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Ca rbon aeronautics



you are about to embark on an exciting 
journey... building and programming a 
quadcopter from scratch.

this manual will guide you every step of  the 
way, explaining the essentials on aeronaut-
ics, electronics and embedded program-
ming.

all components and programs are fully 
hackable, meaning that you can adapt an-
ything you want and create a quadcopter 
capable of  stuff  that goes way beyond the 
scope of  this manual!

good luck and most importantly: have fun!



Carbon Aeronautics quadcopter build and programming manual

Project, text and figures by Laurens Raes

The contents of  this manual are the intellectual property of  the company Carbon Aer-
onautics. The text and figures in this manual are licensed under a Creative Commons 
Attribution - Noncommercial - ShareAlike 4.0 International Public Licence. This li-
cense lets you remix, adapt, and build upon your work non-commercially, as long as 
you credit Carbon Aeronautics (but not in any way that suggests that we endorse you 
or your use of  the work) and license your new creations under the identical terms.

The information in this manual is provided "As Is” without any further warranty. 
Neither Carbon Aeronautics or the author has any liability to any person or entity with 
respect to any loss or damage caused or declared to be caused directly or indirectly by 
the instructions contained in this manual or by the software and hardware described 
in it. As Carbon Aeronautics has no control over the use, setup, assembly, modification 
or misuse of  the hardware, software and information described in this manual, no 
liability shall be assumed nor accepted for any resulting damage or injury. By the act 
of  use, setup or assembly, the user accepts all resulting liability. 

This is not a toy but an educational product and not intended for persons below the 
age of  18 years old. The user is responsible for complying with the local regulations 
concerning unmanned aircraft when flying outdoors, and to fly in a responsible man-
ner. This is a sophisticated product for advanced craftsman with previous experience 
in the field of  electronics and programming. The purpose of  the safety instructions 
and warnings in this manual is to attract your attention to possible dangers. They do 
not by themselves eliminate any danger, nor are they fully exhaustive. They are no 
substitutes for proper accident prevention measures or for the knowledge of  the 
electric safety rules that are expected to be known by experienced craftsmen.

First edition, August 2022.
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Let's start your exciting journey in the world of  aeronautics, electronics and 
programming with the concept behind the flying machine that you will build 
and the parts that you need. This manual will help you tackle the basics and 
enable you to build your own quadcopter; a drone with four motors.

The creation of  flying machines is a true engineering challenge and involves solving 
several problems, from aerodynamics to power systems. In the case of  a quadcopter, 
you rely on four motors and propellers to provide enough thrust to start flying. Obvi-
ously, these are not the only necessary components. The figure to the left displays the 
basic overview of  a quadcopter with three major active building blocks:

•	 The radio control system, which consists of  a radiotransmitter and a receiver. 
The position of  the sticks on the radiotransmitter are transformed into com-
mands and subsequently sent to the receiver that is situated on your quadcopter.

•	 The flight control system, which consist of  a microcontroller and some sen-
sors. The bare minimum you need to stabilize the quadcopter is an orientation 
sensor, but you can add various other sensors (barometer, GPS, ultrasonic,...) 
to make your flight easier. The information of  your sensor and the commands 
from your radiotransmitter are then processed in the microcontroller, which is 
the brain of  your quadcopter. The microcontroller calculates the optimal speed 
of  each of  the four motors to keep the quadcopter in the air. 

•	 The third building block is the powertrain, which is the high current part of  the 
quadcopter. The battery is the power source of  the whole system and sends en-
ergy in the form of  electrical current to four electronic speed controllers (ESCs); 
an ESCs converts the provided current into current pulses, with a pulse length 
proportional to the motor command sent from the microcontroller. This gives 
a motor speed proportional to the motor command and in turn, a certain thrust 
allowing you to take off!

And basically, that’s all there is to it! With the general idea behind your quadcopter 
clearly understood, let’s have a look at all different physical parts that you will use. 
Your quadcopter consists of  three active building blocks; a radio control system,  
flight controller and powertrain. Moreover, you also need a frame on which you can 
mount all these active components. Some auxiliary parts are also necessary, to charge 
the battery and test your microcontroller, sensors and powertrain before fixing them 
to the frame.

Ex plore the basics of  your quadcopter
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Concept, parts and programming 

All necessary components are listed below and divided into parts for the frame, flight 
controller, powertrain, battery and radio control. Each part is available on the con-
sumer market, so if  you break a part during flight or you want to change parts, you 
can easily buy it yourself. This manual is designed to guide you building your own 
quadcopter while enabling you to change any aspect of  it as well.

1x 3x + 3 spares 1x

2x 2x 1x

1x1x 3x + 3 spares

battery connector
XT60

jumper wires
female to female 10 cm

diodes

female headers
40 pins - 2,54 mm

wire terminal strip jumper wires
male to female 10 cm

male headers
40 pins - 2,54 mm - right angle

2k2j 2l

2m 2n breadboard
400 points2o

2p 2q jumper wires
male to male 10 cm2r

40x

lower quadcopter frame
CarbonAeronautics

upper quadcopter frame
CarbonAeronautics

frame spacers
M3 x 30 mm

spacer fastening screws
M3 x 6 mm

cable ties
16 mm

Zener diode (1x)
(BZX79C2V4)

Diode (1x)
(1N4007)

100 Ω (2x)

510 Ω (2x)

2000 Ω (1x)

standoff  spacer
M3 x 20 mm

battery strap
210 mm

1b

1   frame

1a 1c

1x 1x 1x

1x 4x 4x

12x 1x + 1x

1x 1x 4x

1d

12x

1e

1x

landing pad1f

4x + 1 reserve

1g

6x + 4 reserve

1h

4x + 2 reserve

microcontroller
Teensy 4.0

microcontroller connector
USB A to micro B

orientation sensor
GY-521 MPU-6050

barometer
GY-BMP280

sensor full nuts
M3

green and red LEd

sensor fastening screws
M3 x 20mm

2b

2   flight controller

2a 2c

2d 2e sensor locknuts
M32f

2g 2h resistors2i

motors
GEPRC GR1105
5000 kV

motor fastening screws
M2 x 4 mm

Electronic speed 
controllers
HobbyKing 6A 
ESC with BEC

clockwise propellers
Gemfan 3018R

counter-clockwise 
propellers
Gemfan 3018

3b

3   powertrain

3a 3c

4x 16x 4x

3d 3e
propeller fastening 
screws
M2 x 8 mm

3f

4x + 8 reserve2x + 2 reserve 2x + 2 reserve

Batteries
Turnigy 2S 1300 mAh

battery charger
Hobbyking B3AC4b

4   Battery

4a

2x 1x

Radiotransmitter
Flysky FS-i6

receiver and bind plug
Flysky FS-iA6B4b

5   Radio control

5a

1x 1x

male headers
40 pins - 2,54 mm - straight

power switch
BTS50080-1TMB2s 2t slide switch

OS102011MS2QN1C2u

2x 1x 1x

cable protector
500 mm1i

1x

3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

:  4.80 V
:  4.99 V
:  10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf
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cable protector
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3V 22 19 1821 20 16

75

14

863 4 90

5V

G 2

1517

10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO

INT

VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd

UP

doWn

ok

CAnCEL

PoWER

TX
RX

:  4.80 V
:  4.99 V
:  10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf
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14
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5V

G 2
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10 11
Y

X

VCC

GND

SCL

SDA

XDA

XCL

ADO
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VCC

GND

SCL

SDA

CSB

SDC

sWA
sWB sWC

sWd
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doWn
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CAnCEL

PoWER

TX
RX

:  4.80 V
:  4.99 V
:  10

TX.V1
IntV1
sigs1

BInd kEy

LEd

PPm/CH1

B/VCCCH6CH5CH4CH3CH2

UPdATE

a b c d e jihgf
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

+ + --

+ + -- a b c d e jihgf
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+ + --

+ + -- a b c d e jihgf

Alternative parts

You are not limited to the parts that are described in this paragraph and chances are 
you want to choose different components for various reasons such as higher thrust, 
longer flight time or lower weight. The parts that can easily be swapped are the pro-
pellers, ESC (Electronic Speed Controller), motor and battery. To give you an idea of  
the possibilities, this paragraph describes some successfully tested variations on the 
basic quadcopter. The PID values derived later on in this manual are a good match 
for all variations, but remember that the weight of  your quadcopter will be affected: 
the basic quadcopter weighs 247 gram while the combination of  all the heaviest com-
ponents described in this paragraph weighs 278 gram.

The battery is perhaps the easiest interchangeable component. The base part is a 2S 
battery with a capacity of  1300 mAh and a weight of  70 gram. Other tested possible 
batteries include a 2S battery with 1000 mAh (weight: 60 gram) or a 2S battery with a 
1500 mAh capacity (weight: 80 gram). Additional capacity comes at a cost in the form 
of  extra weight and thus a less flexible quadcopter. 

The choice of  your ESC and motor combination needs some more care. You should 
make sure that the maximal load current of  both your ESC and motor are similar: the 
part with the smallest load current limits the load current of  both components. Since 
a motor or ESC with a higher load current generally weighs more, the optimal com-
bination consists of  motors and ESC with similar load current. The base motor and 
ESC combination (GEPRC GR1105 5000 kV and Hobbyking 6A ESC with BEC) 
both have a load current of  around 6 A. Another tested possibility is the combination 
of  the GEPRC GR1206 4500 kV and Hobbyking 12A ESC, both having a load cur-
rent of  around 12 A. The 6 A combination of  four motors and ESCs weighs around 
50 gram, while the 12 A combination weighs 66 gram. 
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Another important value is the motor kV rating: this determines how fast the propel-
ler can turn at full throttle: a 5000 kV motor turns at 5000 rpm/V.  Since a 2S battery 
has a nominal voltage of  7.4 V, this equals to a nominal rmp of  5000 rpm/V x 7.4 
V = 37 000 rpm. To lift a quadcopter with a weight between 200 and 300 gram, you 
need a motor with a kV rating between 4000 and 6000, depending on the propeller.

Once you have chosen your ESC and motor combination, the propellers are next. A 
larger propeller generates more thrust: this is great because it means your quadcopter 
can weigh more and can successfully combat stronger wind gusts. However, the nec-
essary load current increases and your motor and ESC have to withstand this higher 
current, otherwise they will overheat and possibly start burning. Larger propellers 
obviously weigh more as well.

Four different propellers are tested with the two motor/ESC combinations and tab-
ulated above together with their current at full throttle with a full 2S battery. The 
colour code can be explained as:
•	 Green: the motor and ESC can withstand full throttle with this propeller for 

longer periods of  time - this combination is suitable for beginners. 
•	 Orange:  the motor and ESC can only withstand short bursts of  full throttle 

with this propeller - this combination is only suited for experienced flyers given 
the risk of  motor or ESC overheating.

•	 Red: this combination is not recommended given the high risk of  motor and 
ESC overheating.

For reference, the maximal dimensions for the battery and the propellers given the 
frame width are included here as well: 
•	 10.2 cm is the maximal diameter of  the propeller (corresponds with a 4 inch 

propeller).
•	 The battery bay has a 12 cm x 4 cm x 3 cm dimension, but you need to leave 

some space for the receiver, electronic cables, protectors and screws. This limits 
the practical space to 8.5 cm x 3.3 cm x 1.5 cm.

Gemfan propeller
(weight in gram for 4 props)

3018
(2 blade)

3.4 g

3035
(3 blade)

5.6 g

4024
(2 blade)

6.4 g

4019
(3 blade)

8.4 g

GEPRC GR1105 5000 kV 
+

Hobbyking 6A ESC with BEC
5 A 7 A 9 A 12 A

GEPRC GR1206 4500 kV 
+

Hobbyking 12A ESC with BEC
5 A 7 A 9 A 12 A



16

Concept, parts and programming 

Additional required tools and material

To complete your build, you also require some additional tools and material. Except 
for a computer, these are only necessary when starting the actual build, not when 
testing the components in the first projects (except if  you still need to solder headers 
to your Teensy and sensors in order to test them on the breadboard). 

•	 a soldering iron or station, to solder the motors wires, ESCs, resistors, LEDs 
and male/ female headers to each other / the printed circuit frame on you quad-
copter frame.

•	 sufficient solder material.
•	 a soldering helping hand to clamp the parts you are soldering together.
•	 a wire stripper to strip the electrical insulation from the ESC and motor wires.
•	 a wire cutter to cut the ESC and motor wires. 
•	 a computer capable of  running Arduino (see arduino.cc/en/software)
•	 two hex keys (1.5 mm and 2 mm)
•	 a multimeter to check for short-circuits or bad connections.
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Battery
•	 Read the battery and battery charger manuals carefully before use.
•	 Never charge the batteries unattended.
•	 Before connecting the battery and your motor(s) or quadcopter for the first 

time, make sure there are no short-circuits between your soldered components 
using your multimeter.

Electronics
•	 Before connecting the electronics to a power source (such as your computer), 

make sure that there are no short-circuits between your soldered components 
using your multimeter.

•	 Remove the propellers and do not touch the motors unless you are sure that 
your program is working properly to avoid losing control over your quadcop-
ter.

•	 Never run your motors without propellers.

Before flying
•	 Make sure the failsafe and safety-related code lines are implemented and work-

ing correctly.
•	 Check the regulations that are applicable in your country (with regard to max-

imal altitude, speed, weight,...) when flying your unmanned quadcopter out-
doors.

General safety instructions
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Concept, parts and programming 

The core of  your quadcopter project is the Teensy microcontroller that you will pro-
gram in such a way that it becomes the flight controller and thus brains of  your 
project. The Arduino software will be used to program the microcontroller, together 
with Teensyduino.

You can find all information with regard to the installation of  the necessary software 
on the website of  the Teensy manufacturer: www.pjrc.com/teensy. The installation 
steps will be described here as well, but please refer to the pjrc and arduino websites 
if  you need additional troubleshooting.

1. Connect your new Teensy to your computer using the USB cable (see figure to the 
right).

2. Your Teensy should come with the LED blink program pre-loaded; this means 
that the orange LED on your Teensy should blink slowly after connection with your 
computer.

3. Press and release the tiny pushbutton on the Teensy. The orange blinking LED 
should stop and the red Teensy LED should be visible. This means your Teensy 
works correctly.

4. Disconnect your Teensy from your computer by disconnecting the USB cable.

File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

Verify Upload
serial monitor

Setup your microcontroller for programming
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UsB connection to 
your computer

micro-B connection 
to your Teensy

orange Teensy LEd 
(pin 13)

red Teensy LEd 
(bootloader status)

pushbutton 

microcontroller
Teensy 4.02a

microcontroller connector
USB A to micro B2b

5. Download and install the Teensy Loader program, which communicates with your 
Teensy board. Guidance on the installation process can be found at pjrc.com/teensy/
loader.html. Click on the operating system of  your computer, read the information 
and click on the Teensy Loader link to start downloading.

6. If  you do not have the Arduino software (IDE) yet, download the latest version 
from arduino.cc/download and install it on your computer. Guidance on the instal-
lation process can be found at arduino.cc/en/Guide/Windows or arduino.cc/en/
Guide/MacOSX or arduino.cc/en/Guide/Linux.

7. The final piece of  software to install is Teensyduino, the software add-on for Ar-
duino. Download it by going to pjrc.com/teensy/td_download.html and follow the 
instructions on this webpage.

8. Open the Arduino IDE; a new empty sketch should load automatically. Copy the 
code in the figure to the left of  this page and save the file under the name BLINK. 
Now click on ‘Verify’. You will first have to save your sketch. After verification, you 
should view the message ‘Done Compiling’ below on your screen. If  you get an error, 
verify whether you copied the code correctly. 
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Concept, parts and programming 

9. Before you can upload your verified code to your Teensy, you need to setup your 
Teensy in the Arduino IDE. Go to tools and:
•	 Click on ‘Boards’ and ‘Teensyduino’ and select the Teensy 4.0 board. 
•	 Verify that the USB type is ‘Serial’.
•	 Verify that the CPU speed is 600 MHz.
•	 Connect your Teensy again with your computer using the USB cable. Under 

Port, a USB port should be displayed. Click on it.

