accelerom-
eter calibration values
here here (project 14)

Ca rbon aeronautics

159

Communication with
the gyroscope and
calibration (project 4
and 5)

Calculate the acceler-
ation in the inertial Z
axis

Convert the accelera-
tion to cm/s²

Calculate and print
the vertical velocity

44 void setup() {
45 	 Serial.begin(57600);
46 	 pinMode(13, OUTPUT);
47 	 digitalWrite(13, HIGH);
48 	 Wire.setClock(400000);
49 	 Wire.begin();
50 	 delay(250);
51 	 Wire.beginTransmission(0x68);	
52 	 Wire.write(0x6B);
53 	 Wire.write(0x00);
54 	 Wire.endTransmission();
55 }
56 void loop() {
57 	 gyro_signals();
58 	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll*
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;

59 	 AccZInertial=(AccZInertial-1)*9.81*100;

60 	 VelocityVertical=VelocityVertical
		 +AccZInertial*0.004;

61 	 Serial.print("Vertical velocity [cm/s]: ");
62 	 Serial.println(VelocityVertical);

63 while (micros() - LoopTimer < 4000);
64 		 LoopTimer=micros();
65 }

160

Measuring vertical velocity

When testing the code on the previous pages, you will notice that the calculated
vertical velocity changes linearly with time even when the accelerometer/quad-
copter is not moving. The rate of change depends on how well you performed
your accelerometer calibration as this is once again an example of accumulation
of small integration errors. This issue is represented in the figure below, where
the vertical velocity calculated through accelerometer integration is visualized, as
opposed to the real vertical velocity. It is clear that the error on the vertical velocity
becomes so large after a couple of seconds, that this method of measuring and
calculating the vertical velocity gives not sufficiently satisfactory results to use in
your control system. You will use a second Kalman filter to combine the altitude
and vertical velocity measurements in order to obtain an accurate value for the
vertical velocity.

-100

-50

50

0

Vertical velocity [cm/s]

Time [s]
0 15105

real velocity

accelerometer integration

100

150

Testing the vertical velocity code

Ca rbon aeronautics

161

162

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf

Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

3V
22

19
18

21
20

16

7
5

14

8
6

3
4

9
0

5V G
2

15
17

10
11

VCC

GND

SCL

SDA

CSB

SDC

The Kalman filter - two dimensions

3VBMP-280

SDC
CSB
SDA
SCL
GND
VCC

XDA

VCC

INT
ADO
XCL

SDA
SCL
GND

MPU-6050

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

 Project 19

163

Just as you did when measuring the roll and pitch angles, you will use another
Kalman filter to combine the accelerometer and barometer measurements in
order to obtain the vertical velocity. Because the state of your system contains
two variables - the vertical velocity and the altitude - this Kalman filter will be
two dimensional.

The approach you will follow to construct the two dimensional Kalman filter is very
similar as the one dimensional case. However, you will now try to do it in a more
structured way. The state of our system in this case consists of both the vertical
velocity Velocitykalman and the altitude Altitudekalman. Put both variables in the state
vector S:

Knowing that the measurement you will use to predict the vertical velocity and alti-
tude is the acceleration in the z direction, AccZ,inertial, you just need to integrate once to
obtain the velocity in the z direction:

This gives a fully similar equation as the one you obtained when integrating the roll
rate to get the roll angle in project 15. Integrating the above equation a second time
gives you the altitude:

Both equations can be summarized in state space matrix form as:

This corresponds to the general equation for the state prediction S(k)=F.S(k-
1)+G.U(k). The uncertainty on this prediction is calculated through P(k)=F.P(k-1)
FT+Q. Because you will set both the altitude and velocity at startup to zero, the initial
prediction for S at iteration k=0 is equal to:

De termine the vertical velocity accurately

F

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

G U

164

The Kalman filter - two dimensions

Because this initial prediction for S is 100% accurate, the initial uncertainty on the
prediction P can be set to zero as well:

To be able to calculate to prediction uncertainty, you still need the process uncertain-
ty. Let’s take a standard deviation of 10 cm/s² on the accelerometer values; together
with the control matrix G and because Q is essentially the variance of the process
uncertainty, you get:

The observation matrix H links the state with the measurement M; the error between
both will be multiplied by the Kalman gain. M is in this case the altitude measured by
the barometer, meaning that you can write the error between the measurement and
the state as:

Writing this more generally in matrix form gives an observation matrix H equal to [1
0] and the measurement vector M equal to Altitudekalman:

With the observation matrix H, calculate the intermediate matrix L(k)=H.P(k).HT+R.
R is the uncertainty on the barometer altitude measurement; let’s take a standard devi-
ation of 30 cm yielding R=30². From here onward, the Kalman gain can easily be cal-
culated with the formula K=P(k).HT.L(k)-1 and the update of the prediction through
S(k)=S(k)+K.(M-H.S). Finally the uncertainty on the predicted state is updated using
the equation P(k)=(I-K.F)P(k). In this case, I is the 2x2 identity matrix:

And this is all there is to it, you now have a two-dimensional Kalman filter! Let’s try
to implement your new filter in Arduino. For this part you need both the MPU-6050
gyro and the BMP-280 barometer, so either test the code directly on the printed cir-
cuit board of you quadcopter, or connect the sensor and Teensy separately using your
breadboard as visualized on the previous page. Be careful to connect the Vcc of
the barometer to the 3.3V power source of your Teensy and not the 5V power
source to avoid damaging the sensor.

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

S =
[
Altitudekalman

V elocitykalman

]

V elocitykalman(k) = V elocitykalman(k − 1) + Ts · AccZ,inertial(k)

Altitudekalman(k) = Altitudekalman(k−1)+Ts·V elocitykalman+0.5·T 2
s ·AccZ,inertial(k)

[
Altitudekalman(k)
V elocitykalman(k)

]
=

[
1 Ts

0 1

]
·
[
Altitudekalman(k − 1)
V elocitykalman(k − 1)

]
+

[
0.5 · T 2

s

Ts

]
· AccZ,inertial(k)

S(k = 0) =
[
0
0

]

P (k = 0) =
[
0 0
0 0

]

Q = G · GT · 102

Altitudebarometer(k) − Altitudekalman(k)

Altitudebarometer(k) − Altitudekalman(k)

Altitudekalman(k) −
[
1 0

]
·

[
Altitudekalman(k)
V elocitykalman(k)

]

I =
[
1 0
0 1

]

M H

Ca rbon aeronautics

165

1. Predict the current state of the system:

2. Calculate the uncertainty of the prediction:

3. Calculate the Kalman gain from the uncertainties on the predictions and
measurements:

4. Update the predicted state of the system with the measurement of the
state through the Kalman gain:

5. Update the uncertainty of the predicted state:

S=state vector

F=state transition matrix

G=control matrix

U=input variable (AccZ,inertial)

P=prediction uncertainty vector

Q=process uncertainty

L= Intermediate matrix
K=Kalman gain
H=Observation matrix
R=Measurement uncertainty (302)

M=measurement vector (AltitudeKalman)

I=unity matrix

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F) · P (k)

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

[
Altitudekalman

V elocitykalman

]

[
1 Ts

0 1

]

[
0.5 · T 2

s

Ts

]

P (k = 0) =
[
0 0
0 0

]

G · GT · 102

[
1 0

]

[
1 0
0 1

]

Two-dimensional form of the Kalman filter

166

The Kalman filter - two dimensions

 Use a dedicated library to be able to implement and calculate with matrices: the Ba-
sicLinearAlgebra library. Make sure you import it by clicking on Sketch → include
library → manage libraries because this is not a standard library. A namespace called
BLA is used to define the matrices; for each matrix you need to declare the size; H=[1
0] for example is a 1x2 matrix while the state space S is a 2x1 matrix. Do not forget to
define the altitude and vertical velocity that will be predicted with the Kalman filter.

Construct the function that will hold the two-dimensional Kalman filter. The acceler-
ation value that will come from the accelerometer AccZInertial has to be transformed
to the 1x1 matrix Acc. The prediction for the state space is calculated according to
the formula seen in the theory of this project, together with the uncertainty on the
prediction. Calculate the transpose of matrix F (FT) by placing a ~ in front of the
matrix. For the calculation of the Kalman gain, the matrix L should be inverted (L-1)
which you can do with the function Invert. The measurement matrix M consists only
of the measured altitude with the barometer. Now everything is ready to calculate the
updated state vector S; extract the altitude (in cm) from the first position in the vector
and the vertical velocity (in cm/s) from the second position. Do not forget to update
the uncertainty on the prediction.

Coding

Ca rbon aeronautics

167

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;
3 float AngleRoll, AnglePitch;
4 float AccX, AccY, AccZ;
5 float AccZInertial;
6 float LoopTimer;
7 uint16_t dig_T1, dig_P1;
8 int16_t dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
9 int16_t dig_P6, dig_P7, dig_P8, dig_P9;
10 float AltitudeBarometer, AltitudeBarometerStartUp;
11 int RateCalibrationNumber;

12 #include <BasicLinearAlgebra.h>
13 using namespace BLA;
14 float AltitudeKalman, VelocityVerticalKalman;
15 BLA::Matrix<2,2> F; BLA::Matrix<2,1> G;
16 BLA::Matrix<2,2> P; BLA::Matrix<2,2> Q;
17 BLA::Matrix<2,1> S; BLA::Matrix<1,2> H;
18 BLA::Matrix<2,2> I; BLA::Matrix<1,1> Acc;
19 BLA::Matrix<2,1> K; BLA::Matrix<1,1> R;
20 BLA::Matrix<1,1> L; BLA::Matrix<1,1> M;

21 void kalman_2d(void){
22 	 Acc = {AccZInertial};
23 	 S=F*S+G*Acc;
24 	 P=F*P*~F+Q;
25 	 L=H*P*~H+R;
26 	 K=P*~H*Invert(L);
27 	 M={AltitudeBarometer};
28 	 S=S+K*(M-H*S);
29 	 AltitudeKalman=S(0,0);
30 	 VelocityVerticalKalman=S(1,0);
31 	 P=(I-K*H)*P;
32 }

33 void barometer_signals(void){
34 	 Wire.beginTransmission(0x76);
35 	 Wire.write(0xF7);
36 	 Wire.endTransmission();
37 	 Wire.requestFrom(0x76,6);
38 	 uint32_t press_msb = Wire.read();