10. Press the upload button on the screen. The internal Teensy LED should start 
blinking again. Change the blinking speed by changing the delay time of  500 (milli-
seconds) in the code to for example 100 (milliseconds) to blink faster, or 1000 (mil-
liseconds) to blink slower. Adapt and upload the code to verify that you are truly in 
control of  the Teensy. When this test is successful, you are ready for the next project!

male header pins (straight)
provide the connection of  the 

components with the breadboard

solder the male header 
pins to the components

barometer
GY-BMP2802dorientation sensor

GY-521 MPU-60502cmicrocontroller
Teensy 4.02a

male headers
40 pins - 2,54 mm - straight2s

Code compatibility

The code throughout this book is compatible with the following Arduino (library) 
versions:
•	 Arduino IDE: 1.8.16
•	 Teensyduino: 1.55
•	 BasicLinearAlgebra library: 3.2.0 (only necessary for part III)
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File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

Auto Format       Ctrl+T
Archive Sketch
Fix Encoding & Reload
Manage Libraries...     Ctrl+Shift+I
Serial Monitor       Ctrl+Shift+M
Serial Plotter       Ctrl+Shift+L

WiFi101/WifiNINA Firmware Updater

Board: “Teensy 4.0”
USB Type: “Serial”
CPU Speed: “600 MHz”
Optimize: “Faster”
Keyboard Layout: “US English”
Port
Get Board Info

Programmer: “AVRISP mkll”
Burn Bootloader

Solder pins to your microcontroller and sensors

You will use a breadboard to separately test the electronic components of  your flight 
controller. To be able to electrically connect the components with the breadboard, 
you need to use straight male header pins that are soldered to your Teensy microcon-
troller, the MPU-6050 gyroscope and the BMP-280 pressure sensor. If  these parts do 
not come pre-soldered with header pins, you will need to solder them yourself.

For easy soldering, you can insert the pins in your breadboard and put the component 
on top such that the pins are soldered straight to the microcontroller and sensors. If  
you have never soldered before, you can consult the internet for some tutorials.



PART I: rate mode



in the first part, you will build your quad-
copter and program a flight controller that 
enables you to fly in rate mode; this is the 
easiest-to-implement controller that gives 
you full control over the performance of  
your quadcopter.

complex projects such as this one are often 
cut in smaller, independent pieces that are 
tested separately, before all components 
are put together. 

you will follow this approach and start with 
simple building blocks and code, to eventu-
ally arrive at the full build and flight code.
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breadboard
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green and red LEd2h

2i

jumper wires
male to male 10 cm2r

resistors
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LED control
        Project 2 
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Throughout this manual, you will learn how to communicate with your quad-
copter by giving it commands. However, this communication goes only one-
way from your radiotransmitter to the quadcopter. Sometimes it is useful to 
receive some feedback from the quadcopter, for example when the setup and 
calibration process is finished or when the battery voltage becomes low. To do 
this in an easy way without telemetry, you will use three signal LEDs.

The first led you will use is the internal led of  the Teensy, which you already exper-
imented with. This orange led is controllable through pin 13 and requires no addi-
tional circuit building. Lighting this led can be useful to show that the microcontroller 
receives power and is working correctly.

You will also use two additional external LEDs to signal the start and end of  the setup 
program. Before you are able to fly, the microcontroller will have to start the auxiliary 
sensors and calibrate them. This takes about four seconds during which the quadcop-
ter is not yet able to start. During this time, you turn on the red LED to signal that 
the quadcopter is still in the setup process. When the setup process is successfully 
finished, you turn off  the red LED and turn on the green LED. Let’s start to build 
the electronic circuit necessary to light these external LEDs.

Connect two 100Ω resistors to pins 
5 and 6 of  your Teensy using jumper 
wires. Pin 6 gives signals to the red 
LED while pin 5 gives signals to the 
green LED. Connect the long leg (+ 
side or anode) of  each LED with the 
resistor and the short leg (- side or 
cathode) with the negative bus line. 

Configure your breadboard such that 
the ground G of  the Teensy is con-
nected to the negative bus line as well.

The schematic view of  this circuit is 
shown to the right. You are now ready 
to program your Teensy and to give 
signals to each LED.

3V

100Ω 100Ω

Green 
LED

Red
LED

5V

14
15
16
17
18
19
20
21
22

0
G

11
10
9
8
7
6
5
4
3
2

Teensy

3V

Us e LEDs to receive feedback
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LED control 

 All arduino sketches consist of  both a setup and a loop part. The code in the setup 
part of  the sketch only runs once, during startup of  the microcontroller. The code in 
the loop part of  the sketch runs continuously when the setup part is finished. 

As seen in the previous project, you can control the internal orange Teensy LED with 
pin 13. Configure the pin as an output using the command pinMode() and use the 
command digitalWrite() to give it the command HIGH, which will light the orange 
LED and show that the microcontroller is powered and working.

To control the external LEDs, you will use the same commands. You already connect-
ed the red LED to pin 5 and the green LED to pin 6. To show that the setup process 
is ongoing, you light up the red LED by giving it the HIGH command. 

Now wait four seconds (=4000 milliseconds) using the delay() command in order to 
simulate the setup process, which will take around four seconds to be completed in 
your final quadcopter code.

To indicate that the setup process is finished, turn off  the red LED using the com-
mand LOW and subsequently turn on the green LED.

The code in the loop part runs continuously. Because you do not write any commands 
in this part, the green LED will be continuously illuminated as demanded in the last 
line of  the setup part.

Coding

Testing

Upload your new code to your Teensy using the USB cable and verify that all LEDs 
light up in the correct order. Only the green LED should remain on after four sec-
onds.
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 Initialize the setup 
part

Turn on the internal 
LED

Turn on the red LED

Wait 4 seconds

Turn off  the red 
LED and turn on the 
green LED

Start the loop part

1  void setup() {

2  	 pinMode(13, OUTPUT);
3  	 digitalWrite(13, HIGH);

4  	 pinMode(5, OUTPUT);
5  	 digitalWrite(5, HIGH);

6  	 delay(4000);

7  	 digitalWrite(5, LOW);
8  	 pinMode(6, OUTPUT);
9  	 digitalWrite(6, HIGH);
10  }

11  void loop() {
12  }

You used the pins 5, 6 and 13 as digital pins, meaning that their output voltage is 
binary: either HIGH (3V) or LOW (0V). This very simple command is sufficient 
to turn on a LED (when the 3V voltage is applied) or turn off  the LED (when 
the 0V voltage is applied). The current necessary to light the LEDs is provided 
with the resistors you placed in series; through Ohm’s law, you can calculate that 
a voltage of  3V and a resistance of  100 Ω gives a current of  3V/100 Ω=0.03 
Ampere or 30 mA.

Understanding digital output pins
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Fully charged: 8.4 V 

Low battery: 7.4 V 

9 V 

8 V 

7 V 
Critically low: 7.2 V 

80% 60% 40% 20% 0% 100% 

Battery voltage 

Remaining battery energy
5% 

The evolution of  the battery level in function of  the battery voltage is displayed by 
the figure above. It is important to notice that discharging your battery to a too low 
voltage can degrade the battery and lead to a reduced capacity over time. Therefore, 
a good guideline for prolonged battery lifetime is to not discharge your 2S battery 
below its nominal voltage of  7.4V. Because the battery voltage fluctuates during flight 
and can drop temporarily when you suddenly increase the throttle, your flight control-
ler will check if  the voltage is above 7.5V before starting the motors.

Now how can you measure the voltage of  the battery? Easy: the voltage applied to 
any pin of  your microcontroller can be read digitally. Unfortunately, there is one 
catch: the pins of  the Teensy are only 3.3V-tolerant, meaning that applying a voltage 
higher than 3.3V can damage the microprocessor. Therefore, you need to use a volt-
age divider: this electronic circuit divides the voltage of  the battery to a value low 
enough to be used by your Teensy. Consider the first circuit displayed on the right: 
through Ohm’s law, the current I is equal to the battery voltage Vbattery divided by the 
resistance R1.

In the second circuit, a second resistance R2 is used. The battery voltage is now equal 
to the current divided by the sum of  two resistances. With the third circuit, you con-
nect a pin of  the Teensy between both resistances.

Reading your battery level
        Project 3 
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Le arn to measure voltage and battery lifetime

A critical part of  your quadcopter is the battery; it stores enough energy to 
let you fly for quite a while. But how do you know when the battery is almost 
empty? In this project, you will learn how the battery voltage drops during the 
flight and measure it in order to estimate the remaining battery lifetime.

The battery you use in this project is a 2 cell lithium-polymer battery, where the cells 
are placed in Series (=2S). Each cell has a nominal voltage of  3.7V and since the cells 
are placed in series, the total nominal voltage is equal to 7.4V. A 3S battery would give 
you 3 x 3.7 =  11.1V. The nominal voltage is the reference voltage of  the battery, but 
you will always charge the battery up to the charge voltage, which is equal to 8.4V for 
a 2S battery. 

When using a fully charged battery to fly your quadcopter, the battery voltage will 
drop from the charge voltage of  8.4V to the nominal voltage of  7.4V and even lower 
when you use more energy. This is inevitable and results in a lower thrust over time, 
because the speed of  the motors is proportional to the provided voltage. Fortunately 
you can use this property also to your advantage, because by measuring the battery 
voltage you are able to estimate the remaining battery energy.

R1

R1

R2

R1

R2

Vbattery

Vbattery

Vbattery

VTeensy

pin 15

GND

GND

GND

7.4 V

7.4 V

7.4 V

I =

I

I

I

R1

R1+R2

R2

Vbattery

I =
Vbattery

I =
VTeensy
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Coding

Lets first declare the voltage as a floating point number. To be able to measure the 
voltage multiple times without rewriting the same lines of  code over and over, you 
will create the function battery_voltage. This function can be called as often as you 
want.

The analog voltage over pin 15 can be measured using the function analogRead(). 
Since the default resolution for analogRead is equal to 10 bit, a voltage of  0V gives 
you the digital number 0 and the maximal input voltage of  3.3V gives the digital 
number 210-1=1023. Moreover you have built a 1:5 voltage divider. This means that 
the battery voltage is equal to the measured voltage divided by 1023 / (3.3 x 5) = 62.  

You will visualize the voltage at pin 15 in real-time on your computer with the serial 
monitor. Set the speed at which the Teensy communicates with your laptop to 57600 
bits per second.
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The voltage applied to the pin of  the Teensy (which will be pin 15) is equal to the 
current divided by the second resistance R2. Since the current I will be the same for 
the second and third circuit, the following equation holds:

By choosing the value of  R1 to be equal to 2000 Ω and the value of  R2 to be equal to 
510 Ω, VTeensy becomes equal to Vbattery 
divided by 5. You have now designed a 
1:5 voltage divider! With a battery volt-
age of  8.4V, the voltage measured by 
your Teensy equals 1.7V, low enough to 
respect the 3.3V tolerance of  the Teen-
sy pins. 

To test your circuit, you will not yet con-
nect your battery but use the 5V output 
pin of  the Teensy as voltage source, and 
measure this value with pin 15 and your 
new voltage divider. Connect the 5V pin 
with a 2000 Ω resistor to pin 15 and the 
ground pin with a 510 Ω resistor to pin 
15 as shown on the figure to the left. 
You are now ready to code.

3V

510Ω

2 kΩ

5V

14
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Teensy

3V

1  float Voltage;
2  void battery_voltage(void) {
3  	 Voltage=(float)analogRead(15)/62;
4  }

5  void setup() {
6  	 Serial.begin(57600);

I = Vbattery

R1

I = Vbattery

R1 + R2

I = VT eensy

R2

Vbattery

R1 + R2
= I = VT eensy

R2

VT eensy = Vbattery · R2

R1 + R2

Read the battery volt-
age

Setup the serial mon-
itor

I = Vbattery

R1

I = Vbattery

R1 + R2

I = VT eensy

R2

Vbattery

R1 + R2
= I = VT eensy

R2

VT eensy = Vbattery · R2

R1 + R2
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Reading your battery level 

Measure the voltage each 50 milliseconds and print it to the serial monitor, with each 
time the unit V behind. 

Testing

Upload the code and open the serial monitor (Ctrl+Shift+M or click on the serial 
monitor icon) with the USB adapter still connected to your Teensy. To see values 
that make sense, you should set the baud rate such that it corresponds with the baud 
rate that you have chosen in the code, namely 57600 baud. Now you should see the 
measured values, who will be more or less equal to 5V. When you connect the battery 
in a later stage, the measured voltage will vary between 8.4V and 7V.
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7  	 pinMode(13, OUTPUT);
8  	 digitalWrite(13, HIGH);
9  }
10  void loop() {
11  	 battery_voltage();
12  	 Serial.print(Voltage);
13  	 Serial.println("V");
14  	 delay(50);
15  }

File Edit Sketch Tools Help

void setup() {
 pinMode(13, OUTPUT);
}
void loop() {
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
}

BLINK

1. upload code
2. open serial monitor

15:22:15.581 ->  4.88V
15:22:15.628 ->  4.88V
15:22:15.674 ->  4.89V
15:22:15.721 ->  4.87V
15:22:15.768 ->  4.88V
15:22:15.815 ->  4.88V
15:22:15.861 ->  4.89V
15:22:15.908 ->  4.87V
  

Teensymonitor   

Newline           57600 baud       clear output   

3. check baud rate

4. check measured values

Print the battery volt-
age to the serial mon-
itor
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Sensing the rotation rate
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Me asure the rotation of  your quadcopter

To stabilize your quadcopter, you need measurements of  its three-dimension-
al orientation. In rate control mode, it is sufficient to know the rotation rates 
when rolling, pitching and yawing. A sensor able to record these rotation rates 
is called a gyroscope. During this project, you will learn how to read the data 
sent from your gyroscope.

The gyroscope that you will use is included in the MPU-6050, a low-cost off-the 
shelve orientation sensor. While the MPU is not a very precise sensor, its accuracy is 
sufficient to get great results balancing your quadcopter. You will use the gyroscope 
to measure the roll rate, pitch rate and yaw rate: this means that you do not measure 
absolute angles in degrees (°), but rather angular rates in degrees per second (°/s). An 
angular rate of  30°/s for example, means that you rotate 30° each second and will 
perform a full 360° rotation in 12 seconds (360°/ (30°/s)). You will learn later on that 
you can use these rotational rates to keep the quadcopter balanced; for example when 
you want the drone to stay at its current orientation, its angular rate needs to be 0°/s.

Before you continue, you need to be fully aware of  the direction of  the roll, pitch 
and yaw rotational rates. These three rotations are visualized on the figure to the left:
•	 A roll rotation means that you rotate clockwise around the X axis of  the gyro-

scope. 
•	 A pitch rotation means that you rotate clockwise around the Y-axis of  the gy-

roscope.
•	 A yaw rotation means that you rotate counter clockwise around the Z axis of  

the gyroscope. 

The respective axis around which you turn, is the only axis that keeps pointing to the 
same direction during the turn: on the figure, this is each time the red axis.  

Notice that the X and Y axes and their respective rotation directions are also writ-
ten physically on the MPU-6050 sensor itself. When building the quadcopter and 
soldering the MPU-6050 to it, always make sure that the axes written on the sensor 
are aligned with the roll, pitch and yaw axes of  the quadcopter itself. 

Mounting instructions of  the gyroscope on your quadcopter
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The code for the I2C protocol is rather complex, so you use a predefined library 
called Wire.h. This was normally installed automatically when you installed Teensy-
duino, but you can still install it at this point if  necessary: in the Arduino IDE, go to 
sketch → include library → manage libraries and type Wire in the search bar. Click on 
install and you are ready to use it. 

Define the roll, pitch and yaw rates in degrees/s (°/s) as global variables. You will 
write the output of  the measurements from the sensor to these variables.

Use once again a function to get the data from the gyro. With the I2C protocol, each 
device (sensor) has its unique address. For our MPU-6050, this address can be found 
in the register documentation and has a default value of  0x68. Routing function Wire.
beginTransmission to this address starts the communication with the sensor.

All information about sensors and their setup can easily be accessed online; try 
and look up the MPU-6050 register map and product specification documenta-
tion. 

Sensor documentation

Coding
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How can you connect the MPU-6050 with your microcontroller? The communica-
tion protocol that you will use is I2C. This protocol needs two wires: a serial commu-
nication line (=SDA) through which the data can be transferred bit by bit, and a line 
that carries the clock signal (=SCL). The exact design of  this protocol is beyond the 
scope of  your project, but one 
of  its advantages is the transfer 
of  information from multiple 
sensors using the same SDA 
and SCL lines to the microcon-
troller. This will prove useful 
when you will connect a baro-
metric sensor later on.

The wiring of  the MPU-6050 
to the Teensy is rather straight-
forward: connect 5V to Vcc and 
G to GND to feed the sensor. 
Subsequently, you connect the 
serial communication output 
SDA on the sensor to pin 18 of  
the Teensy and the clock signal 
output SCL to pin 19. You are now ready to start programming. 

3V
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INT
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14
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22

0
G

11
10
9
8
7
6
5
4
3
2
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3V

1  #include <Wire.h>

2  float RateRoll, RatePitch, RateYaw;

3  void gyro_signals(void) {
4  	 Wire.beginTransmission(0x68);

Include the Wire li-
brary

Declare the global 
variables

Start I2C communi-
cation with the gyro
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 Some registers can be accessed to select some predefined options of  the MPU-6050. 
One of  these options is a low pass filter, which will be necessary to filter out high fre-
quency vibrations and hence sharp increases and decreases in rotation rates that are 
caused by running motors. The configuration register, where you can activate this op-
tion, has the hexadecimal address 0x1A according to the documentation (this is equal 
to a decimal address of  26). The options for the low-pass filter correspond to bits 0, 
1 and 2 in this address (the Digital Low Pass Filter DLPF setting). You choose a low 
pass filter with a cut-off  frequency of  10 Hz, which corresponds to a value for the 
DLPF setting of  5. This corresponds in turn to the following binary representation: 
00000101. Converting this to a hexadecimal value gives an address of  0x05.