Include all variables
for the gyro and ac-
celerometer (project
14)

Include all variables
for the barometer
(project 17)

Define the matrices
for the two-dimen-
sional Kalman filter

Create the function
that holds the two
dimensional Kalman
filter

Calculate the altitude
in cm from the baro-
metric measurement
(project 17)

168

The Kalman filter - two dimensions

39 	 uint32_t press_lsb = Wire.read();
40 	 uint32_t press_xlsb = Wire.read();
41 	 uint32_t temp_msb = Wire.read();
42 	 uint32_t temp_lsb = Wire.read();
43 	 uint32_t temp_xlsb = Wire.read();
44 	 unsigned long int adc_P = (press_msb << 12) | (
	 press_lsb << 4) | (press_xlsb >>4);
45 	 unsigned long int adc_T = (temp_msb << 12) | (
	 temp_lsb << 4) | (temp_xlsb >>4);
46 	 signed long int var1, var2;
47 	 var1 = ((((adc_T >> 3) - ((signed long int)dig_T1
	 <<1)))* ((signed long int)dig_T2)) >> 11;
48 	 var2 = (((((adc_T >> 4) - ((signed long int)dig_T1
)) * ((adc_T>>4) - ((signed long int)dig_T1)))
 	 >> 12) * ((signed long int)dig_T3)) >> 14;
49 	 signed long int t_fine = var1 + var2;
50 	 unsigned long int p;
51 	 var1 = (((signed long int)t_fine)>>1) - (signed
 	 long int)64000;
52 	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed
	 long int)dig_P6);
53 	 var2 = var2 + ((var1*((signed long int)dig_P5))
	 <<1);
54 	 var2 = (var2>>2)+(((signed long int)dig_P4)
	 <<16);
55 	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13
))>>3)+((((signed long int)dig_P2) *
	 var1)>>1))>>18;
56 	 var1 = ((((32768+var1))*((signed long int)dig_P1))
	 >>15);
57 	 if (var1 == 0) { p=0;}
58 	 p = (((unsigned long int)(((signed long int)
	 1048576)-adc_P)-(var2>>12)))*3125;
59 	 if(p<0x80000000){ p = (p << 1) / ((unsigned
	 long int) var1);}
60 	 else { p = (p / (unsigned long int)var1) * 2; }
61 	 var1 = (((signed long int)dig_P9) * ((signed long
	 int) (((p>>3) * (p>>3))>>13)))>>12;
62 	 var2 = (((signed long int)(p>>2)) *
 	 ((signed long int)dig_P8))>>13;

Ca rbon aeronautics

169

63 	 p = (unsigned long int)((signed long int)p +
	 ((var1 + var2+ dig_P7) >> 4));
64 	 double pressure=(double)p/100;
65 	 AltitudeBarometer=44330*(1-pow(pressure
	 /1013.25, 1/5.255))*100;
66 }
67 void gyro_signals(void) {
68 	 Wire.beginTransmission(0x68);
69 	 Wire.write(0x1A);
70 	 Wire.write(0x05);
71 	 Wire.endTransmission();
72 	 Wire.beginTransmission(0x68);
73 	 Wire.write(0x1C);
74 	 Wire.write(0x10);
75 	 Wire.endTransmission();
76 	 Wire.beginTransmission(0x68);
77 	 Wire.write(0x3B);
78 	 Wire.endTransmission();
79 	 Wire.requestFrom(0x68,6);
80 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
81 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
82 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();
83 	 Wire.beginTransmission(0x68);
84 	 Wire.write(0x1B);
85 	 Wire.write(0x8);
86 	 Wire.endTransmission();
87 	 Wire.beginTransmission(0x68);
88 	 Wire.write(0x43);
89 	 Wire.endTransmission();
90 	 Wire.requestFrom(0x68,6);
91 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
92 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
93 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
94 	 RateRoll=(float)GyroX/65.5;
95 	 RatePitch=(float)GyroY/65.5;
96 	 RateYaw=(float)GyroZ/65.5;
97 	 AccX=(float)AccXLSB/4096-0.050.05;
98 	 AccY=(float)AccYLSB/4096+0.01+0.01;

Define the gyro/ac-
celerometer function
(project 14)

Do not forget to put
your own accelerom-
eter calibration values
here here (project 14)

170

The Kalman filter - two dimensions

99 	 AccZ=(float)AccZLSB/4096-0.11-0.11;
100 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);
101 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
102 }
103 void setup() {
104 	 Serial.begin(57600);
105 	 pinMode(13, OUTPUT);
106 	 digitalWrite(13, HIGH);
107 	 Wire.setClock(400000);
108 	 Wire.begin();
109 	 delay(250);
110 	 Wire.beginTransmission(0x68);	
111 	 Wire.write(0x6B);
112 	 Wire.write(0x00);
113 	 Wire.endTransmission();
114 	 Wire.beginTransmission(0x76);
115 	 Wire.write(0xF4);
116 	 Wire.write(0x57);
117 Wire.endTransmission();
118 	 Wire.beginTransmission(0x76);
119 	 Wire.write(0xF5);
120 	 Wire.write(0x14);
121 	 Wire.endTransmission();
122 	 uint8_t data[24], i=0;
123 	 Wire.beginTransmission(0x76);

Setup the MPU-6050
(project 4)

Setup the BMP-280
(project 17)

In the final setup step, you need to initialize the matrices and vectors that you will
use in the two dimensional Kalman filter. Matrices F, G, H, I, Q and R stay constant
throughout all iterations and were already defined in the theory part at the beginning
of this project, with TS=0.004 s. For matrix P and vector S, you only need to set the
initial value, when k is equal to zero. As seen in the theory, you can set all elements of
these matrices to zero since you know the exact starting altitude and speed, namely 0
cm and 0 cm/s respectively.

Ca rbon aeronautics

171

124 	 Wire.write(0x88);
125 	 Wire.endTransmission();
126 	 Wire.requestFrom(0x76,24); 	
127 	 while(Wire.available()){
128 		 data[i] = Wire.read();
129 		 i++;
130 	 }
131 	 dig_T1 = (data[1] << 8) | data[0];
132 	 dig_T2 = (data[3] << 8) | data[2];
133 	 dig_T3 = (data[5] << 8) | data[4];
134 	 dig_P1 = (data[7] << 8) | data[6];
135 	 dig_P2 = (data[9] << 8) | data[8];
136 	 dig_P3 = (data[11]<< 8) | data[10];
137 	 dig_P4 = (data[13]<< 8) | data[12];
138 	 dig_P5 = (data[15]<< 8) | data[14];
139 	 dig_P6 = (data[17]<< 8) | data[16];
140 	 dig_P7 = (data[19]<< 8) | data[18];
141 	 dig_P8 = (data[21]<< 8) | data[20];
142 	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);
143 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
144 		 barometer_signals();
145 		 AltitudeBarometerStartUp+=
146 		 AltitudeBarometer; delay(1);
147 	 }
148 	 AltitudeBarometerStartUp/=2000;

149 	 F = {1, 0.004,
150 	 0, 1};	
151 	 G = {0.5*0.004*0.004,
152 	 0.004};
153 	 H = {1, 0};
154 	 I = {1, 0,
155 	 0, 1};
156 	 Q = G * ~G*10*10;
157 	 R = {30*30};
158 	 P = {0, 0,
159 	 0, 0};
160 	 S = {0,
161 	 0};

Calculate the altitude
reference level (pro-
ject 17)

Define the Kalman
matrix values

172

The Kalman filter - two dimensions

 Measure the acceleration in the inertial Z direction and the altitude for each iteration
of TS=0.004. Both measurements are subsequently used in the Kalman filter function
to calculate the Kalman altitude and velocity.

Print out the Kalman-filtered values for both the altitude and the velocity.

When you test the 2D Kalman filter, you will notice that the values for both the alti-
tude and the vertical velocity are sometimes significantly off. This is due to changes
in the atmospheric pressure which is unfortunately inherent to the type of meas-
urement. However, when implementing the filter in the flight control controller and
testing the quadcopter, you will not really notice this when flying because you use a
velocity control and not an altitude control. Even if the measured velocity is slightly
wrong, you will be able to hover the quadcopter by adjusting the throttle stick on
your radiocontroller to match this velocity; this will happen intuitively when flying.

The evolution of the Kalman gain in time is given in the figure to the right. The
Kalman gain is zero initially, because you have set the initial uncertainty matrix P
to zero. After a few seconds, the Kalman gain reaches its steady state at 0.0033 for
the altitude calculations and 0.0013 for the vertical velocity. This means physically
that the Kalman filter relies heavily on the accelerometer integration and less on
the barometer measurements, so the latter is used mostly to ensure that the altitude
obtained from accelerometer integration does not diverges too far.

Testing the two-dimensional Kalman filter

Ca rbon aeronautics

173

162 	 LoopTimer=micros();
163 }

164 void loop() {
165 	 gyro_signals();
166 	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll*
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;
167 	 AccZInertial=(AccZInertial-1)*9.81*100;
168 	 barometer_signals();
169 	 AltitudeBarometer-=AltitudeBarometerStartUp;
170 	 kalman_2d();

171 	 Serial.print("Altitude [cm]: ");
172 	 Serial.print(AltitudeKalman);
173 	 Serial.print(" Vertical velocity [cm/s]: ");
174 	 Serial.println(VelocityVerticalKalman);

175 	 while (micros() - LoopTimer < 4000);
176 		 LoopTimer=micros();
177 }

Calculate the Kalman
altitude and velocity

Print the altitude and
velocity

0

0.001

0.002

0.003

kalman gain

Time [s]
860 2 4

kalman gain velocity
(steady state ≈ 0.0013)

kalman gain altitude
(steady state ≈ 0.0033)

174

Velocity
Controller

motor throttle
command

motor power

quadcopter
altitude

Barometer

measured
altitude

desired
vertical velocity +

-

vertical velocity
error

gyroscope and
Accelerometer

quadcopter
vertical velocity

measured
vertical velocity

kalman filter

Kalman
vertical velocity

150 cm/s

ReceiverValue[2] (=channel 3)1000 µs 1500 µs

desiredVelocityVertical

2000 µs

desiredVelocity = 0.3 (ReceiverValue - 1500)

0 cm/s

150 cm/s

The flight controller: velocity mode
 Project 20

175

The second flight controllers you programmed allowed you to stabilize your
quadcopter based on its angles, which makes flying a lot easier. By addition-
ally controlling the vertical velocity, the effort of flying will be reduced even
more.