The table from the register documentation that explains the configuration register 
of  the MPU-6050 is displayed on the right. The binary representation for setting the 
value for the DLPF is given in the third column.

In addition to the low pass filter, you also need to set the sensitivity scale factor of  the 
sensor. The measurements of  the MPU-6050 are recorded in LSB (Least Significant 
Bit). Choose a sensitivity setting of  FS_SEL=1 to set the scale factor to 65.5 LSB/
(°/s). This means that 1°/s corresponds to 65.5 LSB. You will take into account this 
scale factor later on in the code. The gyroscope configuration register to activate this 
option has the hexadecimal address 0x1B (or a decimal address of  27).  The FS_SEL 
setting of  1 corresponds to a 2-bit binary representation of  01. The other settings in 
the register can be set to zero, giving a binary representation of  00001000. Converting 
this to a hexadecimal value gives an address equal to 0x08.

The table from the register documentation that explains the gyroscope configuration 
register of  the MPU-6050 is displayed on the right. The binary representation for the 
setting of  the FS_SEL value is given in the third column.

Now you are ready to start importing the measurement values of  the gyro. These 
are located in the registers that hold the gyroscope measurements, which have the 
hexadecimal numbers 43 to 48. You start writing to address 0x43 to indicate the first 
register you will use.

Request 6 bytes from the MPU-6050 such that you can pull the information of  the 6 
registers 43 to 48 from the sensor.
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 Switch on the low-
pass filter

5  	 Wire.write(0x1A);
6      	 Wire.write(0x05);
7  	 Wire.endTransmission(); 

Register
(Hex)

Register
(Deci-
mal)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1A 26 - - EXT_SYNC_SET[2:0] DLPF_CFG[2:0]

0 0 0 0 0 1 0 1

8  	 Wire.beginTransmission(0x68);
9      	 Wire.write(0x1B); 
10  	 Wire.write(0x8); 
11  	 Wire.endTransmission(); 

Set the sensitivity 
scale factor

Register
(Hex)

Register
(Deci-
mal)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1B 27 XG_ST YG_ST ZG_ST FS_SEL[1:0] - - -

0 0 0 0 1 0 0 0

12  	 Wire.beginTransmission(0x68);
13  	 Wire.write(0x43);
14  	 Wire.endTransmission();

15  	 Wire.requestFrom(0x68,6);

Access registers stor-
ing gyro measure-
ments
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 Registers 43 and 44 contain the gyro measurements of  the rotational rate around 
the X axis, in LSB (Least Significant Bit). According to the documentation, they are 
the result of  a unsigned 16-bit measurement. This means you will declare GyroX as 
an unsigned 16-bit integer int16_t. Because the measurement of  the rotational rate 
around the X axis is spread out over two registers with each 8 bits, you will have to 
merge this information by calling Wire.read() twice.

You repeat the same code for registers 45 and 46 (rotational rate around the Y axis) 
and registers 47 and 48 (rotational rate around the Z axis).

The measurements are expressed in LSB but you want this information in °/s, not  
LSB. You have set the LSB sensitivity scale factor of  the MPU-6050 equal to 65.5 
LSB/(°/s). Therefore you just divide the values in LSB by 65.6 LSB/(°/s) to get the 
measurement values in °/s. Take care of  converting the 16-bit integer values of  the 
measurements in LSB to a floating point representation. As discussed earlier this pro-
ject, the roll rate corresponds to the rotation around the X axis, the pitch rate to the 
rotation around the Y axis and the yaw rate to the rotation around the Z axis. 

Set the clock speed of  the I2C protocol to 400 kHz. This value comes from the 
product specifications of  the MPU-6050 which states that communication with all 
registers of  the device must be performed using I2C at 400 kHz. Use a delay of  250 
milliseconds to give the MPU-6050 time to start.

To activate the MPU-6050, write to the power management register, which has the 
hexadecimal number 6B. All bits in this register have to be set to zero in order for the 
device to start and continue in power mode. Hence the hexadecimal address becomes 
0x00. 

Terminate the connection with the gyroscope and end the setup section.

In the loop part of  the code, call your function and print the roll, pitch and yaw rates 
on the serial monitor. Wait 50 milliseconds after each loop to be able to read the val-
ues on the serial monitor and close the loop function.
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 16  	 int16_t GyroX=Wire.read()<<8 | Wire.read();

17  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
18  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

19  	 RateRoll=(float)GyroX/65.5;
20  	 RatePitch=(float)GyroY/65.5;
21  	 RateYaw=(float)GyroZ/65.5;
22  }

23  void setup() {
24  	 Serial.begin(57600);
25  	 pinMode(13, OUTPUT);
26  	 digitalWrite(13, HIGH);

27  	 Wire.setClock(400000);
28  	 Wire.begin();
29  	 delay(250);

30  	 Wire.beginTransmission(0x68);	
31  	 Wire.write(0x6B);
32  	 Wire.write(0x00);

33  	 Wire.endTransmission();
34  }

35  void loop() {
36  	 gyro_signals();
37  	 Serial.print("Roll rate [°/s]= ");
38  	 Serial.print(RateRoll);
39  	 Serial.print(" Pitch Rate [°/s]= ");
40  	 Serial.print(RatePitch);

Read the gyro meas-
urements around the 
X axis

Convert the measure-
ment units to °/s

Set the clock speed 
of  I2C

Start the gyro in pow-
er mode

Call the predefined 
function to read the 
gyro measurements
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Sensing the rotation rate 

 

Upload the code to your microcontroller and open the serial monitor. You will notice 
that not all values are equal to zero even though you do not move the MPU-6050:

Roll rate [°/s]= -8.70 Pitch Rate [°/s]= 0.89 Yaw Rate [°/s]= 1.95
Roll rate [°/s]= -8.69 Pitch Rate [°/s]= 0.92 Yaw Rate [°/s]= 1.97
Roll rate [°/s]= -8.66 Pitch Rate [°/s]= 0.87 Yaw Rate [°/s]= 1.94

It is normal when you do not have the same values as mentioned above. You will 
learn more on how to solve this phenomenon through calibration in the next project.

Registers are places on a microcontroller (the Teensy but also the MPU-6050, 
since this sensor has a microcontroller as well) that are used as:
•	 Fast storage locations to store data temporary.
•	 Locations where you can set predefined options. 

You select a register by using its unique address, which is given in the documen-
tation of  the microcontroller or sensor. With the I2C arduino library, you use the 
function Wire.write(address) to select the register of  choice.

If  you select a register to set some predefined option, you once again use the Wire.
write function. You find the predefined options once again in the documentation. 
Usually each register has a number of  bits: you can set each bit to 0 or 1, which 
corresponds to different options. Converting the resulting binary representation 
to a hexadecimal representation gives you the argument for the Wire.write func-
tion.

If  you select a register to read data, use the function Wire.read() after selecting 
the address and reserving the necessary bytes. Let's go back to the example of  the 
low pass filter. Assume you want to set a low pass filter of  20 Hz instead of  10 
Hz. You already know that the register address is 0x1A. The documentation of  
the MPU-6050 says that you need to set the value of  DLPF_CFG to 4 for the 20 
Hz filter. Moreover, DLPF_CFG occupies the first three bits of  the 0x1A register:

What are registers?

Testing
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Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1A 26 - - EXT_SYNC_SET[2:0] DLPF_CFG[2:0]

The number 4 in a three bit binary representation is equal to 1 0 0: you just mul-
tiply each binary number with 2n, where n is the bit number:

Bit2 Bit1 Bit0

Binary representation 1 0 0

2n 22=4 21=2 20=1

Decimal representation 1 x 4 + 0 x 2 + 0 x 1 = 4 

If  you decide to not set an option for bit3 to bit7 and stick with the default value, 
the full 8 bit binary and decimal representation becomes:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Binary representation 0 0 0 0 0 1 0 0

2n 27=128 26=64 25=32 24=16 23=8 22=4 21=2 20=1

Decimal representation 0 x 128 + 0 x 64 + 0 x 32 + 0 x 16 + 0 x8 + 1 x 4 + 0 x 2 + 0 x 1 = 4

The Wire function use hexadecimal representation: conversion from decimal to 
hexadecimal is a little bit more complex, but you can use an online converter. 4 in 
hexadecimal form is equal to 0x04.

41  	 Serial.print(" Yaw Rate [°/s]= ");
42  	 Serial.println(RateYaw);
43  	 delay(50);
44  }
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Sensing the rotation rate 

In line six of  the code, you choose the option to send the measurement data 
through a low-pass filter with a cut-off  frequency of  10 Hz. This is a crucial line 
of  code, as the flight controller would not be able to stabilize the drone without it. 
Why? Your gyroscope is a very sensitive sensor and its readings will be dramatically 
affected by the vibrations caused by the brushless motors. The sample rate of  the 
gyroscope is equal to 8 kHz, which corresponds to a measurement each 1/8000 = 
0.000125 seconds. The high frequency vibrations from the motors will cause small 
but very fast accelerations of  the quadcopter frame, which are recorded by the 
gyroscope. The faster the motors spin, the larger the vibrations become; the figure 
to the right shows the readings of  the gyroscope with the motors switched off, 
switched on and with increasing throttle. During all three cases, the quadcopter 
stays stationary on the ground so the rotation rate should be equal to 0°/s. From 
the figure you observe that once the motors are started, the unfiltered gyroscope 
values start to fluctuate a lot. It is clear that it becomes impossible to stabilize your 
quadcopter with measurement values that vary between 40 and -40°/s while the 
quadcopter itself  remains stationary and the real rotation rate is equal to 0 °/s.

To solve this issue, you use a low pass filter with a cut-off  frequency of  10 Hz. 
The filter attenuates the measurements of  the sensor with a frequency of  10 Hz 
and higher. This means that sensor variations that happen faster than 1/10=0.1 
seconds will only have a limited impact on the final measurement values. The val-
ue of  10 Hz is chosen through trail-and-error during testing of  the quadcopter; 
motor vibration frequencies change with each brushless motor and damping of  
the vibration depends on the whole frame. The blue line on the figure to the right 
shows the filtered values; they are not affected by the vibrations caused by the 
brushless motors and are hence suited for your flight controller. 

A low pass filter?



Ca rbon aeronautics

45

60 °/s 

-60 °/s 

0 °/s

30 °/s 

-30 °/s 

Time [seconds]
2 4 6 8 100

start of  motors

motor speed increase

unfiltered

filtered

Rotation rate measured by gyroscope



46

  You need four additional variables for calibration: the calibration values for the roll, 
pitch and yaw rotation rate and a variable to keep track of  the number of  values you 
have already recorded to use for the calibration. 

Gyroscope calibration

Coding

        Project 5 
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Te ach your gyroscope the correct rotation rates 

With this short project, you will teach your gyroscope the correct rotation rates 
using a technique called calibration. You will use known rotation rates to cor-
rect the values given by your sensor.  

At the end of  the previous project, you saw that the rotation measurements given by 
your gyroscope were not correct; even though you did not move the MPU-6050, it 
still gave non-zero values. You still need to tell the instrument what its physical refer-
ence point is. Adjusting the measurements of  a sensor such that they correspond with 
real physical values is called calibration.

In the case of  a gyroscope, 
the easiest reference value that 
you can use is the rotation rate 
when the sensor is not moving: 
this rotation rate should obvi-
ously be zero. Because the gyro 
measurements always tend to 
fluctuate due to small vibrations 
in the environment, you take 
the average of  a large number 
of  uncorrected measurement 
values when the sensor is not 
moving, calculate their average 
value and subtract this average 
value from all future measure-
ment values. You can easily in-
tegrate these additional calibra-
tion steps in the code of  the previous project. The electronic circuit stays the same.

1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;

3  float RateCalibrationRoll, RateCalibrationPitch,
	 RateCalibrationYaw;
4  int RateCalibrationNumber;

5  void gyro_signals(void) {
6   	 Wire.beginTransmission(0x68);

Declare the calibra-
tion variables

3V
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INT
ADO
XCL

SDA
SCL
GND
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Gyroscope calibration 

 

 

 In the setup part of  the program, create a loop in which you take 2000 measurement 
values from the gyroscope. Each value is taken 1 millisecond after the other (hence 
the delay(1)) which means this step takes 2000 x 1 ms= 2 seconds. You add all meas-
ured values in the Roll/Pitch/YawRateCalibration variables. During this measure-
ment step, it is important to not move your gyroscope as the goal is to determine the 
measured values at a rotation rate of  zero. 

Take the average calibration value by dividing the sum of  the 2000 measurement 
values by 2000. Now you have the measurement values at which the rotation rates 
are zero.

Once the setup is finished and you have determined the calibration values, subtract 
them from the measured values in order to get the correct physical values. Print the 
corrected values to the serial monitor.

7  	 Wire.write(0x1A);
8      	 Wire.write(0x05);
9  	 Wire.endTransmission(); 
10  	 Wire.beginTransmission(0x68);
11  	 Wire.write(0x1B);
12  	 Wire.write(0x08);
13  	 Wire.endTransmission();
14  	 Wire.beginTransmission(0x68);
15  	 Wire.write(0x43);
16  	 Wire.endTransmission(); 
17  	 Wire.requestFrom(0x68,6);
18  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
19  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
20  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
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21  	 RateRoll=(float)GyroX/65.5;
22  	 RatePitch=(float)GyroY/65.5;
23  	 RateYaw=(float)GyroZ/65.5;
24  }
25  void setup() {
26  	 Serial.begin(57600);
27  	 pinMode(13, OUTPUT);
28  	 digitalWrite(13, HIGH);
29  	 Wire.setClock(400000);
30  	 Wire.begin();
31  	 delay(250);
32  	 Wire.beginTransmission(0x68);	
33  	 Wire.write(0x6B);
34  	 Wire.write(0x00);
35  	 Wire.endTransmission();
36  	 for (RateCalibrationNumber=0;
37  	        RateCalibrationNumber<2000; 
38  	        RateCalibrationNumber ++) {
39  		  gyro_signals();
40  		  RateCalibrationRoll+=RateRoll;
41  		  RateCalibrationPitch+=RatePitch;
42  		  RateCalibrationYaw+=RateYaw;
43  		  delay(1);
44  	 }
45  	 RateCalibrationRoll/=2000;
46  	 RateCalibrationPitch/=2000;
47  	 RateCalibrationYaw/=2000;   
48  }
49  void loop() {
50  	 gyro_signals();
51  	 RateRoll-=RateCalibrationRoll;
52  	 RatePitch-=RateCalibrationPitch;
53  	 RateYaw-=RateCalibrationYaw;
54  	 Serial.print("Roll rate [°/s]= ");
55  	 Serial.print(RateRoll);	
56  	 Serial.print(" Pitch Rate [°/s]= ");
57  	 Serial.print(RatePitch);
58  	 Serial.print(" Yaw Rate [°/s]= ");
59  	 Serial.println(RateYaw);
60  	 delay(50);
61  }

Perform the calibra-
tion measurements 

Calculate the calibra-
tion values

Correct the measured 
values
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Gyroscope calibration 

When you run the code and open the serial monitor, the roll, pitch and yaw rates 
should be almost zero when you do not move the gyroscope. Remember that during 
the setup phase, when no values are yet displayed on the serial monitor, you should 
not move the gyroscope in order to ensure a correct calibration.
•	 Roll rate [°/s]= 0.09 Pitch Rate [°/s]= -0.10 Yaw Rate [°/s]= -0.03
•	 Roll rate [°/s]= 0.09 Pitch Rate [°/s]= -0.09 Yaw Rate [°/s]= -0.03
•	 Roll rate [°/s]= 0.04 Pitch Rate [°/s]= -0.04 Yaw Rate [°/s]= -0.03

Now try to experiment by moving the gyroscope in the directions displayed in the 
figure to the right. When you for example pitch around the Y axis from 0 to 45°, 
wait and go back to 0°, the pitch rate should first increase with a value proportional 
on how fast you rotate, subsequently fall to around 0°/s and then go negative with a 
value proportional on how fast you rotate back to 0°.