The flight controller you will program during this project will allow you to control
the vertical velocity of your quadcopter, instead of the throttle. You can compare this
with your own car; with the accelerator pedal, you control the acceleration of your
car but not the speed. In order to stay at a constant speed, you almost continuously
have to adjust the pedal in order to remain at a more or less equal speed. This was
also true for your quadcopter when using the previous two flight controllers; you had
to adjust the throttle stick almost continuously in order to hover. The velocity control
that you will develop in this project is similar to the cruise control in your car; you set
the speed once and the motor of your car will adjust its power in order to keep going
at the required speed.

The control loop you will implement for the vertical velocity is a similar loop as you
used for the rate control in your first flight controller. There are only two noticeable
differences: the output for this controller is the throttle input command, instead of
the roll, pitch and yaw commands. Furthermore, the measurement of the vertical ve-
locity goes through the two dimensional Kalman filter as constructed in the previous
project. The velocity controller is once again a PID controller for which you can use
the already programmed function in Arduino. Good P, I and D parameters for the
velocity control are:

•	 PVelocity Vertical= 3.5
•	 IVelocity Vertical= 0.0015
•	 DVelocity Vertical=0.01

Finally, you also need to do decide how the vertical velocity input values correspond
with the receiver commands. A too steep correlation will lead to very sensitive con-
trols, while a more horizontal correlation will lead to insensitive controls. A good
balance for the controls is when the maximal and minimal receiver values correspond
with a vertical velocity of respectively ± 150 cm/s.

You are now ready to program your third and final flight controller, so let’s start!

Ho ver your quadcopter with ease

176

The flight controller: velocity mode

Coding

1 #include <Wire.h>
2 float RateRoll, RatePitch, RateYaw;
3 float RateCalibrationRoll, RateCalibrationPitch,
	 RateCalibrationYaw;
4 int RateCalibrationNumber;
5 #include <PulsePosition.h>
6 PulsePositionInput ReceiverInput(RISING);
7 float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
8 int ChannelNumber=0;
9 float Voltage, Current, BatteryRemaining, BatteryAtStart;
10 float CurrentConsumed=0;
11 float BatteryDefault=1300;
12 uint32_t LoopTimer;
13 float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
14 float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
15 float InputRoll, InputThrottle, InputPitch, InputYaw;
16 float PrevErrorRateRoll, PrevErrorRatePitch,
	 PrevErrorRateYaw;
17 float PrevItermRateRoll, PrevItermRatePitch,
	 PrevItermRateYaw;
18 float PIDReturn[]={0, 0, 0};
19 float PRateRoll=0.6; float PRatePitch=PRateRoll;
	 float PRateYaw=2;
20 float IRateRoll=3.5; float IRatePitch=IRateRoll;
	 float IRateYaw=12;
21 float DRateRoll=0.03; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;
22 float MotorInput1, MotorInput2, MotorInput3,
	 MotorInput4;
23 float AccX, AccY, AccZ;
24 float AngleRoll, AnglePitch;

25 float KalmanAngleRoll=0,
	 KalmanUncertaintyAngleRoll=2*2;
26 float KalmanAnglePitch=0,
	 KalmanUncertaintyAnglePitch=2*2;
27 float Kalman1DOutput[]={0,0};

Initialize the same
variables that you al-
ready needed for rate
mode (project 12)

Initialize the accel-
erometer variables
(project 14)

Define the Kalman
variables (project 15)

Ca rbon aeronautics

177

28 float DesiredAngleRoll, DesiredAnglePitch;
29 float ErrorAngleRoll, ErrorAnglePitch;
30 float PrevErrorAngleRoll, PrevErrorAnglePitch;
31 float PrevItermAngleRoll, PrevItermAnglePitch;
32 float PAngleRoll=2; float PAnglePitch=PAngleRoll;
33 float IAngleRoll=0; float IAnglePitch=IAngleRoll;
34 float DAngleRoll=0; float DAnglePitch=DAngleRoll;
35 uint16_t dig_T1, dig_P1;
36 int16_t dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
37 int16_t dig_P6, dig_P7, dig_P8, dig_P9;
38 float AltitudeBarometer, AltitudeBarometerStartUp;
39 float AccZInertial;
40 #include <BasicLinearAlgebra.h>
41 using namespace BLA;
42 float AltitudeKalman, VelocityVerticalKalman;
43 BLA::Matrix<2,2> F; BLA::Matrix<2,1> G;
44 BLA::Matrix<2,2> P; BLA::Matrix<2,2> Q;
45 BLA::Matrix<2,1> S; BLA::Matrix<1,2> H;
46 BLA::Matrix<2,2> I; BLA::Matrix<1,1> Acc;
47 BLA::Matrix<2,1> K; BLA::Matrix<1,1> R;
48 BLA::Matrix<1,1> L; BLA::Matrix<1,1> M;

49 float DesiredVelocityVertical, ErrorVelocityVertical;
50 float PVelocityVertical=3.5;
 float IVelocityVertical=0.0015;
 float DVelocityVertical=0.01;
51 float PrevErrorVelocityVertical,
	 PrevItermVelocityVertical;

52 void kalman_2d(void){
53 	 Acc = {AccZInertial};
54 	 S=F*S+G*Acc;
55 	 P=F*P*~F+Q;
56 	 L=H*P*~H+R;
57 	 K=P*~H*Invert(L);
58 	 M = {AltitudeBarometer};
59 	 S=S+K*(M-H*S);
60 	 AltitudeKalman=S(0,0);
61 	 VelocityVerticalKalman=S(1,0);
62 	 P=(I-K*H)*P;
63 }

Define the values
necessary for the out-
er loop PID control-
ler, including the P,
I and D parameters
(project 16)

Define the variables
that you need for
the two dimensional
Kalman filter and ba-
rometer (project 19)

Define the values
necessary for the ve-
locity PID controller,
including the P, I and
D parameters

Define the two di-
mensional Kalman
filter (project 19)

178

The flight controller: velocity mode

64 void barometer_signals(void){
65 	 Wire.beginTransmission(0x76);
66 	 Wire.write(0xF7);
67 	 Wire.endTransmission();
68 	 Wire.requestFrom(0x76,6);
69 	 uint32_t press_msb = Wire.read();
70 	 uint32_t press_lsb = Wire.read();
71 	 uint32_t press_xlsb = Wire.read();
72 	 uint32_t temp_msb = Wire.read();
73 	 uint32_t temp_lsb = Wire.read();
74 	 uint32_t temp_xlsb = Wire.read();
75 	 unsigned long int adc_P = (press_msb << 12) | (
	 press_lsb << 4) | (press_xlsb >>4);
76 	 unsigned long int adc_T = (temp_msb << 12) | (
	 temp_lsb << 4) | (temp_xlsb >>4);
77 	 signed long int var1, var2;
78 	 var1 = ((((adc_T >> 3) - ((signed long int)dig_T1
	 <<1)))* ((signed long int)dig_T2)) >> 11;
79 	 var2 = (((((adc_T >> 4) - ((signed long int)dig_T1
)) * ((adc_T>>4) - ((signed long int)dig_T1)))
 	 >> 12) * ((signed long int)dig_T3)) >> 14;
80 	 signed long int t_fine = var1 + var2;
81 	 unsigned long int p;
82 	 var1 = (((signed long int)t_fine)>>1) - (signed
 	 long int)64000;
83 	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed
	 long int)dig_P6);
84 	 var2 = var2 + ((var1*((signed long int)dig_P5))
	 <<1);
85 	 var2 = (var2>>2)+(((signed long int)dig_P4)
	 <<16);
86 	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13
))>>3)+((((signed long int)dig_P2) *
	 var1)>>1))>>18;
87 	 var1 = ((((32768+var1))*((signed long int)dig_P1))
	 >>15);
88 	 if (var1 == 0) { p=0;}
89 	 p = (((unsigned long int)(((signed long int)
	 1048576)-adc_P)-(var2>>12)))*3125;
90 	 if(p<0x80000000){ p = (p << 1) / ((unsigned
	 long int) var1);}

Calculate the altitude
in cm from the baro-
metric measurement
(project 17)

Ca rbon aeronautics

179

91 	 else { p = (p / (unsigned long int)var1) * 2; }
92 	 var1 = (((signed long int)dig_P9) * ((signed long
	 int) (((p>>3) * (p>>3))>>13)))>>12;
93 	 var2 = (((signed long int)(p>>2)) *
 	 ((signed long int)dig_P8))>>13;
94 	 p = (unsigned long int)((signed long int)p +
	 ((var1 + var2+ dig_P7) >> 4));
95 	 double pressure=(double)p/100;
96 	 AltitudeBarometer=44330*(1-pow(pressure
	 /1013.25, 1/5.255))*100;
97 }
98 void kalman_1d(float KalmanState,
 float KalmanUncertainty, float KalmanInput,
 float KalmanMeasurement) {
99 	 KalmanState=KalmanState+0.004*KalmanInput;
100 	 KalmanUncertainty=KalmanUncertainty + 0.004
	 * 0.004 * 4 * 4;
101 	 float KalmanGain=KalmanUncertainty * 1/
	 (1*KalmanUncertainty + 3 * 3);
102 	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
103 	 KalmanUncertainty=(1-KalmanGain) *
 	 KalmanUncertainty;
104 	 Kalman1DOutput[0]=KalmanState;
	 Kalman1DOutput[1]=KalmanUncertainty;
105 }
106 void battery_voltage(void) {
107 	 Voltage=(float)analogRead(15)/62;
108 	 Current=(float)analogRead(21)*0.089;
109 }
110 void read_receiver(void){
111 	 ChannelNumber = ReceiverInput.available();	
112 	 if (ChannelNumber > 0) {
113 	 for (int i=1; i<=ChannelNumber;i++){
114 		 ReceiverValue[i-1]=ReceiverInput.read(i);
115 	 }
116 	 }
117 }
118 void gyro_signals(void) {
119 	 Wire.beginTransmission(0x68);
120 	 Wire.write(0x1A);