Pitch from 0 to 45° and hold at 45°:
•	 Roll rate [°/s]= 0.01 Pitch Rate [°/s]= 0.02 Yaw Rate [°/s]= 0.00
•	 Roll rate [°/s]= -0.06 Pitch Rate [°/s]= 185.71 Yaw Rate [°/s]= -0.10
•	 Roll rate [°/s]= -0.05 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.02

Pitch from 45° back to 0° and hold at 0°: 
•	 Roll rate [°/s]= -0.05 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.02
•	 Roll rate [°/s]= 0.65 Pitch Rate [°/s]= -177.02 Yaw Rate [°/s]= 0.39
•	 Roll rate [°/s]= -0.03 Pitch Rate [°/s]= 0.06 Yaw Rate [°/s]= 0.00

Try the same test for the other directions to verify that your code is working properly.

Testing

The calibration needs to be performed during each start-up procedure, because 
the gyroscope measurement values tend to drift over time. You cannot start the 
motors yet during calibration, because their vibrations will impact the quality of  
the calibration. This means that the setup procedure takes some seconds before 
you can actually start the motors and begin your flight. That is why some projects 
ago, you learned to signal the status of  your quadcopter with the red and green 
LEDs. Be mindful also to not move your quadcopter during this startup phase, 
as this will affect the calibration quality and hence the smoothness of  your sub-
sequent flight.

Time to fly?
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4 x motor fastening screws
M2 x 4 mm3b

make sure the fastening screws do 
not touch the motor windings to 

avoid destroying the motor
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1 x lower quadcopter frame
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Take your motors for a spin
        Project 6 
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Te st your radio, motors and ESCs

You will now test your radiotransmitter, receiver and motors. Use this oppor-
tunity to calibrate each ESC and verify that all motors spins in the correct 
direction.

Each radio, ESC (Electronic Speed Controller) and motor combination needs to be 
tested, calibrated and verified before you start soldering all parts together. Let’s start 
with the first motor:

a. Set up your test stand
1.	 Slide a propeller down the motor shaft and push it firmly on the top of  the 

motor. For motor 1, you need a counter-clockwise propeller: the leading edge 
of  this propeller must be the first to turn counter-clockwise as shown on the 
picture to the left.

2.	 Fasten the propeller with two long M2 screws but be sure that the screw does not 
touch the inner motor windings.

3.	 Attach the motor to the drone frame with four short M2 screws.
4.	 Attach the drone frame firmly to your desk using tape.
5.	 Connect the three black motor wires using a wire terminal strip with the black, 

blue and red cables coming out of  the ESC. It does not matter yet which motor 
wire is connected with which ESC wire.

6.	 Connect the red and black cable of  the XT60 plug using another wire strip with 
the red and black power wires of  the ESC. Do not connect the battery yet.

7.	 Connect the white, red and black cables with channel 3 of  the receiver as visual-
ised on the picture.

b. Bind the receiver to the radiotransmitter through the bind plug
1.	 Make sure the throttle stick on the radiotransmitter is in the lowest possible 

downward position.
2.	 Turn on the POWER button of  your radiotransmitter while simultaneously 

holding the BIND KEY button. The text RX Binding... should be displayed.
3.	 Connect the bind plug with the B/VCC pins on the receiver as shown on the 

picture. Keep the connection between the receiver and ESC in place.
4.	 Connect your battery using the XT60 plug. The red LED on the receiver should 

illuminate and your radiotransmitter should beep one time, indicating that bind-
ing is successful. The text SigS1 on the radiotransmitter confirms binding of  the 
receiver. Disconnect the battery again. 

5.	 Remove the bind plug. When connecting the battery again, your radiotransmitter 
should automatically connect to your receiver.
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Take your motors for a spin 

c. Test your motor and verify its turning direction
1.	 Turn on the radiotransmitter through the POWER button.
2.	 Connect your battery using the XT60 plug. You should hear one beep from your 

radiotransmitter indicating that it is connected with the receiver, and subsequent-
ly two beeps from the motor to indicate that you are connected to a 2S battery 
followed by two more beeps from the motor indicating that the ESC preparation 
is completed.

3.	 Now slowly increase the throttle stick on your radiotransmitter to turn on the 
motor and spin it at increasing speeds.

4.	 Verify that the propellers are spinning in the correct direction (motors 1+3: 
counter-clockwise, motors 2+4: clockwise). If  they do not spin in the correct di-
rection, remove the battery and switch two of  the ESC wires going to the motor 
with each other to reverse the spinning direction. Note: if  you connect the black, 
blue and red ESC wires in the correct order with the black motor wires as shown 
in the figure, the spinning direction will always be correct.

d. Calibrate the ESC
ESC calibration always necessary to be able to control your quadcopter. Through cali-
bration, you tell the ESC what the upper and lower positions of  the radiotransmitter 
sticks are. Carry out the calibration with the help of  the following steps: 
1.	 Make sure your battery is not plugged in and the radiotransmitter is turned off. 
2.	 Turn on the radiotransmitter and put the throttle stick to its uppermost position. 

When connecting the battery, this will make sure the ESC goes in programming 
mode.

3.	 Do not connect the battery yet but first read these instructions: after con-
necting the battery, you will first hear one beep from the radiotransmitter, next 
you hear subsequent beeps from the motor. You will need to move the throttle 
stick to its lowest position between the first and the fourth beep of  the mo-
tor! If  you are too late, do not attempt anymore to lower the throttle stick but 
just disconnect the battery and try again starting from step 1.

4.	 When you understand the instructions from step 3, connect the battery, wait 
until the beep from the radiotransmitter has passed and lower the throttle stick 
to its lowest position between the first and the fourth beep of  the motor.

5.	 After two seconds, the motor should give once again two times two beeps indi-
cating that the calibration is finished. Congratulations, you finished your motor 
setup! Go once again to step c to test the throttle response.

c. Testing motors 2 to 4
Steps a, c and d need to be carried out for the other motors and ESC too. Try to 
reverse the spinning directions of  some motors by switching the ESC wires 
and changing the propellers.
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counter-clockwise propeller
Gemfan 30183e

switch two wires to reverse 
motor direction

leading edge for counter-clockwise 
propeller

clockwise propeller
Gemfan 3018R3d

leading edge for clockwise 
propeller

Not only ESC calibration can be carried out by putting the ESC into program-
ming mode, but other settings can be adjusted as well. The first four beeps are 
followed by four beeps with a slightly different noise, indicating a different setting. 
By moving your throttle stick down during these beeps, you can choose to activate 
the corresponding setting. Through this method, you can choose from multiple 
settings; more information can be found in the datasheet of  your ESC. 

ESC programming
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Take your motors for a spin 

You control the speed of  your motor through the ESC, which in turn gets its 
commands from channel 3 (the throttle channel) of  your receiver. The receiver 
sends Pulse Width Modulated (PWM) signals to the ESC to this channel, indicat-
ing a desired throttle value between 0 and 100%. But what is a PWM signal, really?

In essence, a PWM signal is just a signal that varies between a HIGH voltage (for 
example 5V) and a LOW voltage (for example 0V), or between 1 and 0 to keep 
the concept simple. It is the time length during which the signal stays HIGH that 
is used to transfer information. Suppose for example that a time length of  1 ms 
HIGH corresponds with no throttle (0%) and a time length of  2 ms HIGH cor-
responds with full throttle (100%). The PWM frequency of  most receivers and 
ESCs is 4 ms (or 1/0.004=250 Hz), meaning that your chosen signal repeats itself  
every 4 ms with a length that corresponds with your throttle command. This con-
cept is illustrated in the figure below and will be used later on to send commands 
to your ESCs using your Teensy instead of  directly from the receiver.

ESC control through PWM

1.5 ms 1 ms1.5 ms 2 ms

Throttle

100%

50%

0%

1

0

PWm signal

4 ms = 1/250 Hz

Time

Time

Full throttle

No throttle

Sample each
4 ms
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1
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Time

Time

Time
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No throttle

Sample each
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Receiving commands
        Project 7 
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Pr ocess commands sent to the receiver

The commands that you give through your radio controller are transmitted 
via radio waves and picked up by your receiver. The receiver then converts the 
radio waves to a signal which can be read by your microcontroller. You will 
now learn how to convert these signals from the receiver to variables that can 
be used further in the flight code.  

There are multiple methods to transfer information through digital signals, one of  
which you already learned: Pulse Width Modulation (PWM). PWM is an easy method 
to send information of  one radiochannel from the receiver to the microcontroller. 
However, receiving information from multiple radiochannels would require one sig-
nal cable to the microcontroller for each channel. This is cumbersome when you need 
a lot of  channels, meaning you will have to master another technique: Pulse Position 
Modulation (PPM).

You already saw that you can use the width of  a PWM signal to transfer information: 
a signal width of  1 ms (=1000 µs) corresponds for example with no throttle (0%) and 
a width of  2 ms (=2000 µs) corresponds with full throttle (100%). Using the tech-
nique of  Pulse Position Modulation, you are able to transfer the same information 
using the position of  the signal in time, instead of  the width. With PPM, the width of  
each signal stays the same but its position changes each time depending on the value 
of  the radiochannel.

An example is displayed to the left: the first throttle value sampled from the radio-
channel is equal to 50%. Using PWM, this corresponds to a signal width of  1.5 ms 
(=1500 µs). With PPM, the signal starts after 1.5 ms and has the same width each 
time. When 4 ms have passed, another throttle value is sampled and the cycle begins 
again. 

The standard operating mode of  your transmitter is PWM, not PPM! This means 
you have to configure the transmitter to use PPM for this project with the following 
steps:
Switch on the transmitter → hold the OK button for two seconds → choose Sys-
tem → go down and choose "RX setup" → go down and choose "Output mode" 
→ choose "PPM" and hold the CANCEL button for two seconds to save your 
choice.

Setting up your radiotransmitter in PPM mode
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Now what about receiving information from multiple radiochannels? Consider a 
two-channel example: you want to receive information about the throttle and the 
pitch input. These inputs are independent of  each other and require two separate 
signal cables if  you would use PWM. When receiving the two PWM signals in the 
microcontroller, you will need two different analogRead() commands. Because they 
cannot be processed simultaneously in the microcontroller, either the throttle or the 
pitch values will be sampled (=read) first, after which the other signal follows directly. 
Besides the need for two signal cables, this also requires more calculation time from 
the microcontroller.

You are now ready to take advantage of  the interesting property of  PPM: because 
only the position of  the signals changes and not their width, sampling both the throt-
tle and pitch signals directly after each other allows you to keep track of  their original 
values by measuring the time from each rising signal value. This means that with one 
signal cable, information from multiple signals can be ‘transported’.
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Using this knowledge, you can now easily built the connection from the receiver to 
the Teensy. Channel 1 of  the receiver has also "PPM” written on it, which means that 
you can use these connectors to send PPM signals to your microcontroller. Use a 
cable to connect the second connector of  the receiver starting from above to pin 14 
of  the Teensy as displayed on the figure to the left. Connect the third and fourth con-
nector of  the receiver to 5V and ground on the Teensy respectively. This will ensure 
that the receiver is fed from the microprocessor. You are now ready to start coding. 
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 The code for handling Pulse Position Modulation is rather complex, so you again 
use a predefined library called PulsePosition.h. This library is normally already in-
stalled when you installed Teensyduino, but you can still install it at this point with 
the "manage libraries tool" like you already did with Wire.h. Next you create a PPM 
input object, which is in this case the receiver input. You track each pulse starting 
from their rising edge.  

Use two global variables for this project: one array which can store up to eight chan-
nel values (initialized as eight zeroes) and one integer that stores the number of  chan-
nels transmitter by the receiver.

To be able to read the receiver data multiple times in the code, you create a function. 
This function will first check how many channels are available by writing .available 
behind the PPM input object; if  there are channels available, it reads the value of  each 
channel and stores it in the array of  receiver values.

Read the values sent from the receiver by calling the function defined in line 5. Print 
the available number of  channels fol-
lowed by the values for each channel.  

Channels 1, 2, 3 and 4 correspond respec-
tively with the roll, pitch, yaw and throttle 
inputs. Because the array numbering in 
the Arduino IDE starts with 0 instead of  
1, ReceiverValue[0] actually corresponds 
with channel 1 or the value for roll.

Finally, you have to use a delay of  50 
milliseconds to be able to read the values 
that will be displayed on the serial mon-
itor. 
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 1  #include <PulsePosition.h>
2  PulsePositionInput ReceiverInput(RISING);

3  float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
4  int ChannelNumber=0; 

5  void read_receiver(void){
6  	 ChannelNumber = ReceiverInput.available();
7  	 if  (ChannelNumber > 0) {
8  	     for (int i=1; i<=ChannelNumber;i++){
9  		  ReceiverValue[i-1]=ReceiverInput.read(i);
10  		  }
11  	 }
12  }
13  void setup() {
14   	 Serial.begin(57600);
15  	 pinMode(13, OUTPUT); 
16  	 digitalWrite(13, HIGH);
17  	 ReceiverInput.begin(14);
18  }
19  void loop() {
20  	 read_receiver();
21  	 Serial.print("Number of  channels: ");
22   	 Serial.print(ChannelNumber);
23   	 Serial.print(" Roll [µs]: ");
24   	 Serial.print(ReceiverValue[0]);
25   	 Serial.print(" Pitch [µs]: "); 
26   	 Serial.print(ReceiverValue[1]);
27   	 Serial.print(" Throttle [µs]: "); 
28   	 Serial.print(ReceiverValue[2]);
29   	 Serial.print(" Yaw [µs]: "); 
30  	 Serial.println(ReceiverValue[3]);
31  	 delay(50);
32  }

Use the PulsePosi-
tion library

Declare the variables 
to store channel info

Define a function to 
read the receiver data

Read and display the 
PPM information on 
the serial monitor
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Now you are ready to read the data send from the transmitter:
•	 Connect the Teensy to your computer through the USB cable;
•	 Upload to code to your Teensy and open the serial monitor.

If  the radio transmitter is not yet switched on, the LED on the receiver should blink. 
The values displayed on the serial monitor will all be zero, except for the number of  
channels, which should be equal to -1. This is the default value when no channels are 
discovered.

When you switch on your radio transmitter, the LED on the receiver should stop 
blinking and the transmitter commands should be displayed on the serial monitor in 
microseconds [µs]. Since the roll, pitch and yaw sticks are always centred, the values 
you record will be around 1500 µs for the corresponding channels. 

Now change the positions of  the roll, pitch, throttle and yaw sticks and verify that 
they vary between 1000 and 2000 µs. You have now successfully made a radio-con-
nection between your transmitter, the receiver and microcontroller! 

Testing

For the next projects, the receiver needs to stay in PPM mode. However, if  you 
want to redo the previous project in which you controlled one motor and one ESC 
through PWM without a microcontroller in between, do not forget to switch your 
radiotransmitter back to its default PWM setting. This can be carried out using the 
same procedure as switching to PPM mode, which you learned at the start of  this 
project.

Switching your radiotransmitter back to PWM mode
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 11:26:52.994 -> Number of  channels: -1 Roll [µs]: 0.00 Pitch [µs]: 0.00    ...
11:26:53.041 -> Number of  channels: -1 Roll [µs]: 0.00 Pitch [µs]: 0.00    ...

11:26:53.089 -> Number of  channels: 8 Roll [µs]: 1499.97 Pitch [µs]: 1498.99    ...
11:26:53.135 -> Number of  channels: 8 Roll [µs]: 1498.96 Pitch [µs]: 1500.00    ...
11:26:53.181 -> Number of  channels: 8 Roll [µs]: 1498.96 Pitch [µs]: 1496.99    ...
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Us e PPM to control motor speed

As the name implies, an electronic speed controller is able to control the speed 
of  your brushless motor. In this project, you will learn how to send commands 
to this controller and thus the motor through your microcontroller.

The electronic speed controller (ESC) is like your Teensy a microcontroller, but it 
has only one purpose: adapting the voltage going to the motor in such a way that the 
motor changes its speed. The speed at which a brushless motor turns depends on the 
supplied voltage, according to the kV constant. A motor rated at 4000 kV turns at 
4000 rpm/V. A supplied voltage of  3V gives a turning rate of  4000 rpm/V x 3V=12 
000 rpm. If  you would directly connect your battery to the brushless motor, it would 
turn at a constant speed, as the voltage supplied by the battery does not change.

So how does the ESC adapts the voltage supplied to the brushless motor? By closing 
and opening the connection between the battery and the brushless motor, you can 
change the average voltage supplied to the motor. The longer the connection stays 
closed, the higher the supplied average voltage will be (with the maximum being the 
voltage supplied by the battery if  the connection remains closed the whole time). You 
can control this average voltage through pulse-width modulation. This means that 
you need to sent a PWM signal from the Teensy to the electronic speed controller in 
order to control the brushless motor.

You will now control the first brushless motor through the physical circuit displayed 
on the left;
•	 Use some tape to make sure that the motors do not lift off.
•	 Re-use the same circuit with whom you already connected the receiver when 

testing the motors. 
•	 Connect the three wires coming out of  the other side of  the ESC to the wires of  

the brushless motors using the wire terminal strip.
•	 Connect the power output of  your ESC with the XT60 cables using another wire 

terminal strip. Be careful not to switch the polarity of  the cables!
•	 Connect the white signal cable from the ESC to pin 1 of  the Teensy.
•	 Connect the 5V and 0V of  the ESC to 5V and GND of  the Teensy respectively. 