Define the 1D Kal-
man filter function
(project 15)

Battery voltage func-
tion (project 9)

Receiver function
(project 7)

Gyro and accelerom-
eter function (project
14)

180

The flight controller: velocity mode

121 	 Wire.write(0x05);
122 	 Wire.endTransmission();
123 	 Wire.beginTransmission(0x68);
124 	 Wire.write(0x1C);
125 	 Wire.write(0x10);
126 	 Wire.endTransmission();
127 	 Wire.beginTransmission(0x68);
128 	 Wire.write(0x3B);
129 	 Wire.endTransmission();
130 	 Wire.requestFrom(0x68,6);
131 	 int16_t AccXLSB = Wire.read() << 8 |
	 Wire.read();
132 	 int16_t AccYLSB = Wire.read() << 8 |
	 Wire.read();
133 	 int16_t AccZLSB = Wire.read() << 8 |
	 Wire.read();
134 	 Wire.beginTransmission(0x68);
135 	 Wire.write(0x1B);
136 	 Wire.write(0x8);
137 	 Wire.endTransmission();
138 	 Wire.beginTransmission(0x68);
139 	 Wire.write(0x43);
140 	 Wire.endTransmission();
141 	 Wire.requestFrom(0x68,6);
142 	 int16_t GyroX=Wire.read()<<8 | Wire.read();
143 	 int16_t GyroY=Wire.read()<<8 | Wire.read();
144 	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
145 	 RateRoll=(float)GyroX/65.5;
146 	 RatePitch=(float)GyroY/65.5;
147 	 RateYaw=(float)GyroZ/65.5;

148 	 AccX=(float)AccXLSB/4096-0.050.05;
149 	 AccY=(float)AccYLSB/4096+0.01+0.01;
150 	 AccZ=(float)AccZLSB/4096-0.11-0.11;

151 	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*
	 AccZ))*1/(3.142/180);
152 	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	 AccZ))*1/(3.142/180);
153 }

Do not forget to put
your own accelerom-
eter calibration values
here here (project 14)

Ca rbon aeronautics

181

154 void pid_equation(float Error, float P , float I, float D, 	
 float PrevError, float PrevIterm) {
155 	 float Pterm=P*Error;
156 	 float Iterm=PrevIterm+I*(Error+
		 PrevError)*0.004/2;
157 	 if (Iterm > 400) Iterm=400;
158 	 else if (Iterm <-400) Iterm=-400;
159 	 float Dterm=D*(Error-PrevError)/0.004;
160 	 float PIDOutput= Pterm+Iterm+Dterm;
161 	 if (PIDOutput>400) PIDOutput=400;
162 	 else if (PIDOutput <-400) PIDOutput=-400;
163 	 PIDReturn[0]=PIDOutput;
164 	 PIDReturn[1]=Error;
165 	 PIDReturn[2]=Iterm;
166 }
167 void reset_pid(void) {
168 	 PrevErrorRateRoll=0; PrevErrorRatePitch=0;
	 PrevErrorRateYaw=0;
169 	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;
170 	 PrevErrorAngleRoll=0; PrevErrorAnglePitch=0;
171 	 PrevItermAngleRoll=0; PrevItermAnglePitch=0;

172 	 PrevErrorVelocityVertical=0;
	 PrevItermVelocityVertical=0;
173 }

174 void setup() {
175 	 pinMode(5, OUTPUT);
176 	 digitalWrite(5, HIGH);
177 	 pinMode(13, OUTPUT);
178 	 digitalWrite(13, HIGH);
179 	 Wire.setClock(400000);
180 	 Wire.begin();
181 	 delay(250);
182 	 Wire.beginTransmission(0x68);	
183 	 Wire.write(0x6B);
184 	 Wire.write(0x00); 	
185 	 Wire.endTransmission();

PID function (pro-
ject 12)

PID reset function
(project 12)

Reset the PID error
and integral values
for the vertical veloc-
ity controller loop as
well

Visualize the setup
phase using the red
LED

Setup the MPU-6050
(project 4)

182

The flight controller: velocity mode

186 	 Wire.beginTransmission(0x76);	
187 	 Wire.write(0xF4);
188 	 Wire.write(0x57);
189 Wire.endTransmission();
190 	 Wire.beginTransmission(0x76);
191 	 Wire.write(0xF5);
192 	 Wire.write(0x14);
193 	 Wire.endTransmission();
194 	 uint8_t data[24], i=0;
195 	 Wire.beginTransmission(0x76);
196 	 Wire.write(0x88);
197 	 Wire.endTransmission();
198 	 Wire.requestFrom(0x76,24);
199 	 while(Wire.available()){
200 		 data[i] = Wire.read();
201 		 i++;
202 	 }
203 	 dig_T1 = (data[1] << 8) | data[0];
204 	 dig_T2 = (data[3] << 8) | data[2];
205 	 dig_T3 = (data[5] << 8) | data[4];
206 	 dig_P1 = (data[7] << 8) | data[6];
207 	 dig_P2 = (data[9] << 8) | data[8];
208 	 dig_P3 = (data[11]<< 8) | data[10];
209 	 dig_P4 = (data[13]<< 8) | data[12];
210 	 dig_P5 = (data[15]<< 8) | data[14];
211 	 dig_P6 = (data[17]<< 8) | data[16];
212 	 dig_P7 = (data[19]<< 8) | data[18];
213 	 dig_P8 = (data[21]<< 8) | data[20];
214 	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);
215 	 for (RateCalibrationNumber=0;
	 RateCalibrationNumber<2000;
	 RateCalibrationNumber ++) {
216 	 	 gyro_signals();
217 		 RateCalibrationRoll+=RateRoll;
218 		 RateCalibrationPitch+=RatePitch;
219 		 RateCalibrationYaw+=RateYaw;
220 		 barometer_signals();
221 		 AltitudeBarometerStartUp+=
222 		 AltitudeBarometer; delay(1);
223 	 }
224 	 RateCalibrationRoll/=2000;

Setup the BMP-280
(project 17)

Calculate the altitude
reference level (pro-
ject 17)

Ca rbon aeronautics

183

225 	 RateCalibrationPitch/=2000;
226 	 RateCalibrationYaw/=2000;
227 	 AltitudeBarometerStartUp/=2000;
228 	 F = {1, 0.004,
229 	 0, 1};	
230 	 G = {0.5*0.004*0.004,
231 	 0.004};
232 	 H = {1, 0};
233 	 I = {1, 0,
234 	 0, 1};
235 	 Q = G * ~G*10*10;
236 	 R = {30*30};
237 	 P = {0, 0,
238 	 0, 0};
239 	 S = {0,
240 	 0};
241 	 analogWriteFrequency(1, 250);
242 	 analogWriteFrequency(2, 250);
243 	 analogWriteFrequency(3, 250);
244 	 analogWriteFrequency(4, 250);
245 	 analogWriteResolution(12);

246 	 pinMode(6, OUTPUT);
247 	 digitalWrite(6, HIGH);
248 	 battery_voltage();
249 	 if (Voltage > 8.3) { digitalWrite(5, LOW);
250 		 BatteryAtStart=BatteryDefault; }
251 	 else if (Voltage < 7.5) {
252 		 BatteryAtStart=30/100*BatteryDefault ;}
253 	 else { digitalWrite(5, LOW);
254 		 BatteryAtStart=(82*Voltage-580)/100*
			 BatteryDefault; }

255 	 ReceiverInput.begin(14);
256 	 while (ReceiverValue[2] < 1020 ||
	 ReceiverValue[2] > 1050) {
257 		 read_receiver();
258 		 delay(4);
259 	 }
260 	 LoopTimer=micros();
261 }

Setup the matrices
for the two-dimen-
sional Kalman filter
(project 19)

Set the PWM fre-
quency to 250 Hz
and the resolution to
12 bit for all motors
(project 8)

Show the end of the
setup process and
determine the initial
battery voltage per-
centage (project 9)

SAFETY RELAT-
ED LINES: Avoid
accidental lift off af-
ter the setup process
(project 12)

184

The flight controller: velocity mode

262 void loop() {
263 	 gyro_signals();
264 	 RateRoll-=RateCalibrationRoll;
265 	 RatePitch-=RateCalibrationPitch;
266 	 RateYaw-=RateCalibrationYaw;

267 	 kalman_1d(KalmanAngleRoll,
 KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
268 	 KalmanAngleRoll=Kalman1DOutput[0];
 KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
269 	 kalman_1d(KalmanAnglePitch,
 KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
270 	 KalmanAnglePitch=Kalman1DOutput[0];
 KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

271 	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll*
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;
272 	 AccZInertial=(AccZInertial-1)*9.81*100;
273 	 barometer_signals();
274 	 AltitudeBarometer-=AltitudeBarometerStartUp;
275 	 kalman_2d();

276 	 read_receiver();

277 	 DesiredAngleRoll=0.10*(ReceiverValue[0]-1500);
278 	 DesiredAnglePitch=0.10*(ReceiverValue[1]-1500);
279 	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

280 	 DesiredVelocityVertical=0.3*(ReceiverValue[2]-
	 1500);
281 	 ErrorVelocityVertical=DesiredVelocityVertical-
	 VelocityVerticalKalman;
282 	 pid_equation(ErrorVelocityVertical,
	 PVelocityVertical, IVelocityVertical,
	 DVelocityVertical, PrevErrorVelocityVertical,
	 PrevItermVelocityVertical);

Measure the rotation
rates and subtract
the calibration values
(project 5)

Calculate the roll and
pitch angles through
the Kalman filter
(project 15)

Calculate the vertical
acceleration and the
altitude (project 18)

Calculate the desired
angles from the re-
ceiver (project 16)

Calculate the desired
velocity from the re-
ceiver and start the
PID loop for the
throttle

Ca rbon aeronautics

185

 283 	 InputThrottle=1500+PIDReturn[0];
	 PrevErrorVelocityVertical=PIDReturn[1];
	 PrevItermVelocityVertical=PIDReturn[2];