Besides the power circuit going to the motor, your ESC has a second circuit that 
stays at 5V all the time and which enables you to power both the motors and your 
electronics with the same battery.
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Only connect the battery once you uploaded the code to the Teensy and disconnect-
ed your USB cable from your computer (as a precautionary measure if  something is 
wrong with the wiring). 

Make sure you use motor 1 (turning counter-clockwise) for this project. If  you notice 
during testing that it spins clockwise instead of  counter-clockwise, just switch two 
wires coming out of  the motor with each other using the wire terminal strips.  

In the code, you will control the brushless motor using a PWM signal sent from the 
Teensy to the ESC but you will use a PPM signal coming from the receiver to the 
Teensy. The throttle (so channel 3 or ReceiverValue[2] in Arduino language) will be 
used to set the speed of  the brushless motor. The PWM values that you send to the 
ESC are the same as the PWM values that you get from the receiver: 1000 µs gives no 
throttle (motor does not turn), while 2000 µs gives full throttle.

Define the value for the throttle as a floating point number. The future value for this 
variable lies between 1000 and 2000 µs.

You will send the PWM signals from pin 1 of  your Teensy to motor 1. Configuring 
pin 1 to send PWM signals can be done with the function analogWriteFrequency(pin 
number, PWM frequency). The PWM frequency used in most ESCs is equal to 250 
Hz (=1/250=0.004 s=4000µs). This value can be found in the manual of  your ESC.

Coding
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1  #include <PulsePosition.h>
2  PulsePositionInput ReceiverInput(RISING);
3  float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
4  int ChannelNumber=0; 

5  float InputThrottle;

6  void read_receiver(void){
7  	 ChannelNumber = ReceiverInput.available();
8  	 if  (ChannelNumber > 0) {
9  	 for (int i=1; i<=ChannelNumber;i++){
10  		  ReceiverValue[i-1]=ReceiverInput.read(i);
11  		  }
12  	 }
13  }
14  void setup() {
15  	 Serial.begin(57600);
16  	 pinMode(13, OUTPUT); 
17  	 digitalWrite(13, HIGH);
18  	 ReceiverInput.begin(14);

19  	 analogWriteFrequency(1, 250);

Define the throttle 
variable

Send PWM signals 
from your Teensy
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 By default, the resolution of  PWM signals sent by the Teensy is 8 bit. This means that 
the signal ranges between 0 and 28-1=255. For our application, this would give a too 
coarse control, so you will change from an 8 bit to a 12 bit resolution; the PWM signal 
going from the Teensy to the ESC ranges between 0 and 212-1=4095. For a frequency 
of  250 Hz=4000 µs, 0 then corresponds with 0 µs and 4095 corresponds with 4000 
µs. When you want to sent a PWM command in µs to the ESC, do not forget to mul-
tiply that value with 4095/4000=1.024.

SAFETY RELATED LINES: in order to avoid a motor start when you did not yet 
touch the radiotransmitter (for example when the throttle stick was not in the lowest 
position after your last flight), you add some additional lines before finishing the setup 
process. If  the values sent from channel 3 (ReceiverValue[2] = the throttle channel) 
are bigger than 1050 µs or lower than 1020 µs, the code will not continue. When you 
move the throttle stick around its lowest value range (between 0.2 and 0.5%), the code 
continues and you can start the motor. 

You already know that the throttle corresponds to channel 3 or ReceiverValue[2] 
from the radiotransmitter. The value of  the throttle ranges from 1000 (no throttle) to 
2000 µs (full throttle). You send this value to pin 1 and subsequently also the ESC and 
motor 1 through the analogWrite function. Remember to convert the throttle values 
in µs to their 12 bit equivalent by multiplying them with 1.024.

Testing

Once you uploaded the code successfully, disconnect the USB from the Teensy and 
connect the battery. Normally the LEDs on both the Teensy and the receiver should 
be illuminated as they receive power from the battery. Next, switch on your radio-
transmitter (remember it should still be in PPM mode, not PWM); you should hear 
two times two beeps from your motor. Now slowly increase the throttle on your 
radiotransmitter to start the motor. Verify that the motor spins in the correct (coun-
ter-clockwise) direction.

Troubleshooting when the motor does not start:
•	 Verify that your receiver and Teensy get power by looking at their LEDs.
•	 Verify that your radiotransmitter is connected with your receiver (the LED on 

the receiver should not blink but should stay illuminated).
•	 Verify that the setting of  your radiotransmitter is correct (in PPM mode).
•	 Verify the connections to the motor.
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 20  	 analogWriteResolution(12);
21  	 delay(250);

22  	 while (ReceiverValue[2] < 1020 ||
		  ReceiverValue[2] > 1050) {
23  			   read_receiver();
24  			   delay(4);
25  		  }
26  }

27  void loop() {
28  	 read_receiver();
29  	 InputThrottle=ReceiverValue[2];
30  	 analogWrite(1,1.024*InputThrottle);
31  }

Set the PWM fre-
quency

Avoid uncontrolled 
motor start

Send the throttle in-
put to the motor.
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Mo nitor and protect your battery

Batteries store energy - a lot of  energy. When this amount of  energy is acci-
dentally released in a short period of  time, due to for example a short circuit, 
it can cause significant damage. Monitoring and closely protecting the battery 
is therefore very important. 

A first obvious feature for each battery management system is a switch: you want to 
be able to turn off  the power from the battery towards your motors at all time, even 
during full throttle. A standard (breadboard) slide switch can only switch off  currents 
less than 1 A at 12 V; these type of  switches are insufficient for our application: at full 
throttle, the current drawn by all four motors can easily surpass 20 A.

Additionally, you want some form of  battery protection as well. When the battery 
is accidentally short-circuited, all the energy in the battery will be released nearly in-
stantaneous. This causes the point with the highest resistance in the short-circuit to 
heat up and start burning;  this can be a cable, a trace on the printed circuit board or 
the battery itself. The burning of  the cable or the trace will cause the short circuit to 
disappear because the conductive band is broken, at the cost of  destroying the print-
ed circuit board. But when the battery itself  has the highest resistance in the short 
circuit, it can burn and explode causing further damage.  

A third feature is some form of  current measurement to be able to monitor the 
battery level more closely - more about this will be explained further in this project. 
For your quadcopter application, you use a special  transistor that integrates all of  the 
above features: a high side power switch. This type of  transistor is placed between 
the positive side of  the battery and the load (hence the name high side). An Infineon 
BTS50055-1TMB or BTS50080-1TMB transistor will be used for this application 
because these switches are capable of  conducting rather high load currents of  respec-
tively 70 and 37.5 A.

To be able to conduct these high loads, you need to use the tab of  the high side 
switch, then connect output pins 1, 2, 6 and 7 with each other before making the 
connection with the load (which will be the ESCs in this case). You will connect pin 
3 with a slide switch that is in turn connected with the high-current GND line; the 
transistor is switched on when a current flows between pin 3 and the GND. When the 
transistor is switched off, the voltage between pin 3 and the GND almost equals the 
battery voltage (maximally 8.4V for a 2S battery). The transistor has the capability to 
switch off  the load current at full throttle, so you can instantaneously switch off  your 
quadcopter at full power using the slide switch.
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A downside of  this high load current is the very high short circuit current limit: up to 
180 A. This means that a short circuit in your printed circuit board can nonetheless 
cause serious damage!

Monitoring the current

You already learned that measuring the voltage of  your battery enables you to predict 
its remaining lifetime. Whenever you put the battery under heavy load, which will be 
the case when you throttle up the motors, the voltage will drop significantly without 
a real decrease in battery level, reducing your capability to accurately monitor the 
remaining battery level during flight. The only way to overcome this problem is to 
directly measure the current drawn from the battery.

A special feature of  your Infineon transistor is its current sensing capability: a current 
that is smaller but proportional to the load current flows from output pin 5 of  the 
transistor. According the datasheet of  the transistor, the current sense ratio is typi-
cally equal to 14 000. This means that a load current of  14 A through the transistor 
corresponds with a current of  1 mA from pin 5. With your Teensy, you cannot meas-
ure a current, only voltages. That is why you use a resistor to convert the current to 
a measurable voltage. Using Ohm’s law, you know that a current of  1 mA through a 
resistor of  510 Ω will cause a voltage drop over the resistor of  1 mA x 510 Ω = 510 
mV or 0.51 V. In other words, a current of  14 A through the transistor corresponds 
to a voltage drop over the resistor of  0.1 V. Assuming this remains proportional over 
the full measuring range gives a voltage to current ratio of  0.51 V/14 A or 0.036 V/A. 

You will connect the 510 Ω resistor to pin 21 of  your Teensy for voltage measure-
ment. Before wiring everything up, you also need to consider the effect of  a short 
circuit in the high current part of  your current sensing circuit. In the event of  a short 
circuit, the load current can easily exceed 180 A for a couple of  milliseconds before 
the transistor switches off. Such a high current will lead to a high voltage over our 
resistor: 180 A x 0.036 V/A = 6.5 V. Knowing that the input pins of  our Teensy are 
only 3.3V-tolerant, a voltage this high will probably destroy the microcontroller. To 
solve this issue, you will use a Zener diode. A Zener is a special diode that does not 
conduct any current below a certain fixed voltage, the "Zener voltage".  For this pro-
ject, you use a diode that has a Zener voltage of  2.4 V and needs a minimum current 
of  5 mA to start conducting at the right time. Adding the Zener diode in parallel to 
the resistor will cause the voltage over your Teensy to never exceed 2.4 V, protecting 
the microcontroller in the event of  a short circuit on the load side. Of  course the 
opposite can still happen: if  the battery is connected in reverse and you have a short 
circuit, the Zener diode will not protect the Teensy because there is no "negative” 
Zener voltage limit. That’s why you add a normal diode as well to prevent any nega-
tive voltage occurring over the Teensy.
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Power distribution
trace short circuitVTX

trace

The installation of  high side load switch does not prevent all types of  short circuits 
and hence damage to your battery and/or quadcopter can still occur. Therefore, 
always make sure that you do not have any shorts in your circuit using your multim-
eter before connecting the battery. One example of  a short circuit that the switch 
does not protect against is visualized in the figure below. Your quadcopter comes 
with a connection for a video transmitter (VTX), in case you want to add an FPV 
camera. This VTX connection is directly connected to the positive and negative 
power lines but it has a much smaller trace width than the power lines. The VTX 
traces are therefore not suited to accommodate high currents, and certainly not a 
short circuit current that can exceed 180 A before it is shut off  by the high side load 
switch. This means that if  you would try to create a short circuit by connecting the 
VTX Vbat and GND lines to each other and subsequently connect the battery, the 
traces on your power distribution board will start to burn and be destroyed.

Beware - you are not protected from all type of  short circuits!

0

1

2

3

Voltage at Teensy pin 21 [V]

Current through power switch [A]
80600 20 40

zener voltage
2.4 V

66 A

0.036 V/A with 
510 Ω resistor
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Battery management 

 

 

 

It is not possible to test the current measurement on a solderless breadboard, since 
it requires currents too high for the traces on the breadboard. Instead, this part will 
explain the necessary coding and reasoning for accurate battery monitoring. All lines 
will be directly implemented in the flight controller and can be tested once the quad-
copter is fully constructed.

The variables necessary for accurately monitoring the battery capacity - besides the 
voltage and current - are the remaining battery capacity, the battery capacity at start, 
the current that you have consumed during flight and the default battery capacity. 
All battery capacity variables have the unit mAh; a battery of  1300 mAh can sustain 
a current of  1 A or 1000 mA during a period of  1300 mAh/1000 mA = 1.3 hours. 
The default battery used in this project has a capacity of  1300 mAh; initialize the 
BatteryDefault variable with this number. 

The current can be read from the voltage of  pin 21 using the function analogRead. 
Remember that the default resolution for analogRead is equal to 10 bit, so a voltage 
of  0 V gives you the digital number 0 and the maximal input voltage of  3.3 V gives 
the digital number 210-1=1023. Moreover you have built a system for which you have 
a voltage of  0.036 V for each Ampere flowing through the power switch. This means 
that de current flowing through the power switch is equal to the measured digital 
number at pin 21 divided by ((1023 / 3.3 V) x 0.036 V/A). Or equivalently, multiply-
ing the measured digital number with 0.089.

When connecting the battery, you first need an indication of  the actual battery capaci-
ty before you can calculate its evolution during flight. Luckily, the measurement of  the 
battery voltage using our voltage divider and pin 15 is highly accurate if  the motors 
are not started yet (and thus no voltage drop is present). In the setup phase, you hence 
determine the battery level using pin 15. There is only a (quasi) linear relation of  the 
battery voltage to its capacity between 8.3 V and 7.5 V. If  the voltage is higher than 
8.3 V, you considered it to be at 100 % capacity (=1300 mAh) and you turn off  the 
red LED. If  the voltage lies below 7.5 V, you consider the battery to be at a capacity 
of  30% or less and the red LED stays illuminated. The following linear approxima-
tion between voltage and capacity is valid for the 1300 mAh - 2S battery:

This approximation can be extracted experimentally with a sophisticated battery 
charger that indicates both the charged current and the actual voltage and subse-
quently plot it in a graph, like the one on top of  the next page.

Remaining capacity [%] = 82 · Voltage − 580

CurrentConsumed(k)[mAh] = CurrentMeasured(k)[A]·
1000mA

A
3600 s

h
·0.004 s+CurrentConsumed(k−1)[mAh]

Combining current and voltage for battery monitoring
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 1  float Voltage, Current, BatteryRemaining, BatteryAtStart;
2  float CurrentConsumed=0;
3  float BatteryDefault=1300;

4  void battery_voltage(void) {
5  	 Voltage=(float)analogRead(15)/62;
6  	 Current=(float)analogRead(21)*0.089;
7  }

8  void setup() {
9  	 digitalWrite(5, HIGH);
10  	 battery_voltage();
11  	 if  (Voltage > 8.3) { digitalWrite(5, LOW);
12  		  BatteryAtStart=BatteryDefault; }
13  	 else if  (Voltage < 7.5) {
14  		  BatteryAtStart=30/100*BatteryDefault ;}
15  	 else { digitalWrite(5, LOW);
16  		  BatteryAtStart=(82*Voltage-580)/100*
17  		  BatteryDefault; }
18  }

Define the battery 
monitoring variables

Measure the voltage 
and current of  the 
circuit

Determine the bat-
tery capacity prior to 
flight

Fully charged: 8.4 V 

Low battery: 7.4 V 

8 V 

7 V 
Critically low: 7.2 V 

80% 60% 40% 20% 0% 100% 

Battery voltage 

Remaining battery energy
5% 

Remaining battery = 82 . Voltage - 580

30%

8.3 V
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Battery management 

 During flight, you use the measured current to follow the evolution of  your battery 
capacity. Since each iteration k in our main loop takes 0.004 seconds, the consumed 
current can be calculated with the formula:

The remaining capacity is subsequently calculated by subtracting the consumed cur-
rent from the battery capacity at startup. When the battery capacity falls below 30%, 
illuminate the red LED. 

Remaining capacity [%] = 82 · Voltage − 580

CurrentConsumed(k)[mAh] = CurrentMeasured(k)[A]·
1000mA

A
3600 s

h
·0.004 s+CurrentConsumed(k−1)[mAh]

The high-side power switch is one of  the more exotic components in this project and 
can be hard to come by. Most quadcopters made by hobbyist do not contain such a 
feature. Although it is not recommended, you can decide to exclude the power switch 
by shorting the battery tab on the printed circuit board, as illustrated on the figure 
to the right. Be aware that this removes any short-circuit protection and any control 
over switching on and off  your quadcopter, other than physically connecting or re-
moving the battery via the XT60 plug. The slide switch, (Zener) diodes and 510 Ω 
resistor are not necessary anymore because you will not have any current sensing ca-
pabilities. This means that a voltage measurement is the only way of  monitoring the 
remaining battery energy. The code for this basic method is displayed below; once 
the voltage drops below 7.5 V the red LED is illuminated. Remember that when 
voltage drops during for example a sudden throttle increase, the measured voltage 
does not give an accurate reflection of  the remaining battery energy.