284 	 ErrorAngleRoll=DesiredAngleRoll-
	 KalmanAngleRoll;
285 	 ErrorAnglePitch=DesiredAnglePitch-
	 KalmanAnglePitch;

286 	 pid_equation(ErrorAngleRoll, PAngleRoll,
	 IAngleRoll, DAngleRoll, PrevErrorAngleRoll,
	 PrevItermAngleRoll); 		
287 	 DesiredRateRoll=PIDReturn[0];
	 PrevErrorAngleRoll=PIDReturn[1];
	 PrevItermAngleRoll=PIDReturn[2];
288 	 pid_equation(ErrorAnglePitch, PAnglePitch,
 	 IAnglePitch, DAnglePitch, PrevErrorAnglePitch,
 	 PrevItermAnglePitch);
289 	 DesiredRatePitch=PIDReturn[0];
	 PrevErrorAnglePitch=PIDReturn[1];
	 PrevItermAnglePitch=PIDReturn[2];

290 	 ErrorRateRoll=DesiredRateRoll-RateRoll;
291 	 ErrorRatePitch=DesiredRatePitch-RatePitch;
292 	 ErrorRateYaw=DesiredRateYaw-RateYaw;

293 	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll,
	 DRateRoll, PrevErrorRateRoll,
	 PrevItermRateRoll);
294 InputRoll=PIDReturn[0];
	 PrevErrorRateRoll=PIDReturn[1];
	 PrevItermRateRoll=PIDReturn[2];

Because the zero ve-
locity point and thus
the hover point will
be around the point
where the throttle
stick is in the middle
(1500 µs), add this
value to the PID out-
put

Calculate the differ-
ence between the de-
sired and the actual
roll and pitch angles
(project 16)

Calculate the desired
roll and pitch rota-
tion rates through the
outer loop PID con-
troller (project 16)

Calculate the differ-
ence between the de-
sired and the actual
pitch, roll and yaw
rotation rates. Use
these for the PID
contoller of the inner
loop (project 12)

186

The flight controller: velocity mode

295 	 pid_equation(ErrorRatePitch, PRatePitch,
	 IRatePitch, DRatePitch, PrevErrorRatePitch,
 	 PrevItermRatePitch);
296 InputPitch=PIDReturn[0];
	 PrevErrorRatePitch=PIDReturn[1];
	 PrevItermRatePitch=PIDReturn[2];
297 	 pid_equation(ErrorRateYaw, PRateYaw,
	 IRateYaw, DRateYaw, PrevErrorRateYaw,
 	 PrevItermRateYaw);
298 InputYaw=PIDReturn[0];
	 PrevErrorRateYaw=PIDReturn[1];
	 PrevItermRateYaw=PIDReturn[2];

299 	 if (InputThrottle > 1800) InputThrottle = 1800;

300 	 MotorInput1= 1.024*(InputThrottle-InputPitch-
	 InputRoll-InputYaw);
301 	 MotorInput2= 1.024*(InputThrottle+InputPitch-
	 InputRoll+InputYaw);
302 	 MotorInput3= 1.024*(InputThrottle+InputPitch+
	 InputRoll-InputYaw);
303 	 MotorInput4= 1.024*(InputThrottle-InputPitch+
	 InputRoll+InputYaw);

304 	 if (MotorInput1 > 2000)MotorInput1 = 1999;
305 	 if (MotorInput2 > 2000)MotorInput2 = 1999;
306 	 if (MotorInput3 > 2000)MotorInput3 = 1999;
307 	 if (MotorInput4 > 2000)MotorInput4 = 1999;

308 	 int ThrottleIdle=1180;
309 	 if (MotorInput1 < ThrottleIdle) MotorInput1 =
	 ThrottleIdle;
310 	 if (MotorInput2 < ThrottleIdle) MotorInput2 =
	 ThrottleIdle;
311 	 if (MotorInput3 < ThrottleIdle) MotorInput3 =
	 ThrottleIdle;
312 	 if (MotorInput4 < ThrottleIdle) MotorInput4 =
	 ThrottleIdle;

Limit the throttle val-
ue to 80% (project
12)

Use the quadcopter
dynamics equations
(project 11)

Limit the maximal
power commands
sent to the motors
(project 12)

Keep the quadcop-
ter minimally at 18%
power during flight

Ca rbon aeronautics

187

 313 	 int ThrottleCutOff=1000;
314 	 if (ReceiverValue[2]<1050) {
315 		 MotorInput1=ThrottleCutOff;
316 		 MotorInput2=ThrottleCutOff;
317 		 MotorInput3=ThrottleCutOff;
318 		 MotorInput4=ThrottleCutOff;
319 		 reset_pid();
320 	 }
321 	 analogWrite(1,MotorInput1);
322 	 analogWrite(2,MotorInput2);
323 	 analogWrite(3,MotorInput3);
324 	 analogWrite(4,MotorInput4);

325 	 battery_voltage();
326 	 CurrentConsumed=Current*1000*0.004/3600+
			 CurrentConsumed;
327 	 BatteryRemaining=(BatteryAtStart-
		 CurrentConsumed)/BatteryDefault*100;
328 	 if (BatteryRemaining<=30) digitalWrite(5, HIGH);
329 	 else digitalWrite(5, LOW);

330 	 while (micros() - LoopTimer < 4000);
331 	 LoopTimer=micros();
332 }

SAFETY RELAT-
ED LINES: stop the
motors when throttle
stick is fully down

Sent the commands
to the motors

Keep track of battery
level (project 9)

Finish the 250 Hz
control loop

To start and fly your quadcopter with the new vertical velocity-mode flight con-
troller, follow the same steps as with your rate-mode controller and your stabi-
lize-mode controller. Remember that this controller is meant for flying indoors.
You should notice that flying the quadcopter with your new flight controller is
even easier as the controller facilitates the hovering. Congratulations, you have
successfully reached the end of the practical part of this manual!

Start-up and flying your quadcopter

Part IV: quadcopter
design and simulation

in this final part, you will learn how to de-
sign and simulate your quadcopter in order
to fully understand its control.

first, you will characterize the main com-
ponents; the power train, sensors and the
controller coded in your Teensy. This ena-
bles you to describe your quadcopter math-
ematically and optimize the PID values you
use in the controller.

at the end of this part, you will be fully
equipped to design, build and operate a to-
tally new quadcopter yourself.

190

Motor and sensor simulation

motor power
command quadcopter

dynamics

quadcopter
rotation rate

PId
controller

+
-

rotation rate
error

desired
rotation rate motor

dynamics

motor thrust
and torque

sensor
dynamics

measured
rotation rate

 Project 21

Your two bladed propeller generates a less thrust than the three bladed 3035 propel-
ler, although it is driven by a motor that turns less fast (4500 kV instead of 5000 kV).
The reason is simple; the three bladed propeller ‘catches’ more air under its surface,
generating more thrust but also requiring the motor to overcome more air resistance;
this means that the current consumption increases as well.

The thrust and current relation with the motor power evolves almost linearly; this
means that you can simply perform linear regression in order to estimate the throt-
tle-thrust and throttle-current relationship. For the GEPRC 1105 5000 kV motor and
3018 propeller combination, these relationships are:

Where the throttle is a value between 0 (0%) and 1 (100%). The measurements from
which these linear regressions are constructed were performed at a constant battery
voltage of 7.8 V.

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

191

Understanding how to characterize the motors and sensors you use to fly is
critical for the design and simulation of your quadcopter. The static and dy-
namic aspects of both components will be investigated thoroughly during this
theoretical project.

When starting to think about the design and simulation of your quadcopter, it is
useful to take a step back and look to the basic loop of the rate-mode controller, visu-
alized in the figure to the left. You start with a desired rotation rate, given by the posi-
tion of the sticks of your radiocontroller. The desired rotation rate is fed to your PID
controller and gives a motor power command. The power command is subsequently
converted to a certain amount of thrust generated by each individual motor, which
in turn will affect the movement (e.g. rotation rate) of your quadcopter. The rotation
rate is then measured with your sensor, compared to the desired rotation rate and fed
back into your PID controller to start the second loop. In this project, you will char-
acterize two important components of this control loop: the motors and the sensors.

Le arn to characterize your motors and sensors

When modelling your brushless motors, you are primarily interested in the relation
between the throttle and the thrust provided by your motor-propeller combination,
as well as the current consumption. A general rule in quadcopter design says
that the maximal thrust generated by your four motors should be equal to two
times the quadcopter weight, to ensure enough flexibility during flight. This
means that one motor should generate about half the thrust necessary to hover the
quadcopter. Your quadcopter weights around 250 gram (g), which means that the
maximal thrust of one motor should be equal to at least 125 g.

The relation between the thrust and throttle can be measured with a thrust bench; you
can create this device yourself by mounting your motor on a load cell connected to a
microchip (for example the HX711), amplifying the load cell signals and connecting
this in turn to your Teensy. When you have a lab power supply, you can also measure
the current that goes to the motors during testing. The datasheet of the motor man-
ufacturer usually gives the maximal thrust and current for a given type of propeller.
The thrust and current data for the motors used in this project are visualised on the
next pages: the relation between the motor thrust and current is displayed each time
with respect to the throttle level. To highlight the importance of the propeller used,
your two bladed propeller (Gemfan 3018) is compared to a three bladed propeller
(Gemfan 3035).

Static motor modelling

192

Motor and sensor simulation

This is important because a higher/lower voltage will off course generate a higher/
lower thrust and current. For a quadcopter that weighs about 250 g, the motors need
to provide a thrust equal to 4 x 62.5 g when hovering. Using the formula from the
previous page, this corresponds to a power level for one motor of 62.5 / 160 = 0.4
or 40%. The current consumption in this case will be equal to 4.4 . 0.4 + 0.132 = 1.9
Ampere (A) for each motor, or 7.4 A for all motors together. This means that a 1300
mAh (=1.3 Ah) battery will be able to keep your quadcopter 1.3 Ah / 7.8 A = 0.17
h or 10 minutes in the air. In reality this value will be lower, as you do not only hover
but also move the quadcopter around and accelerate, consuming more energy than
during static hovering. The above calculation gives you nonetheless a good upper
limit of the flight time.

By dividing the thrust with the consumed current, the motor efficiency (in g/A) can
also be determined as displayed on the figure to the right. Two bladed propellers will
be slightly more efficient than three bladed propellers and the larger the propeller, the
more efficient as well.