1  float Voltage;
2  void battery_voltage(void) {
3  	 Voltage=(float)analogRead(15)/62;
4  }
5  void setup() {
6  	 if  (Voltage > 7.5) digitalWrite(5, LOW);
7  }
8  void loop() {
9    	 battery_voltage();
10  	 if  (Voltage < 7.5) digitalWrite(5, HIGH);
11  	 else digitalWrite(5, LOW);
12  }

Operating the quadcopter without power switch
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  19  void loop() {
20  	 battery_voltage();
21  	 CurrentConsumed=Current*1000*0.004/3600+
22  			   CurrentConsumed;
23  	 BatteryRemaining=(BatteryAtStart-
24  		  CurrentConsumed)/BatteryDefault*100;
25  	 if  (BatteryRemaining<=30) digitalWrite(5, HIGH);
26  	 else digitalWrite(5, LOW);
27  }

Calculate the battery 
capacity during flight
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Assembling your quadcopter
Fr

on
t

Hi
gh

-s
id

e 
sw

itc
h

1
7

23 45 6ta
b

Di
od

e

Ze
ne

r 
di

od
e

on of
f

Slide switch

3V

2S
 L

IP
O 

Ba
tte

ry

XT
60

 p
lu

g

10
0Ω

10
0Ω

Gr
ee

n 
LE

D
Re

d
LE

D

51
0Ω

2 
kΩ

Re
ce

ive
r

G
Vc

c
PP

M
/C

H1

B/
Vc

c

CH
2

CH
3

CH
4

CH
5

CH
6

5V
ES

C 
4

BM
P-

28
0

SD
C

CS
B

SD
A

SC
L

GN
D

VC
C

XD
A

VC
C

IN
T

AD
O

XC
L

SD
A

SC
L

GN
D

M
PU

-6
05

0

5V14 15 16 17 18 19 20 21 22

0 G11 10 9 8 7 6 5 4 3 2

Te
en

sy

3V

51
0Ω

0V 5V
ES

C 
1

0V5V
ES

C 
2

0V5V
ES

C 
3

0V

m
ot

or
 1

co
un

te
r-c

lo
ck

w
ise

m
ot

or
 4

 
clo

ck
w

ise

m
ot

or
 3

 
co

un
te

r-c
lo

ck
w

ise
m

ot
or

 2
 

clo
ck

w
ise

        Project 10 



81

Bu ild your quadcopter

Now that you understand and tested all electronic components of  your quad-
copter, it is finally time to put it all together! The lower quadcopter frame 
will house all power electronics and the motors, while the upper frame mainly 
holds the control electronics and the power distribution.

The upper part of  the quadcopter frame houses all the connections necessary for 
powering and controlling your quadcopter. In essence, it is a so called Printed Circuit 
Board or PCB: this is nothing more than alternating layers of  insulating material and 
conductive copper. Inside your PCB, all necessary connections between the compo-
nents are provided in the form of  conductive traces. This means that most wires in 
the schematic of  your quadcopter electronics on the left are already integrated in the 
upper quadcopter frame. The upper and bottom layer of  your upper frame PCB are 
visualized below, together with the traces which are coloured similarly to the wires 
in the schematic. Notice that the power traces are much wider than the signal traces.
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Assembling your quadcopter 

1 x lower quadcopter frame
CarbonAeronautics1a

4 x frame spacers
M3 x 30 mm1c

4 x spacer fastening screws
M3 x 6 mm1d

4 x electronic speed controllers 
HobbyKing 6A ESC with BEC3c

be carefull to position the EsC and 
its wires correctly

the black wires are always positioned 
towards the inside of  the frame and 

the red wires towards the outside

the motor wires should not cross each other 
to ensure a correct motor rotation

4 x motors
GEPRC GR1105 5000 kV3a

16 x motor fastening screws
M2 x 4 mm3b

8 x propeller fastening screws
M2 x 8 mm3fclockwise propeller

Gemfan 3018R3d

counter-clockwise propeller
Gemfan 30183e

clockwise propeller
Gemfan 3018R3d

counter-clockwise propeller
Gemfan 30183e

make sure the fastening screws do not touch the 
motor windings to avoid destroying the motor

ESC and spacer assembly

Motor and propeller assembly

You are now ready to start the quadcopter assembly. During the first two steps, you 
position the four ESC and motors on the lower quadcopter frame and solder each of  
the three wires coming out of  the ESC and motors to the frame. To ensure a correct 
rotation direction of  the motors, make sure that the cables do not cross each other. 
The black and red wires coming out of  the ESC should match the colours indicated 
on the frame itself.
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UPdATE

LEd

PPm/CH1CH2CH3CH4CH5
CH6B/VCC

1i

5 x cable ties
16 mm1g

battery
Turnigy 2S 1300 mAh4a

battery strap
210 mm1e

receiver
Flysky FS-iA6B4b

receiver jumper wires
female to female 10 cm2k

cut a hole in the lower & upper part of  the cable 
protector to allow the cables to pass through

cable protector
(cut in four pieces of  30 mm)

Battery and receiver assembly

Use the lower frame to hold the receiver and the actual battery. Attach the receiver 
with a cable tie to the frame and provide a future connection for its signal and power 
to the microcontroller using a jumper wire. Attach the battery to the frame with a 
battery strap, making future battery replacement easy. Protect the cables coming from 
the ESCs using cable protectors, which you cut in pieces such that they cover the 
full length of  the frame spacers. Cut some additional holes to allow the cables to go 
the ESC itself  and to the upper frame. Once finished, start mounting the necessary 
headers and switches on the upper quadcopter frame.

Headers and switches assembly

male headers
2.54 mm - right angle2n

female headers
2.54 mm2m

power switch
BTS50080-1TMB2t

upper quadcopter frame
CarbonAeronautics1b

slide switch
OS102011MS2QN1C2u
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Assembling your quadcopter 

battery connector
XT602j

diodes
Zener diode (1x) + Diode (1x)2l

resistors
100 Ω (2x) + 
510 Ω (2x) + 2000 Ω (1x)  

2i

orientation sensor
GY-521 MPU-60502c

4 x sensor fastening screws
M3 x 20mm2e
12 x sensor full nuts
M32g
4 x sensor locknuts
M32f

barometer
GY-BMP2802d

microcontroller
Teensy 4.02a

green and red LEd2h

Electronics assembly

Now solder the additional electronics to the upper quadcopter frame: the resistors, 
diodes and battery connector. Assemble the orientation sensor and the barometer to 
the frame using fastening screws, full nuts and locknuts. The use of  the barometer will 
be explained further in the project. Slide the microcontroller in the headers to finalize 
the upper frame. To connect the upper to the lower frame, first solder the ESC power 
cables to the upper frame then connect both frames using fastening screws to each 
other with the spacers.

UPdATE

LEd

PPm/CH1CH2CH3CH4CH5
CH6B/VCC

8 x spacer fastening screws
M3 x 6 mm1d

2 x cable ties
16 mm1g

strip the EsC cables to fit through the upper 
PCB holes and solder them from above

4 x standoff  spacer (optional)
M3 x 20 mm1h

Upper and lower frame assembly
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Now that construction is finished, it is time to check the correct wiring and solder-
ing of  all components. Do this before connecting the battery. While this may 
sound boring, it is an essential step after assembling any complex product and will 
make troubleshooting in the next phases easier. A good test procedure would be to:
•	 Verify all connections using a multimeter and the schematic given at the be-

ginning of  this project.
•	 Verify that there are no short circuits between wires/pins that should not be 

connected with each other, also through the use of  your multimeter. Pay extra 
attention to the absence of  shorts between the red and black wire of  the XT60 
battery connector.

•	 Next, apply power to the prototype board using the USB port of  the Teensy. 
Install the previous Arduino programs that you developed to illuminate the 
LEDs, read the gyro data and read the receiver data. Verify that they function 
correctly; this ensures a thorough check of  your correct soldering and wiring.

When you are sure that there are no short circuits, connect the battery to continue 
testing: 
•	 Measure the battery voltage by installing the correct Arduino program. 

In the last step, you will test the motors and their correct rotation direction.  Con-
nect one ESC with channel 3 of  the receiver, just like you did previously. Make 
sure you configure your radiotransmitter back to PWM instead of  PPM. Turn on 
the radiotransmitter through the POWER button. Connect your battery with the 
XT60 plug. You should once again hear one beep from your radiotransmitter which 
indicates that it is connected with the receiver, and subsequently four beeps from 
the motor. Now slowly increase the throttle stick and verify that the motor turns in 
the required  direction. Carry out the same test for all motors.   

When (one of) the motors do not work, verify that:
•	 The battery is connected;
•	 The red LED on the receiver is illuminated continuously (a blinking led in-

dicates that the transmitter is not connected, no led means no power to the 
ESC);

•	 The ESC is connected to channel 3 of  the receiver;
•	 The transmitter setting is PWM instead of  PPM.

If  none of  the above verifications solves the problem, verify that you soldered all 
respective wires correctly and resolder where necessary.

Testing
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When you want to change the direction of  your drone things become more tricky; 
assume you want the drone to stay at the same altitude but move sideways to the 
right (= roll around the X axis). The throttle input will be equal to 50% for all motors 
as you do not change altitude, but in order to initiate this sidewards movement the 
power output of  motors 3 and 4 (=the left motors) should be higher than the power 
output of  motors 1 and 2 (=the right motors). This means that you need an additional 
roll input, which will lower the power of  motors 1 and 2 with for example 25% and 
at the same time increase the power of  motors 3 and 4 with 25%. The same reasoning 
holds for the pitch input and the yaw input, but with other motor combinations as 
displayed in the figure on the right.

A nice property of  this definition of  throttle, roll, pitch and yaw input is that you 
can write all movements as a linear combination of  each other, for all motor outputs:

Quadcopter dynamics
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output motor 1 = throttle input - roll input - pitch input - yaw input
output motor 2 = throttle input - roll input + pitch input + yaw input
output motor 3 = throttle input + roll input + pitch input - yaw input
output motor 4 = throttle input + roll input - pitch input + yaw input
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Le arn how your quadcopter travels in space

With all ingredients for a control system available and tested, it is time to learn 
how a quadcopter moves through space with your inputs given to the radio-
transmitter. 

You already know how to control the motors with your Teensy, how to measure the 
rotation rate with the gyroscope and how to receive and read commands with your 
radiotransmitter and receiver. These are all essential ingredients, but you still need to 
learn how they have to work together to be able to fly.

The first thing you need to understand is how you can use the four motors of  your 
quadcopter to steer it in the directions you want. You do this by changing the power 
and thus rotation speed of  the motors. Let's assume a perfect world for this project: 
no wind disturbances, instantaneous motor reaction and a uniform weight distribu-
tion. To let your quadcopter hover in the same position, each motor will have to work 
at around 50% of  its power as shown on the left figure. To increase the altitude at 
which your drone is flying, you can simply increase the power of  all four motors to 
for example 75%. To keep the quadcopter level, it is important that all motors should 
increase their power at the same time in order to keep the quadcopter level. The 
command to keep all motors at the same power level will be called the throttle input. 
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Quadcopter dynamics 

In reality you do not send a power percentage to the motor but rather a PWM value 
between 1000 and 2000 µs, where 1000 µs corresponds with 0% motor output and 
2000 µs with 100% motor output. In your code, the throttle input will vary between 
1000 and 1800 µs to leave 20% motor output available at all times for rolling, pitching 
and yawing.

The receiver sends commands to the microcontroller that vary between 1000 and 
2000 µs according to the position of  the radiotransmitter stick. For the throttle stick, 
this corresponds nicely to 0 and 100% power. For the roll, pitch and yaw sticks, whose 
default position is physically in the middle of  the radiotransmitter at 1500 µs, you 
need to transform the PWM values to physical rotation rates. You can choose your 
maximal and minimal desired rotation rate; the higher the values the more agile your 
drone will be, but also the harder to control. For now, take the limit values of  75 °/s 
and -75 °/s. The transformation from the PWM values to the rotational rates is then 
visualised in the figure below together with the corresponding linear correlation.

From receiver commands to desired rotation rates
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You might think a second transformation is necessary: from the desired roll/
pitch/yaw rotational rates to the motor roll/pitch/yaw input. This is true, but it 
is very difficult to measure which rotational rates correspond to a certain motor 
power level. Moreover, even if  you obtain accurate data for this transformation, a 
huge problem remains; the reasoning in this project holds only for a quadcopter 
in a perfect world. In the real world however, even small disturbances will desta-
bilize your quadcopter if  you would introduce a fixed transformation.

For example, assume that the weight of  your quadcopter is slightly higher in the 
back than in the front. This means that in order to hover, the back motors will 
need a slightly higher power output than the front motors. Any wind disturbance 
during the flight will have to be corrected immediately by varying the output of  
each motor accordingly. It is impossible to adjust for both imperfections using 
manual corrections within normal human reaction times; these phenomena need 
to be corrected by your fast microcontroller and a technique called PID feedback 
control.

Transforming desired rotation rates to motor input? 
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+
-

Controller

motor power 
command

motor power

quadcopter 
rotation rate

gyroscope

measured 
rotation rate

desired 
rotation rate

error between desired and 
measured rotation rate

Now suppose that the controller just consists of  the difference between the desired 
and the measured rotation rate, multiplied with a constant P:

 

By defining the error during each iteration k of  the control loop:

you can simplify the equation rewriting the motor input during iteration k as:

where Pterm is the proportional term of  the controller. The response of  such a con-
troller to a change in the desired rotation rate is visualised on the graph to the right: 
the higher you choose the value for P to be, the faster the actual rotation rate will 
approach the desired rotation rate and the smaller the settling time, which is a good 
thing. However, a larger P will also give a larger overshoot, meaning that the quad-
copter might bounce violently when changing the desired rotation rate. Whatever the 
value of  P there might also be a steady state error: the actual rotation rate never reach-
es the desired rotation rate. You overcome this issue by adding an integral term: this 
term will sum the past errors hence eliminating the steady state error. 

Quadcopter rate control

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

        Project 12 
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Le arn how to stabilize your quadcopter

With normal human reaction times, it is not possible to keep a quadcopter sta-
ble in the air. In this project you learn how to use a fast control loop to stabilize 
the quadcopter automatically while also taking into account the commands 
you give it with the radiotransmitter.

To stabilize your quadcopter, you need to use a very fast automated control loop 
that sends new commands to each of  the four motors, multiple times per second. 
The control system that you will use for your quadcopter will be a 250 Hz system; 
this means that every 1/250 = 0.004 seconds, all four motors will receive new com-
mands. These commands are generated depending on the commands you give your-
self  through the radiotransmitter, but are also generated automatically based on the 
actual rotation rate of  the quadcopter in space, which is measured by your gyroscope.

The closed control loop that you will use for the roll, pitch and yaw rotation rates is 
displayed on the left. You use the gyroscope sensor to measure the actual rotation rate 
of  the quadcopter and compare it to the desired rotation rate, which you have sent 
from the radiotransmitter. The error between both is transformed by the controller 
to a motor power command that is sent to each of  the four motors. The resulting 
change in motor power changes the rotation rate of  the quadcopter to a value that 
should be closer to the desired rotation rate than before. The actual rotation rate is 
measured once again and the process restarts. Each loop occurs every 0.004 seconds 
during flight.

30 °/s 

0 °/s 

0 s 1 s

Rotation rate

2 s Time3 s

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - P controller

steady state error

settling time

overshoot



92

Quadcopter rate control 

The addition of  the integral term can be implemented in the control equation through:

where the Ts is the length of  one iteration, 0.004 s for our 250 Hz control loop. Dis-
cretization of  the integral can easily be done through:

The figure on the right shows the response of  the Proportional-Integral (PI) con-
troller; the steady state error disappeared but the system still has a large overshoot 
and a long settling time. A final improvement can be realized by adding a derivative 
term. Since a derivative along a function predicts its future value, this term will help 
to reduce the overshoot and hence the settling time:

the derivative will be discretized as well, giving the final discrete equation for a PID 
controller:

As the figure shows, the PID controller allows the quadcopter to approach the de-
sired rotation rate quite fast with a small overshoot and settling time. 

Obviously, the PID controller needs to be implemented for all three rotation rates; 
roll, pitch and yaw. For the roll rotation rate for example, the PID equation becomes:

which can be further simplified by saving the Iterm and Error during each iteration 
for the next iteration through the equations PrevErrorRoll=ErrorRoll (k-1) and PrevIter-
mRoll =ItermRoll(k-1). This way, the iteration indexes k can be removed from the above 
equation:

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

Inputmotor = P · (DesiredRate − Rate)

Error(k) = DesiredRate(k) − Rate(k)

Inputmotor(k) = Pterm(k) = P · Error(k)

Inputmotor(k) = Pterm(k) + Iterm(k) = P · Error(k) + I ·
∫ k·Ts

0
Error(t) · dt

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

Inputmotor(k) = Pterm(k) + Iterm(k) + Dterm(k)

Inputmotor(k) = Pterm(k) + Iterm(k) + D · d

dt
Error(t)

Inputmotor(k) = P ·Error(k)+Iterm(k−1)+I·(Error(k) + Error(k − 1)) · Ts

2

+ D · (Error(k) − Error(k − 1))
Ts

InputRoll(k) = PRoll·ErrorRoll(k)+Iterm,Roll(k−1)+IRoll·
(ErrorRoll(k) + ErrorRoll(k − 1)) · Ts

2

+ DRoll · (ErrorRoll(k) − ErrorRoll(k − 1))
Ts

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)
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30 °/s 

0 °/s 

0 s 1 s

Rotation rate

2 s Time3 s

overshoot

settling time

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - PID controller

30 °/s 

0 °/s 

0 s 1 s

Rotation rate

2 s Time3 s

overshoot

settling time

desired rotation rate
(desiredRate)

actual rotation rate
(Rate) - PI controller
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Quadcopter rate control 

The error for the roll rate is given by the difference between the desired roll rate and 
the measured roll rate by the gyroscope:

To make the notation easier, simplify the PID equation for the roll rate by saying that 
the motor input for the roll rate is function of  the different parameters:

The above equations can be copied for the pitch and yaw rates in order to get the full 
PID controller. 