Dynamic motor modelling

Besides the generated thrust and the consumed current of your motor, another im-
portant parameter is necessary for modelling; how fast does your motor accelerate
when increasing the motor power? This is important because your PID controller
generates a new command every 0.004 seconds, but your motor generally needs more
time to accelerate/decelerate up to this desired value. The easiest way to measure this
(usually very short) time delay is by recording the sound; both your motor and your
propeller generate noise which changes in amplitude and frequency when their speed
increases or decreases. You can configure your Teensy in such a way that it gives a
step increase for one of the motor power commands and record the sound with your
cellphone during this step increase. The evolution of the sound wave amplitude is
visualised in the figure below:

0

0.4

-0.4

sound wave amplitude

motor power command
1150 µs (11.5%)

motor power command
1500 µs (50%)

Time [s]0.30.20 0.1

Ca rbon aeronautics

193

10 g/A

20 g/A

30 g/A

40 g/A

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

motor efficiency

200 g

150 g

62.5 g
50 g

Thrust

Current

6 A

4 A

2 A

two bladed 3018 propeller
gEPRC 1105 motor (5000 kV)

three bladed 3035 propeller
gEPRC 1206 motor (4500 kV)

100 g

194

Motor and sensor simulation

At 0.11 seconds, the motor power command changes from 1150 µs or 11.5% to
1500 µs or 50%. Immediately the amplitude of the sound coming from the motor/
propeller increases. It takes around 0.1 to 0.2 seconds before the amplitude reaches a
new steady state. To characterize the time delay more accurately, you will not look at
the amplitude change, but at the frequency change of the sound during acceleration.

Let’s now take a fast Fourier transform to transform the sound signal from the time
domain to the frequency domain. By doing this, you will lose the information on the
time, so let’s do it first for the part at which the motor power turns stationary at 1150
µs or 11.5% throttle. You know that your motor has a 5000 kV rating. Since kV is the
equivalent for rpm/V and the test was done with a constant battery voltage of 7.8 V,
your motor frequency at full throttle (100 %) will be equal to:

Since your propeller has two blades, the frequency of the sound emitted by the pro-
pellers will be equal to 2 x 650 Hz = 1300 Hz at full throttle and without losses. When
not at full throttle, the ESC will lower the average voltage in order for the motor
to spin slower. At 11.5% motor power, the fast Fourier transform of the emitted
sound gives the frequency spectrum displayed on the figure below. The first peak in
the spectrum is due to the sound emitted by the motor; it is situated at 280 Hz for
this low motor power, meaning that the motor turns at 280 Hz x 60 s/min = 16 800
rpm. The second and largest peak is exactly equal to 2 x 280 Hz or 560 Hz: this is the
two-bladed propeller frequency. Further in the spectrum, some small additional peaks
are recorded at equal intervals; these are the propeller excitation frequencies.

A second fast Fourier transform is used to visualize the frequency after the motor
power increase, at 1500 µs or 50% power. The first peak coming from the sound of
the motor is now situated at 400 Hz, meaning that the motor turns at 400 Hz x 60 s/
min = 24 000 rpm. The propeller frequency is now equal to 2 x 400 Hz or 800 Hz.

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

frequency [Hz]500 2000150010000

sound wave magnitude
(motor power: 1150 µs)

propeller frequency
(560 Hz)

motor frequency
(280 Hz)

propeller excitation frequencies
(n x 560 Hz with n=2,3,...)

2500

Ca rbon aeronautics

195

In the higher frequency ranges, you find once again the propeller excitation frequen-
cies.

This means that purely by recording the sound emitted by the motor, our fast Fourier
transform reveals that the motor frequency increases from 280 Hz at 11.5% throttle
to 400 Hz at 50% throttle. However, with this transformation all information with
regard to time is lost. This can be solved with the so-called spectrogram; with a spec-
trogram, the frequencies are displayed for each chosen time interval allowing you to
follow the change in frequency over time. The spectrogram for the acceleration of
our motor (so frequency range up to 500 Hz) is given in the picture below. You can
nicely follow the frequency increase from 280 Hz at a motor power of 11.5% to 400
Hz at a motor power of 50%. The time it takes for the motor to accelerate up to 400
Hz is equal to 0.09 seconds. This key piece of information will enable you to model
the transfer function for the motor.

frequency [Hz]500 2000150010000

sound wave magnitude
(motor power: 1500 µs)

propeller frequency
(800 Hz)

motor frequency
(400 Hz)

propeller excitation frequencies
(n x 800 Hz with n=2,3,...)

2500

100 Hz

200 Hz

300 Hz

400 Hz

0.1 0.2 0.3 0.4

280 Hz

frequency

0
0

Time [s]

step time ≈ 0.09 s

196

Motor and sensor simulation

You will now describe the time response of the motor compared to the command
you have given to the motor mathematically. This is done using a transfer function.
When looking at the behaviour of the motor visualized on the spectrogram, it resem-
bles a first order response to a step input. Consider a general example in which a step
input command of 1 is given at time = 0 seconds to your motor. Mathematically, this
can be described as:

input(time)= 0 if time < 0
input(time)= 1 if time > 0

Describe now the first order response of a motor using one time-related parameter τ:

As visualised on the figures to the right with different step-response lengths, τ is de-
fined as the time at which the motor output reaches 95% of the desired value divided
by 3. For our motor, this gives a time parameter τ of τ=0.09 seconds/3=0.03 seconds.
For further calculations, your transfer function needs to be written in the frequency
domain, not the time domain. This means that you need the Laplace transform of the
above equation. The Laplace transform of 1 is easy and equal to 1/s. In this notation,
s is not the unit of time, but a complex number with the form s= σ+i.ω. You also
know that the Laplace transform of e-a t is equal to 1/(s+a) by convention, so trans-
forming the above equation to the Laplace domain gives you:

And input(s)/s represents the unit step input considered in this example. In reality,
you can have any input that you want, giving the final transfer function for a first
order response:

With τ being equal to 0.03 seconds for your motor. This transfer function is a good
approximation for the dynamics of your motor.

Transfer function for the motor response

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

Ca rbon aeronautics

197

0

0.5

1

motor command
motor response

Time [s]
64 5310 2

0

0.5

1

Time [s]
64 5310 2

0

0.5

1

Time [s]
64 5310 2

Input(Time)

1-e-3/τ=0.95

τ =
Time @ 95% settled

3
 =

3 s
3

 = 1

1-e-6/τ=0.95

τ =
Time @ 95% settled

3
 =

6 s
3

 = 2

motor command
motor response

motor command

Input(Time)

output(Time)

Input(Time)

output(Time)

1-e-2/τ=0.86

1-e-1/τ=0.63

1-e-4/τ=0.86

1-e-2/τ=0.63

198

Motor and sensor simulation

The state of your quadcopter (absolute angle and angular rates) is measured by a
separate measurement system; the MPU-6050 sensor. This measurement system also
has a dynamic response, as it does not respond instantaneously to the demands of
your Teensy to provide some data on the quadcopter state. However, the sampling
time of your MPU-6050 is equal to 1 kHz or 1000 Hz, which is much faster than the
speed of your control loop (250 Hz). In addition, you also configured a 10 Hz low
pass filter for both the accelerometer and the gyroscope in your code. With this filter,
you are able to filter out unwanted high-frequency motor vibrations. Hence to model
the time response of your MPU-6050 accurately, you only need to model its low-pass
filter as its has the lowest frequency. The transfer function of any low-pass filter in
the frequency domain is equal to:

where ωc =2.π.fc with fc being the cutoff frequency of the filter, 10 Hz in this case.
This means that the frequency domain transfer function for your sensor becomes:

Now what does this practically mean in the time domain? Well, the transfer function
can be transformed to 1/(1/(2.π.10)s+1), which gives a first order step response τ of
1/ 2.π.10 or 0.016 seconds. With this response, the same reasoning holds as with the
motor response; any inputs that occur faster than 3.τ = 3. 0.016 seconds will be signif-
icantly attenuated. An input of 0.016 seconds (=τ) for example, is attenuated to 63%
of its value as 1-e-0.016/0.016=0,63. A fast vibration with a response of 0.001 seconds
gets almost fully attenuated: 1-e-0.001/0.016 = 0.06 or 6%. This is why configuring a 10
Hz low-pass filter in your MPU-6050 sensor was sufficient to filter out the high-fre-
quency vibrations coming from your motors.

Dynamic sensor modelling

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

Ca rbon aeronautics

199

200

Quadcopter dynamics simulation

motor power
command quadcopter

dynamics

quadcopter
rotation rate

PId
controller

+
-

rotation rate
error

desired
rotation rate motor

dynamics

motor thrust
and torque

sensor
dynamics

measured
rotation rate

 Project 22

distancemotor,x= 8 cm distancemotor,x= 8 cm

Thrustmotor 3+4

Thrustmotor 1+2

Thrustmotor 3+4

Thrustmotor 1+2

y θRoll

z

Torquex

2d representation

Roll around the
X axis

2d representation

z

y

output motor 1 = 25% power = 50% - 25%
output motor 2 = 25% power = 50% - 25%
output motor 3 = 75% power = 50% + 25%
output motor 4 = 75% power = 50% + 25%

InputThrottle InputRoll

Torquex

X

y

z

z

y X

Roll around the
X axismotor 1

motor 2

motor 3

motor 4

motor 2

motor 1

motor 3

motor 4

201

A mathematical discussion on quadcopter dynamics is essentially an analysis
of its roll, pitch, yaw and throttle reactions. As you already saw when pro-
gramming your the flight controller, these movements can all be calculated
separately; this means that all four movements can be described independent
of each other. While it is not fully true that these movements are independent
from each other, it will prove to be a very good approximation.

The previous project ended with the mathematical description of the motors and
sensor dynamics using transfer functions. In this project, you will try to find the trans-
fer function for the roll, pitch and yaw rotation rates, and also for the vertical velocity.
These four transfer functions will form the "quadcopter dynamics". All movements
of the quadcopter are essentially generated by the thrust and torque developed by
your motors, in combination with the gravitation force that acts on it during flight.
You will describe the roll motion of the quadcopter to derive the roll dynamics and
proceed subsequently with the other movements.