In the right figure, the full control loop with equations is visualized. Start each loop 
with obtaining the commands from receiver, corresponding to the position of  the 
sticks on your radiotransmitter. Transform these receiver values to the desired roll, 
pitch and yaw rates and the value for the throttle. Next, obtain the actual roll, pitch 
and yaw rates of  the quadcopter from your gyroscope. These are subtracted from the 
desired rotation rates to obtain the error between both. Now you have the necessary 
information for the PID equations, which gives you the motor input values for roll, 
pitch and yaw. Introduce these input values in the motor power commands that were 
derived in project 11. With the first iteration now complete, wait until 0.004 seconds 
have passed to start the next iteration.

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)

InputRoll = PRoll·ErrorRoll+PrevItermRoll+IRoll·
(ErrorRoll + PrevErrorRoll) · Ts

2

+ DRoll · (ErrorRoll − PrevErrorRoll)
Ts

ErrorRoll = DesiredRateRoll − RateRoll

InputRoll = f(ErrorRoll, PRoll, IRoll, DRoll, P revErrorRoll, P revItermRoll)

An important unknown that you did not yet determine are the values for P, I and D. 
These constants need to be chosen in such a way that their combination stabilizes 
the flight of  your quadcopter. The following values are a good compromise be-
tween agility and stability for your quadcopter for all tested motor/ESC/propeller/
battery combinations (see project 1):
•	 PRateRoll= PRatePitch= 0.6
•	 IRateRoll= IRatePitch= 3.5
•	 DRateRoll= DRatePitch=0.03

Notice that the values for the roll and pitch rates are equal; this is evident since the 
quadcopter is (almost) symmetrical in both directions. For the yaw rates, the PID 
values are:
•	 PRateYaw= 2
•	 IRateYaw= 12
•	 DRateYaw=0

PID tuning 



Ca rbon aeronautics

95

+

store for next iteration

InputRoll=f(ErrorRoll, PRoll, IRoll, DRoll,PrevErrorRoll,PrevItermRoll)
InputPitch=f(ErrorPitch, PPitch, IPitch, DPitch,PrevErrorPitch,PrevItermPitch)
InputYaw=f(ErrorYaw, PYaw, IYaw, DYaw,PrevErrorYaw,PrevItermYaw)

InputMotor1= InputThrottle-InputPitch-InputRoll-InputYaw
InputMotor2= InputThrottle+InputPitch-InputRoll+InputYaw
InputMotor3= InputThrottle+InputPitch+InputRoll-InputYaw
InputMotor4= InputThrottle-InputPitch+InputRoll+InputYaw

RateRoll
RatePitch
RateYaw

ErrorRoll= DesiredRateRoll-RateRoll
ErrorPitch= DesiredRatePitch-RatePitch
ErrorYaw= DesiredRateYaw-RateYaw

DesiredRateRoll =  0.15 (ReceiverValue[0]-1500)
DesiredRatePitch = 0.15 (ReceiverValue[1]-1500)
        InputThrottle=  ReceiverValue[2]
 DesiredRateYaw =  0.15 (ReceiverValue[3]-1500)

ReceiverValue[0]
ReceiverValue[1]
ReceiverValue[2]
ReceiverValue[3]

PrevErrorRoll = ErrorRoll
PrevErrorPitch = ErrorPitch
PrevErrorYaw = ErrorYaw
PrevItermRoll=ItermRoll
PrevItermPitch=ItermPitch
PrevItermYaw=ItermYaw

-

radiotransmitter commands transformation to desired values

gyroscope 
measurements

PId controller

motor power commands

Wait until 0.004 s 
have passed to start 

next iteration
250 Hz 

loop

error calculation

Finding these optimal values is not easy; there exist some basic methods to obtain 
them through calculations, but in the end you will always have to test and retest to 
find the values that work for your quadcopter. Usually the trail and error method is 
done by first choosing and testing a P value, then a value for I and finally also a value 
for D. The values can be chosen with the following guidelines:

•	 A high P value increases the responsiveness of  your quadcopter, but a too 
high P value will cause your quadcopter to overcorrect and experience high 
frequency oscillations.

•	 A high I value stops unwanted drifting of  your quadcopter, but a too high I 
value will cause your quadcopter to feel unresponsive.

•	 Finally the D value reduces the oscillations caused by the P value. Setting the D 
value too high causes motor vibrations.

It can be quite cumbersome to test different PID values, fortunately it only needs 
to be done once for each design.
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Define the gyro vari-
ables (projects 4 and 
5)

Define the receiver 
variables (project 7)

Define the battery 
variables (project 9)

Define the parameter 
containing the length 
of  each control loop

All variables neces-
sary for the PID con-
trol loop are declared 
in this part, including 
the values for the P, I 
and D parameters

1  #include <Wire.h>
2  float RatePitch, RateRoll, RateYaw;
3  float RateCalibrationPitch, RateCalibrationRoll, 
4  	 RateCalibrationYaw;
5  int RateCalibrationNumber;

6  #include <PulsePosition.h>
7  PulsePositionInput ReceiverInput(RISING);
8  float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
9  int ChannelNumber=0; 

10  float Voltage, Current, BatteryRemaining, BatteryAtStart;
11  float CurrentConsumed=0;
12  float BatteryDefault=1300;

13  uint32_t LoopTimer;

14  float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
15  float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
16  float InputRoll, InputThrottle, InputPitch, InputYaw;
17  float PrevErrorRateRoll, PrevErrorRatePitch, 
 	 PrevErrorRateYaw;
18  float PrevItermRateRoll, PrevItermRatePitch,
	 PrevItermRateYaw;
19  float PIDReturn[]={0, 0, 0};
20  float PRateRoll=0.6 ; float PRatePitch=PRateRoll; 
	 float PRateYaw=2;
21  float IRateRoll=3.5 ; float IRatePitch=IRateRoll; 
	 float IRateYaw=12;
22  float DRateRoll=0.03 ; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;

The flight controller: rate mode
        Project 13 
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Cr eate your first flight controller

After a lot of  hard work, you now have all the ingredients to create your first 
flight controller and test it on your quadcopter. Let’s put all pieces together!

23  float MotorInput1, MotorInput2, MotorInput3, 
	 MotorInput4;

24  void battery_voltage(void) {
25  	 Voltage=(float)analogRead(15)/62;
26  	 Current=(float)analogRead(21)*0.089;
27  }

28  void read_receiver(void){
29  	 ChannelNumber = ReceiverInput.available();	
30  	 if  (ChannelNumber > 0) {
31  	        for (int i=1; i<=ChannelNumber;i++){
32  		  ReceiverValue[i-1]=ReceiverInput.read(i);
33  	        }
34  	 }
35  }

36  void gyro_signals(void) {
37  	 Wire.beginTransmission(0x68);
38  	 Wire.write(0x1A);
39  	 Wire.write(0x05);
40  	 Wire.endTransmission();
41   	 Wire.beginTransmission(0x68);
42  	 Wire.write(0x1B);
43  	 Wire.write(0x08);
44  	 Wire.endTransmission();
45  	 Wire.beginTransmission(0x68);
46   	 Wire.write(0x43);
47  	 Wire.endTransmission(); 
48   	 Wire.requestFrom(0x68,6);
49  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
50   	 int16_t GyroY=Wire.read()<<8 | Wire.read();
51   	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

Declare the input 
variables to the mo-
tors

Battery function 
(projects 3 and 9)

Receiver function 
(project 7)

Gyro function 
(project 4)
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The flight controller: rate mode 

 

 

 

 Define a function that is called for each PID calculation of  the roll, pitch and yaw ro-
tation rates. You saw the equations for each term already in project 12. An important 
addition here is the limit of  400 µs on the I term; this term is used to avoid integral 
windup. Integral windup is a phenomena in which the integral term accumulates a 
significant error due saturation and causes a large overshoot. For example when the 
quadcopter cannot achieve the desired setpoint because it did not yet lift off  the 
ground. Another limit is placed on the full output, to avoid a significant imbalance 
between to roll, pitch and yaw commands to the motor. 

Return the values for the motor command, the error and the integral term from the 
PID equations to the main program.

To ensure a bumpless restart after landing your quadcopter, the PID error and inte-
gral values that are passed to the next iterations need to be reset once you land the 
quadcopter. This is also necessary to avoid any windup as well.

At the start of  the setup phase, the red LED connected with pin 5 is illuminated to 
show that the microcontroller is still in the setup phase. As usual, the LED on the 
Teensy itself  is illuminated as well to show that it receives power. 
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52   	 RateRoll=(float)GyroX/65.5;
53   	 RatePitch=(float)GyroY/65.5;
54   	 RateYaw=(float)GyroZ/65.5;
55  }

56  void pid_equation(float Error, float P , float I, float D,  	
           float PrevError, float PrevIterm) {
57  	 float Pterm=P*Error;
58  	 float Iterm=PrevIterm+I*(Error+
		  PrevError)*0.004/2;
59  	 if  (Iterm > 400) Iterm=400;
60  	 else if  (Iterm <-400) Iterm=-400;
61  	 float Dterm=D*(Error-PrevError)/0.004;
62  	 float PIDOutput= Pterm+Iterm+Dterm;
63  	 if  (PIDOutput>400) PIDOutput=400;
64  	 else if  (PIDOutput <-400) PIDOutput=-400;

65  	 PIDReturn[0]=PIDOutput;
66  	 PIDReturn[1]=Error;
67  	 PIDReturn[2]=Iterm;
68  }
69  void reset_pid(void) {
70  	 PrevErrorRateRoll=0; PrevErrorRatePitch=0; 
	 PrevErrorRateYaw=0;
71  	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;
72  }
73  void setup() {
74  	 pinMode(5, OUTPUT);
75  	 digitalWrite(5, HIGH);
76  	 pinMode(13, OUTPUT);
77  	 digitalWrite(13, HIGH); 	

78  	 Wire.setClock(400000);
79  	 Wire.begin();
80  	 delay(250);
81  	 Wire.beginTransmission(0x68);
82  	 Wire.write(0x6B);
83  	 Wire.write(0x00);
84  	 Wire.endTransmission();

PID function

Return the output 
from the PID func-
tion

PID reset function

Visualize the setup 
phase using the red 
LED

Communication with 
the gyroscope and 
calibration (project 4 
and 5)
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The flight controller: rate mode 

 

 

 When the time consuming part of  the setup process is finished, illuminate the green 
LED to show that the quadcopter is able to start. However, only dim the red LED 
when the battery voltage is higher than 7.5 V.

SAFETY RELATED LINES: just before finishing the setup process, you need to 
check that the throttle stick is in its lowest position. Otherwise, if  you accidentally 
left the throttle stick in a higher position and the radiotransmitter is not nearby, the 
motors could suddenly start after the setup process without you controlling it. With 
these lines, you stay in an infinite while loop until you move the throttle stick between 
1020 and 1050 µs (so moving it from the lowest position to a slightly higher position).

In the last line of  the setup process, start a timer that will count the time in the 
loop process and go to the next iteration after exactly 4000 µs or 0.004 s, to create a 
1/0.004 s = 250 Hz control loop.  

85  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
86  	       	 gyro_signals();
87  		  RateCalibrationRoll+=RateRoll;
88  		  RateCalibrationPitch+=RatePitch;
89  		  RateCalibrationYaw+=RateYaw;
90  		  delay(1);
91  	 }
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92  	 RateCalibrationRoll/=2000;
93  	 RateCalibrationPitch/=2000;
94  	 RateCalibrationYaw/=2000;

95  	 analogWriteFrequency(1, 250);
96  	 analogWriteFrequency(2, 250);
97  	 analogWriteFrequency(3, 250);
98  	 analogWriteFrequency(4, 250);
99  	 analogWriteResolution(12);

100  	 pinMode(6, OUTPUT);
101  	 digitalWrite(6, HIGH);
102  	 battery_voltage();
103  	 if  (Voltage > 8.3) { digitalWrite(5, LOW);
104  		  BatteryAtStart=BatteryDefault; }
105  	 else if  (Voltage < 7.5) {
106  		  BatteryAtStart=30/100*BatteryDefault ;}
107  	 else { digitalWrite(5, LOW);
108  		  BatteryAtStart=(82*Voltage-580)/100*
		  BatteryDefault; }

109  	 ReceiverInput.begin(14);
110  	 while (ReceiverValue[2] < 1020 || 
	        ReceiverValue[2] > 1050) {
111  		  read_receiver();
112  		  delay(4);
113  	 }

114  	 LoopTimer=micros();
115  }

116  void loop() {
117  	 gyro_signals();
118  	 RateRoll-=RateCalibrationRoll;
119  	 RatePitch-=RateCalibrationPitch;
120  	 RateYaw-=RateCalibrationYaw;

121  	 read_receiver();

Set the PWM fre-
quency to 250 Hz 
and the resolution to 
12 bit for all motors 
(project 8)

Show the end of  the 
setup process and 
determine the initial 
battery voltage per-
centage (project 9)

Avoid accidental lift 
off  after the setup 
process

Start the timer

Measure the rotation 
rates and subtract 
the calibration values 
(project 5)

Read the receiver 
commands (project 
7)
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 Transform the commands from the receiver in µs to the desired roll, pitch and yaw 
rates in °/s as explained in project 11. The throttle command remains in µs.

Calculate the difference between the desired rotation rates and the measured rotation 
rates.

Start the PID calculations for each of  the three rotation rates,. The outputs of  these 
calculations are stored in the array PIDReturn; the roll/pitch/yaw input for the mo-
tors is stored in position 0, the error value and value for the Iterm that needs to be 
used for the next iteration is stored in positions 1 and 2. Retrieve these values each 
time for the corresponding rotation rate to be able to use them in the next iteration.

With the throttle stick, you are able to go to 2000 µs, which would give maximal pow-
er to all four motors. However, this would give no room to stabilize the roll, pitch and 
yaw rates. That is why you limit the throttle value to 1800 µs or 80%.

Now calculate the motor inputs with the quadcopter dynamics equations you saw 
during project 11. Remember to convert the throttle values in µs to their 12 bit equiv-
alent by multiplying them with 1.024.
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 122  	 DesiredRateRoll=0.15*(ReceiverValue[0]-1500);
123  	 DesiredRatePitch=0.15*(ReceiverValue[1]-1500);
124  	 InputThrottle=ReceiverValue[2];
125  	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

126  	 ErrorRateRoll=DesiredRateRoll-RateRoll;
127  	 ErrorRatePitch=DesiredRatePitch-RatePitch;
128  	 ErrorRateYaw=DesiredRateYaw-RateYaw;

129  	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll, 
	      DRateRoll, PrevErrorRateRoll,
	      PrevItermRateRoll);
130              InputRoll=PIDReturn[0];
	      PrevErrorRateRoll=PIDReturn[1]; 
	      PrevItermRateRoll=PIDReturn[2];
131  	 pid_equation(ErrorRatePitch, PRatePitch,
	      IRatePitch, DRatePitch, PrevErrorRatePitch,
 	      PrevItermRatePitch);
132              InputPitch=PIDReturn[0]; 
	      PrevErrorRatePitch=PIDReturn[1]; 
	      PrevItermRatePitch=PIDReturn[2];
133  	 pid_equation(ErrorRateYaw, PRateYaw,
	      IRateYaw, DRateYaw, PrevErrorRateYaw,
 	      PrevItermRateYaw);
134              InputYaw=PIDReturn[0]; 
	      PrevErrorRateYaw=PIDReturn[1]; 
	      PrevItermRateYaw=PIDReturn[2];

135  	 if  (InputThrottle > 1800) InputThrottle = 1800;

136  	 MotorInput1= 1.024*(InputThrottle-InputRoll
	    -InputPitch-InputYaw);
137  	 MotorInput2= 1.024*(InputThrottle-InputRoll
	    +InputPitch+InputYaw);
138  	 MotorInput3= 1.024*(InputThrottle+InputRoll
	    +InputPitch-InputYaw);
139  	 MotorInput4= 1.024*(InputThrottle+InputRoll
	    -InputPitch+InputYaw);

Calculate the desired 
roll, pitch and yaw 
rates

Calculate the errors 
for the PID calcula-
tions

Execute the PID cal-
culations

Limit the throttle 
output

Use the quadcopter 
dynamics equations 
(project 11)
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 Make sure that the inputs to the motors do not exceed 2000 µs after the dynamic 
equations to avoid overloading them.