De scribe how the quadcopter moves in space

Roll and pitch motion

Let’s first try to describe the roll motion of the quadcopter in mathematical terms.
To rotate the quadcopter in the roll direction, you need to apply a torque around the
stationary x-axis: Torquex. The resulting angular acceleration Accelerationroll in the roll
direction depends on this applied torque, but also on the distribution of mass of the
object. This mass distribution is described by the moment of inertia Ix, which results
in the following relation:

Where N is the unit Newton (equivalent to kg.m²/s²) and rad the angle unit radians.
In order to convert the angular acceleration from radians/s² to °/s², the formula
needs to be multiplied with 180/π (°/rad):

Torque around the x axis

The torque around the x axis depends on the combination of the thrust from all four
motors and the distance of each motor to the x axis:

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

202

Quadcopter dynamics simulation

You already determined the thrust of one motor (in gram g):

This can be transformed to N (or kg.m²/s²) by multiplying the result with 9.81 m/
s² (the gravitational constant) divided by 1000 g/kg. Moreover, you do not input a
motor power between 0 and 1 but rather a value between 0 µs and 1000 µs through
the parameter inputroll (although in the PID loop it is restricted to a maximal value of
400 µs). The formula transforms to:

The value of inputroll is equal for all four motors, but has a positive sign for motors
3 and 4 and a negative sign for motors 1 and 2. This means that the torque formula
can be rewritten as:

Moment of inertia around the x axis

The moment of inertia Ix in turn describes the weight distribution of the quadcopter
and the distance of all components to the stationary x axis. Using the two-dimen-
sional approximation of the quadcopter, the moment of inertia can be calculated as:

Where massi is the mass of component i, and distancemass,i the distance between com-
ponent i and the x-axis. Most weight of the quadcopter is situated very close to the
x-axis: the battery and all the on-board electronics are stacked along the x-axis. Be-
cause this gives a very small distance, their contribution to Ix is negligible. The weight
of the frame is very small meaning that this contribution is also negligible. Therefore,
the only components with a non-negligible weight and sufficiently far from the x-axis
are the four motors and the ESCs. The formula reduces to:

Knowing that the mass of each motor (including propeller and bolts) is 8 g with a
distance of 8 cm to the x axis, and the ESC weighs 7 g with a distance of 4 cm to the
x axis, you now have everything to calculate the angular roll acceleration.

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Ca rbon aeronautics

203

ESC 3 ESC 2

ESC 1ESC 4

X

Y

distanceECS,x= 4 cm

distancemotor,x= 8 cm

massmotor= 8 g

massECS= 7 g

motor 1

motor 2

motor 4

motor 3

Roll and pitch dynamics

Introducing the formulas for the torque and the moment of inertia in the angular roll
acceleration formula gives:

Which results in a very simple formula for the angular acceleration in the time do-
main:

The angular roll acceleration can be replaced by the derivative of the roll rate, giving:

For the simulation of the PID controller, you want to have your equations in the
frequency domain rather than the time domain. You can transform the time domain
to the frequency domain by performing a Laplace transform to both sides of the
equation:

In this notation, s is not the unit of time, but a complex number with the form s=
σ+i.ω. This gives you finally the relation between the quadcopter roll rate and the
input command given by the PID controller, which is called your quadcopter transfer
function:

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N]·distancemotor,x[m]−Thrustmotor 1+2[N]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

204

Quadcopter dynamics simulation

You can construct a fully similar reasoning for the pitch dynamics, eventually giving
the following formula:

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

Yaw motion

The same basic equation for the angular acceleration in the yaw direction holds as for
the roll and pitch direction, with the only difference being the torque and moment of
inertia, which should be calculated around the stationary z axis:

Torque around the z axis

The torque around the z axis is equal to the sum of all four motor torques; the mo-
tor torque is opposite to the rotation direction of each motor. When the motor is
spinning in a clockwise direction, the force of the air pushed against the propellers
creates a torque in the counter-clockwise direction. The total torque around the z axis
is then equal to:

The torque for each motor is related to the motor current through the torque coef-
ficient KT:

This torque coefficient KT can be estimated using the kV rating of the motor, which
is in our case equal to 5000 kV or 5000 rpm/V:

You already determined that the current consumed by one motor is described by the
formula below, which is already corrected for inputyaw between 0 and 1000 µs instead
of a throttle between 0 and 1:

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

Ca rbon aeronautics

205

2d representation

yaw around the
z axis

2d representation

output motor 1 = 25% power = 50% - 25%
output motor 2 = 75% power = 50% + 25%
output motor 3 = 25% power = 50% - 25%
output motor 4 = 75% power = 50% + 25%

InputThrottle Inputyaw

y

X

X

y

Torquez

Torquemotor 4

Torquemotor 2

Torquemotor 2

Torquemotor 3

Torquemotor 4

Torquemotor 3

Torquemotor 2

Torquemotor 2

Torquez

X

y

z
X

z

y

yaw around the
z axismotor 1

motor 2

motor 3

motor 4
motor 1

motor 2

motor 3

motor 4

The value of inputyaw is equal for all four motors, but has a positive sign for motors 2
and 4 and a negative sign for motors 1 and 3. The torque formula results in:

Moment of inertia around the z axis

The moment of inertia Iz describes the weight distribution of the quadcopter and
its distance to the stationary z axis. In the two-dimensional representation, this gives:

Notice that not only the distance of the mass to the x axis matters, but also the dis-
tance of the mass to the y axis. This is different compared to Ix , as the two-dimen-
sional representation in that case meant that distancemass,i,z is approximated as being
zero. Once again only the components with a considerable mass that are far enough
from the quadcopter X and Y axes are the motors and the ESCs.

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

206

Quadcopter dynamics simulation

This gives the following formula:

Where the distance of the motors and the ESCs from the Y axis are equal to 5 cm.

Yaw dynamics

Introducing both formulas in the angular yaw acceleration formula gives:

Which results again in a very simple formula for the angular acceleration in the time
domain:

Doing a similar Laplace transformation as before together with the integration of the
acceleration results in the transfer function for the yaw dynamics:

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Thrustmotor 3+4

2d representation

Increase altitude
along the z axis

2d representation

z

y

Thrustmotor 1+2

Thrustmotor 3+4 z

y

Thrustmotor 1+2

Weightquadcopter

Weightquadcopter

output motor 1 = 75% power = 75%
output motor 2 = 75% power = 75%
output motor 3 = 75% power = 75%
output motor 4 = 75% power = 75%

InputThrottle

X

y

z

X

y

z

Increase altitude
along the z axismotor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4

Ca rbon aeronautics

207

ESC 3 ESC 2

ESC 1ESC 4

X

Y

distanceECS,x= 4 cm

distancemotor,x= 8 cm

massmotor= 8 g

massECS= 7 g

motor 1

motor 2

motor 4

motor 3

distanceECS,y= distancemotor,y= 5 cm

The mathematical description of the quadcopter dynamics along the stationary Z
axis is rather intuitive; the resulting acceleration along this axis is equal to the thrust
delivered by the motors minus the gravity acting on the quadcopter mass. Write this
force balance as:

And the thrust of all four motors was already calculated previously as:

In the flight controller, you programmed input Inputthrottle as InputThrottle=1500+P-
IDReturn[0], because the zero velocity and thus the hover point will be at the point
where the throttle stick is in the middle (1500 µs). This means that if you take this into
account, the throttle stick at 1500 µs and gravity acting on the quadcopter mass cancel
each other out. Knowing that the quadcopter mass is equal to 250 g, the dynamic
equation of the acceleration along the z axis becomes:

When coding the flight controller, you did not measure the vertical velocity in m/s
but rather in cm/s. Just multiply the equation by 100 cm/m to get the correct units:

Vertical velocity dynamics
Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

208

Quadcopter dynamics simulation

Doing the same Laplace transformation as before together with the integration of the
acceleration results in the transfer function of the vertical velocity dynamics:

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

InputYaw

InputRoll/InputPitch

quadcopter
dynamics

motor
dynamics

motor thrust
and torque RateRoll/RatePitch115

s
1

0.03 s + 1

system input system
output

4.8
s

2.5
s

motor thrust
and torque1

0.03 s + 1

motor thrust
and torque1

0.03 s + 1

InputThrottle

RateYaw

VelocityVertical

.

.

.

0

1

2

3

Time [s]
21.50 0.5 1

input command

roll/pitch
response

yaw
response

velocity
response

Roll/Pitch/yaw rate [°/s]
Vertical velocity [cm/s]

Ca rbon aeronautics

209

Open loop system response

You have now characterized the quadcopter dynamics for the roll, pitch, yaw and ver-
tical velocity movements. Combined with the motor dynamics, you can simulate the
response of the system to a command in the time domain (usually done with dedicat-
ed software). This is called the open loop system response and is visualised in the dia-
gram to the left. The quadcopter dynamics for all movements are summarized below:

The value of the nominator is the only part that changes for each of the quadcopter
dynamics. When you simulate an input step response in the time domain and evaluate
the so called open loop system response, the system output gives an indication of the
inherent (in)stability for all four movements. The results are visualized in the figure
to the left. You can see that the roll and pitch response happens much faster than
the velocity response. This depends off course on the value of the nominator in the
quadcopter dynamics transfer function: a large nominator (115) causes a much faster
response than a small nominator (2.5). The quadcopter dynamics are an example of
a meta-stable system, as control theory requires the poles of the system to be in the
left half plane (e.g. negative). Since the pole of the system lies in this case exactly in
the origin (s=0), it means that the system is meta-stable; the system will continuously
increase at the same rate in an open loop. The pole of the motor dynamics is equal to
0.03s+1=0 or s=-33 and thus very stable, meaning it does not have an impact on the
open loop system as a whole.

Physically, the behaviour of the open loop system means that you can control the
vertical velocity of the quadcopter manually and you do not necessarily need a control
loop. The first rate controller you developed did not have vertical velocity control
yet you were able to control the altitude of the quadcopter pretty well by constantly
adjusting the throttle. It is a different story with the roll, pitch and yaw rate; trying
to manually control these rates is practically impossible for the reaction times of a
human being. That is why the rate mode flight controller is the minimal controller you
need to fly your quadcopter. The mathematical development of this controller that
automatically stabilizes your quadcopter will be explained in the next project.

RateRoll (s) = 115
s

· InputRoll (s)

RatePitch (s) = 115
s

· InputPitch (s)

RateYaw (s) = 4.8
s

· InputYaw (s)

VelocityVertical (s) = 2.5
s

· InputThrottle (s)

210

Quadcopter PID controller

InputRoll

quadcopter
roll dynamics

quadcopter roll
rotation rate

PId controller
C(s)

+
-

DesiredRateRoll

motor
dynamics

motor thrust
and torque

sensor dynamics

measured roll
rotation rate

2 π 10
s + 2 π 10

115
s

1
0.03 s + 1

ErrorRateRoll

.

. .

. .

 Project 23

A more difficult transformation is the transformation of the integral term; the bilin-
ear transformation is used together with the property of the z-transform that a(k-1)
in the discrete domain is equivalent to z-1.a(z) in the z-domain:

z-transform

bilinear transform

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

The integral term

211

De sign your quadcopter controller

During the previous project, you have characterized the quadcopter dynamics.
The goal of this characterization is the design of a mathematical controller
that is capable of stabilizing your quadcopter. The PID controller that you
used for your flight code will be designed in this project.

Your goal is once again to construct a transfer function for the controller that you
want to use. Remember that a PID controller consists of three terms:

which, in the discrete time domain of your flight controller program (where each k is
a new iteration that takes Ts=0.004 s or 250 Hz), translates to:

Now you want to transform this discrete representation to the s-domain. Such a
transformation is only possible by first transforming the discrete time representation
to the frequency domain using the z-transform. Next the z-domain will be trans-
formed to the s-domain using the bilinear or Tustin transformation:

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

The proportional term

The easiest transformation is the one of the proportional term, as it requires only the
transformation of the in- and outputs to the z and s domains:

z-transform

bilinear transformation

As expected, the result is just a constant P multiplied with the error. Let's continue
with the integral term.

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

212

Quadcopter PID controller

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

The derivative term

The transformation of the derivative term from the discrete to the s-domain is very
similar to the work you have already carried out for the integral term:

z-transform

bilinear transform

When taking into account that Ts is equal to 0.004 seconds, the transport function for
the derivative term becomes:

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Closed control loop response

During the previous projects you learned how to describe the quadcopter, motor
and sensor dynamics in a mathematical way, subsequently transforming them to the
frequency domain. Now that you can describe the PID controller as well, you are able
to construct the full control loop. The figure on the right shows the full quadcopter
rate control loop, with the P, I and D values that you used for your rate mode flight
controller. For the pitch and yaw rate loop, the figure would be exactly the same, only
the PID values and the quadcopter dynamics transfer function would change. You
can simulate the time-domain response of the full closed control loop with dedicated
software.

Ca rbon aeronautics

213

Let’s assume your desired roll rate changes from 0 to 30°/s and then back to 0 in
respectively one second. The resulting quadcopter roll rate for the closed control
loop is displayed on the figure below. At each step change, the quadcopter roll rate
overshoots the desired roll rate with almost 20°/s, but within half a second it is stable
again. When looking at the commands sent to the motor, they follow the desired roll
rate also closely. Notice that the commands saturate at ±400 µs; this was already pro-
grammed in the flight controller and can additionally be simulated as well.

With the mathematical representation of the full control system, it is possible to op-
timize the response of the system by adjusting the PID values. In reality, the system
is first simulated using the mathematical representation, then the optimal PID values
are chosen given a desired system response. Because the mathematical representation
is an approximation of the real physical system, further tuning of the PID values will
always be necessary when testing your quadcopter.

-20

0

20

40

Time [s]30 1 2

RateRoll[°/s]

400

200

0

-200

-400
0

InputRoll[µs]

DesiredRateRoll

Time [s]31 2

Quadcopter roll rate

InputRoll

quadcopter
dynamics

quadcopter
roll rate

PId controller C(s)

+
-

ErrorRateRoll

DesiredRateRoll
motor

dynamics

motor thrust
and torque

sensor dynamics

RateRoll 2 π 10
s + 2 π 10

s
1+0.002 s

115
s

1
0.03 s + 1

1
s

+
+

+IRateRoll=
3.5

dRateRoll=
0.03

PRateRoll=
0.6

system g(s)

sensor H(s)

system input U(s)

system output y(s)

.

.

. .
. .

214

RateYaw

InputYaw

quadcopter
roll dynamics

quadcopter yaw rotation rate

PId controller
C(s)

+
-

DesiredRateYaw

motor
dynamics

motor thrust
and torque

sensor dynamics

2 π 10
s + 2 π 10

4.8
s

1
0.03 s + 1

ErrorRateYaw

.

. .

. .

system input U(s)

sensor H(s)

system output y(s)

system g(s)

real axis (σ)

s-plane (s= σ+i.ω)
imaginary axis (i.ω)

0-63 -33

left (stable)
half plane

right (unstable)
half plane

system poles

Estimate the PID values
 Project 24

215

Tu ne your controller for a smooth flight

You are now capable to mathematically simulate the full system and control
loop. The goal of this simulation is to 'tune' your PID controller in order to
get a stable flight. In essence, you need to determine the best values for the P,
I and D parameters.

Once you have the mathematical representation for the system and the sensor, a first
estimation of the PID values for the controller is usually calculated using dedicated
software. However, the optimal values can also be calculated by hand using the root
locus method. In this project you will derive an estimation of the PID values for the
yaw rate controller. A similar approach can be followed for the other controllers.

The closed loop transfer function of the full yaw rate controller can be mathematical-
ly constructed using the figure on the left: the output of the system Y(s) is related to
the system input U(s) through:

Rewriting the equation such that the system output Y(s) is isolated gives:

The closed-loop poles s* of this system are the zeros of the denominator:

G(s) and H(s) are determined by the physical system and cannot be chosen by you
(considering the quadcopter design remains fixed that is). But you have full control
over the controller C(s) to stabilize the system; strictly speaking it does not even have
to be a PID controller. Let’s first look at the characteristics of the physical system:

The system contains three poles:

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

216

Estimate the PID values

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

The pole at zero is the only one that makes the system meta-stable, as the other poles
are situated in the stable left half-plane far from the imaginary axis. To stabilize the
system, you will have to add a zero near the origin to cancel out the pole. This means
that you need a controller of the type:

To make sure you do not have a steady-state error in the response, you put another
pole at zero to finally obtain a controller of the PI type:

With b and K the parameters that you will calculate using the root locus method. The
full open loop system now becomes:

This is a fourth order system, because the highest power of s in the denominator is
s4 when you multiply all fractions. However, as b will be close to zero, it will help to
cancel out the two poles at zero. This means that the system will behave as a second
order system. The step response of a general second order system can be character-
ized by two parameters: the maximal overshoot and the settling time, which is defined
as the time at which the response goes to within 2% of the desired value. Let’s say that
you want the system to settle within 0.5 seconds with a maximal overshoot of 10%:
•	 overshoot (OS)=10%
•	 settling time (tsettling)=0.5 s

The damping ratio ζ for a second order system is defined by:

You already defined the settling time as the time necessary to reach 2% (=0.02) of the
desired response. This is related to the damping ratio through the formula:

Where ωn is the natural frequency of the second-order system. Calculate the natural
frequency by inverting the above formula:

The desired poles of your full system are then equal to:

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

Y (s) = C(s) · G(s) · [U(s) − H(s) · Y (s)]

Y (s) = C(s) · G(s)
1 + C(s) · G(s) · H(s) · U(s)

1 + C(s∗) · G(s∗) · H(s∗) = 0
C(s∗) · G(s∗) · H(s∗) = −1

G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10

s = 0

s = −1
0.03 = −33

s = −2 · π · 10 = −63

C(s) = K · (s + b) with b near zero

C(s) = K · s + b

s

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

ξ =
−ln

(
OS
100

)
√

π2 + ln
(

OS
100

)2
=

−ln
(

10
100

)
√

π2 + ln
(

10
100

)2
= 0.59

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

Ca rbon aeronautics

217

The b and K parameters will be determined using the angle and magnitude conditions
of the root locus method.

Response

settling time Time

maximal overshoot

Angle condition

The angle condition of the root locus says that the sum of the angles of the open
loop poles minus the sum of the angles of the open loop zeros has to be equal to
180°:

Remember that your system contained the four poles and you want to add a zero at
b. The angle condition becomes:

Using basic trigonometry, the angles can be determined (see figure below):

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

real axis (σ)

s-plane (s= σ+i.ω) imaginary axis (i.ω)

0-63 -33

left (stable)
half plane

right (unstable)
half plane

system poles

L4
L1

L2=L5
L3θ4 θ3

θ1 θ2 =θ5

desired pole

10.7

-7.8 b

218

Estimate the PID values

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

You will now determine the final parameter K using the magnitude condition of the
root locus:

In which Kglobal comprises not only the parameter K, but the full amplification
throughout the open loop system:

Meaning that:

The magnitude condition of the root locus is then equal to:

This gives K=2.4 and now you finally know the parameters of your PI controller:

The PI values for the yaw rate you used in your flight controller are equal to 2 and 12,
which is very close to your calculated estimation of 2.4 and 11.2. In practice, you will
choose 2.4 and 11.2 as initial values when testing your flight controller then slightly
tune the parameters to further improve the handling of your quadcopter.

Magnitude condition

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

Kglobal =
∏

Lpoles∏
Lzeros

C(s) · G(s) · H(s) = 1
0.03 · s + 1 · 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

This gives for θ1:

From which you can calculate the value for parameter b, again using trigonometry and
the figure on the previous page:

Your PID controller becomes equal to C(s)=K(s-4.7)/s.

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

=Kglobal

Ca rbon aeronautics

219

Part V: expanding your
horizon

congratulations, you reached the final part
of this book! By now, you have learned so
much about quadcopters that you are ready
to further develop, tweak and modify it
yourself!

what about adding a GPS system to devel-
op a return to home function, an ultrasonic
sensor enabling you to add obstacle avoid-
ance, a telemetry system or a camera to get
into the exciting world of FPV racing?

now that you know the basics, nothing is
beyond your reach. Have fun developing
your own projects!

Ca rbon aeronautics

This manual helps you to develop, program
and construct your own quadcopter with
the help of 24 small projects, explaining
the essentials on aeronautics, electronics
and embedded programming along the
way.

All components and code used in this man-
ual are fully hackable and adaptable, giving
you the opportunity to create your own
unique quadcopter.