To avoid stopping the motors in mid-flight, keep them turning at 18% when the mo-
tor input decreases below 1180 µs (= the ThrottleIdle value).

SAFETY RELATED LINES: the previous lines would mean you can never switch 
off  the motors, as they keep turning at minimally 18%. Just before sending the com-
mands to the motors, you add the condition that if  the throttle stick is brought to its 
lowest position (below 1050 µs), all four motors stop (e.g. the value of  ThrottleCut-
Off  is 1000 µs or 0% power). Usually you would do this after landing the quadcopter. 
The PID parameters need to be reset in case you want to have a bumpless restart.

Now you are finally ready to sent the commands to each of  the four motors. 

The last step in the iteration is to wait until the 4000 µs or 0.004 s have passed using 
a while loop. When this condition is met, reset the timer to the actual time and the 
program can proceed to the next iteration. Congratulations, you created a 250 Hz 
control loop!
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 140  	 if  (MotorInput1 > 2000)MotorInput1 = 1999;
141  	 if  (MotorInput2 > 2000)MotorInput2 = 1999; 
142  	 if  (MotorInput3 > 2000)MotorInput3 = 1999; 
143  	 if  (MotorInput4 > 2000)MotorInput4 = 1999;

144  	 int ThrottleIdle=1180;
145  	 if  (MotorInput1 < ThrottleIdle) MotorInput1 =   
146  	    ThrottleIdle;
147  	 if  (MotorInput2 < ThrottleIdle) MotorInput2 = 
148  	    ThrottleIdle;
149  	 if  (MotorInput3 < ThrottleIdle) MotorInput3 = 
150   	    ThrottleIdle;
151  	 if  (MotorInput4 < ThrottleIdle) MotorInput4 = 
152   	    ThrottleIdle;

153  	 int ThrottleCutOff=1000;
154  	 if  (ReceiverValue[2]<1050) {
155  		  MotorInput1=ThrottleCutOff; 
156  		  MotorInput2=ThrottleCutOff;
157  		  MotorInput3=ThrottleCutOff; 
158  		  MotorInput4=ThrottleCutOff;
159  		  reset_pid();
160  	 }
161  	 analogWrite(1,MotorInput1);
162  	 analogWrite(2,MotorInput2);
163  	 analogWrite(3,MotorInput3); 
164  	 analogWrite(4,MotorInput4);

165  	 battery_voltage();
166  	 CurrentConsumed=Current*1000*0.004/3600+
			   CurrentConsumed;
167  	 BatteryRemaining=(BatteryAtStart-
		  CurrentConsumed)/BatteryDefault*100;
168  	 if  (BatteryRemaining<=30) digitalWrite(5, HIGH);
169  	 else digitalWrite(5, LOW);

170  	 while (micros() - LoopTimer < 4000);
171  	 LoopTimer=micros();
172  }

Limit the maximal 
power commands 
sent to the motors

Keep the quadcopter 
motors running at 
minimally 18% pow-
er during flight

Make sure you are 
able to turn off  the 
motors

Sent the commands 
to the motors

Keep track of  battery 
level (project 9)

Finish the 250 Hz 
control loop
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Imagine you are flying your quadcopter and suddenly, your radiotransmitter loses 
power or signal. What will happen to your quadcopter? Well, you did not program 
any return to home function, so it will just keep flying until it runs out of  battery or 
crashes. To avoid this, your radiotransmitter can tell the receiver to give a throttle 
command of  1000 µs when it loses connection. This means that the motors of  
your quadcopter will stop turning an it will fall to the ground - not the ideal solution 
but better to have some damage then a quadcopter on the loose.

Power on the transmitter → hold the OK button for two seconds → choose Sytem 
→ go down and choose "RX setup" → go down and choose "Failsafe". Choose 
channel 3 (the throttle channel) then click UP or DOWN to activate the failsafe of  
channel 3 (ON). Now lower the throttle stick to its lowest position and press and 
hold the CANCEL function to tell the receiver it should sent a throttle command 
of  1000 µs or 0% when it loses contact with the radiotransmitter. Return to the 
previous screen on the transmitter, which should show -100% at channel 3. The 
failsafe is now set.

Before you fly... radiotransmitter failsafe

When you have set the radiotransmitter failsafe, it is time to start flying. After you 
connect the battery and turn on the slide switch, the red LED should be lighted 
indicating the ongoing startup process. Wait a couple of  seconds without touch-
ing your quad (to avoid calibration errors). When the green LED illuminates, you 
can move the throttle stick slightly upward and each motor will beep four times 
indicating that you are ready to go. Increase the throttle stick to 30% power such 
that the motors are turning but the quad is not yet taking off, then turn off  the 
radiotransmitter to test the failsafe. If  after a second all motors turn off, the 
test is successful.

You can now start your first flight. Flying in rate control mode is rather difficult, 
so be sure to fly outside at a large grass field without any people nearby to mini-
mize any damage to the quadcopter or others in the event of  a crash. You can play 
with the PID values to optimize the quadcopters response to your liking.

Start-up and flying your quadcopter
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Part II: stabilization 
mode



flying in rate mode is difficult for begin-
ners, because you have to manually adjust 
your quadcopter back to a level position.

in this part, you will learn how to combine 
different measurements to get the absolute 
angles of  your quadcopter. This allows you 
to create a more advanced flight controller 
that levels itself  automatically when you re-
lease the roll and pitch sticks.

You will build and expand upon the code 
you developed earlier, and your analytical 
skills will be challenged further
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Le arn to measure angles - twice

At this point the rotation rates of  your quadcopter have no more secrets for 
you. Now it is time to explore a more difficult topic; how can you measure the 
absolute roll and pitch angles of  your quadcopter?

The absolute roll and pitch angles of  your quadcopter are a key component for a 
flight controller that works in stabilize mode; knowing the angles allows you to level 
the quadcopter exactly and make flying a lot easier. But how can you measure the ab-
solute roll and pitch angles? In this project, you will explore two methods, both with 
their own (dis)advantages.

1. Integrating the gyro rotation rates

A first and very easy solution to obtain the absolute angles consists of  integration 
of  the rotation rates that are measured by the gyroscope. For the pitch, this can be 
represented with the equation; 

With Ratepitch in degrees per second (°/s), Anglepitch in degrees (°), Ts the duration of  
one (0.004 s) iteration and k the number of  iterations. Discretization of  this integral 
to use in your code gives the equation:

If  this looks too easy... well that’s because unfortunately it is. When the quadcopter 
is yawing left (or right) around the Z axis without any pitch rotation rate around the 
Y axis, the pitch angle will nonetheless decrease (or increase) as the direction of  the 
Y axis changes. During this yaw movement, the roll angle will increase (or decrease) 
as well because the direction of  the X axis also changes. Hence even with a zero roll 
or pitch rotation rate, the roll and pitch angles can change. This phenomenon is vis-
ualized in the figure to the left for a pure yaw movement using an inclined plate with 
a fixed angle of  45°. 

You can integrate the change of  the roll and pitch angle with the yaw movements in 
the equations, but you will fortunately not need to do this for this application; as you 
will see later, this error is not the only issue with integrating the gyro measurements. 
For now, let's explore the second method to obtain angles; using an accelerometer.

Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s
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Acc2
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Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z




Anglepitch =
∫ k·Ts

0
Ratepitch · dt

Anglepitch(k) = Anglepitch(k − 1) + Ratepitch(k) · Ts

tan(θroll) = AccY

s

θroll = atan


 AccY√

Acc2
X + Acc2

Z




θpitch = atan


 −AccX√

Acc2
Y + Acc2

Z



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Measuring angles 

Your MPU-6050 sensor is not only a gyroscope but also contains an accelerometer. 
As the name implies, the accelerometer measures the acceleration of  the sensor along 
the X, Y and Z directions. Remember that the gyroscope measures the rotation rates 
around the X, Y and Z directions, not along. From basic physics, you remember that  
we experience a gravitational acceleration anywhere on earth and that this gravita-
tional acceleration is equal to the gravitational constant; 1 g or 9,81 m/s². This means 
that when you let your MPU-6050 sensor lie flat on a table without moving it, the 
measurement of  the acceleration along the Z direction (or AccZ) is equal to 1 g. The 
acceleration along the X and Y axes will be zero in this case. Similarly, when you po-
sition the sensor such that one of  the other axes lies perpendicular to the surface of  
the table, the corresponding acceleration is equal to 1 g. 

Off  course, any other direction not along one of  the three main axes will result in 
a nonzero acceleration value for all three directions AccX, AccY and AccZ. Through 
some clever mathematical equations, this accelerometer property will enable you to 
calculate the exact roll and pitch angles of  your quadcopter. Let’s assume you roll 
around the X axis until you reach the angle θroll. To visualize this transformation, a box 
bounded by the X, Y and Z directions is sketched on the figure below.
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From your basic trigonometry knowledge, you know that the tangent of  the angle 
of  a triangle is equal to the length of  the opposite side of  the triangle divided by the 
length of  the adjacent side of  the triangle. In the case of  the angle θroll, the opposite 
side is equal to AccY while the adjacent side is equal to a certain length s:

Using the Pythagoras rule on the triangle formed by s, AccX and AccZ, you are able 
to derive that s²=AccX²+AccZ², thus the angle θroll can be expressed by the equation:

Through similar reasoning and with the help of  the next figure you can express the 
pitch angle by:

And that’s it, you are now able to calculate the roll and pitch angles from the values of  
your accelerometer! Now transform this into a working code. For this part, you only 
need your Teensy and MPU-6050; you can choose to test on a breadboard, or directly 
on your assembled quadcopter. 
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Modify the code that you have already developed to read the gyroscope in order to 
extract the accelerometer measurements of  the MPU-6050 as well.

Start with defining the variables that will hold the acceleration values in the X, Y and 
Z direction, together with the roll and pitch angles. 

First configure the accelerometer output. This can be done by choosing the AFS_
SEL setting using register 0x1C (see the MPU-6050 documentation). The options 
for the accelerometer correspond to bits 3 and 4. You will choose a full scale range 
of  ±8 g, which corresponds to an LSB sensitivity of  4096 LSB/g and a value for the 
AFS_SEL setting of  2, or a 0 for bit 3 and a 1 for bit 4. This corresponds in turn to 
the following 8 bit binary representation: 00010000. Converting this to a hexadecimal 
value gives 0x10.

The values of  the accelerometer are located in the registers with hexadecimal num-
bers 3B to 40. Start writing to address 0x3B to indicate the first register and request 6 
bytes from the address of  the sensor, 0x68. The accelerometer measurements in LSB 
are once again spread out over two registers with each 8 bits.

Coding
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1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;

3  float AccX, AccY, AccZ;
4  float AngleRoll, AnglePitch;

5  float LoopTimer;
6  void gyro_signals(void) {
7  	 Wire.beginTransmission(0x68);
8  	 Wire.write(0x1A);
9  	 Wire.write(0x05);
10  	 Wire.endTransmission();

11  	 Wire.beginTransmission(0x68);
12  	 Wire.write(0x1C);
13  	 Wire.write(0x10);
14  	 Wire.endTransmission();

15  	 Wire.beginTransmission(0x68);
16  	 Wire.write(0x3B);
17  	 Wire.endTransmission(); 
18  	 Wire.requestFrom(0x68,6);
19  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
20  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
21  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();

22  	 Wire.beginTransmission(0x68);
23  	 Wire.write(0x1B); 
24  	 Wire.write(0x8);
25  	 Wire.endTransmission();                                                   
26  	 Wire.beginTransmission(0x68);
27  	 Wire.write(0x43);
28  	 Wire.endTransmission();

Define the acceler-
ometer variables

Switch on the low-
pass filter (project 4)

Configure the accel-
erometer output

Pull the accelerom-
eter measurements 
from the sensor

Configure the gyro-
scope output and pull 
rotation rate meas-
urements from the 
sensor (project 4)
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 To convert the accelerometer measurements from LSB to g, remember that you con-
figured the AFS_SEL setting to an LSB sensitivity of  4096 LSB/g. To get the meas-
urements in g, just divide the measurements in LSB by 4096 LSB/g. 

At the start of  this project, you learned how to calculate the roll and pitch angles 
from the accelerometer values. You can use these equations at this point, as long as 
you take into account that the arctangens calculated by Arduino returns a result in 
radians, not in degrees. To convert the angles from radians to degrees, just divide the 
results by �/180.

When you run the code with the MPU-6050 flat on a table without moving and open 
the serial monitor, you will notice that the acceleration values in the X, Y and Z direc-
tions are not exactly 0, 0 and 1 g as they should be but rather:

Acceleration X [g]= 0.04 Acceleration Y [g]= -0.02 Acceleration Z [g]= 1.11
Acceleration X [g]= 0.04 Acceleration Y [g]= -0.03 Acceleration Z [g]= 1.11
Acceleration X [g]= 0.03 Acceleration Y [g]= -0.03 Acceleration Z [g]= 1.10

It is normal when you do not have the same values as mentioned above, because each 
sensor is slightly different. Calibration is once again necessary to correct these values. 
Because the MPU-6050 has to be exactly level when doing the accelerometer calibra-
tion, it recommended to do this beforehand; 
•	 Normally your MPU-6050 lies already flat on the table. The acceleration in the 

Z direction should be 1 in this case; for the above values for example, this would 
give a correction value of  0.11.

•	 For the calibration of  the acceleration in the X direction, you have to tilt the 
MPU-6050 vertically along the X axis. You should now get a value close to 1. 
Note once again the difference between the value you get and 1 g. 

•	 Now do the same for the acceleration in the Y direction.

Testing and calibration
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29  	 Wire.requestFrom(0x68,6);
30  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
31  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
32  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
33  	 RateRoll=(float)GyroX/65.5;
34  	 RatePitch=(float)GyroY/65.5;
35  	 RateYaw=(float)GyroZ/65.5;

36  	 AccX=(float)AccXLSB/4096;
37  	 AccY=(float)AccYLSB/4096;
38  	 AccZ=(float)AccZLSB/4096;

39  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);
40  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
41  }

42  void setup() {
43  	 Serial.begin(57600);
44  	 pinMode(13, OUTPUT);
45  	 digitalWrite(13, HIGH);
46  	 Wire.setClock(400000);
47  	 Wire.begin();
48  	 delay(250);
49  	 Wire.beginTransmission(0x68);	
50  	 Wire.write(0x6B);
51  	 Wire.write(0x00);
52  	 Wire.endTransmission();
53  }

54  void loop() {
55  	 gyro_signals();
56  	 Serial.print("Acceleration X [g]= ");
57  	 Serial.print(AccX);
58  	 Serial.print(" Acceleration Y [g]= ");
59  	 Serial.print(AccY);
60  	 Serial.print(" Acceleration Z [g]= ");
61  	 Serial.println(AccZ);
62  	 delay(50);
63  }

Convert the meas-
urements to physical 
values

Calculate the abso-
lute angles

Communication with 
the gyroscope and 
calibration (project 4 
and 5)

Print the accelerome-
ter values
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 The three calibration values you get should be subtracted from lines 36 to 38 in the 
code, so insert your own valuesyour own values in the yellow spaceyellow space. Run the program again and verify 
that the acceleration in all directions is correct.

Next, verify that the calculated roll and pitch angles are correct. You can easily check 
this by replacing lines 56 to 61 the code with the lines written on the right. When the 
MPU-6050 lies level on a table, the value for both angles should be very close to zero 
if  you have done a correct calibration.

You explored two different methods to calculate the roll and pitch angles; one meth-
od integrated the rotation rates coming from the gyroscope, and the second method 
used trigonometry on accelerometer measurements. It is now time to evaluate the 
advantages and disadvantages of  each method. Most disadvantages come with the 
gyro integration method;
•	 Pure integration of  the roll and pitch rotation rates does not take into account 

roll and pitch angle changes when yawing, as you already saw before. This means 
that the calculated angles will not be fully correct during flight.

•	 With integration, you add the change in angle to the previous angle for each 
iteration. Because each measurement has an error, this also means that you will 
add the errors of  each measurements. This causes an ever increasing error as 
shown on the picture to the right; after three minutes, the angle deviation is 
already equal to 1°.  

•	 Your integration always starts from an angle equal to zero. If  the surface on 
which the quadcopter sits is not level, the angles will be wrong.

By testing the accelerometer and the resulting angles calculated through trigonom-
etry, you will see that none of  the above disadvantages occur for this type of  meas-
urement. So why all this trouble, why can’t you just use the accelerometer? Well, 
unfortunately the accelerometer is extremely sensitive to vibrations; it measures ac-
celeration after all. So sensitive, that even with the low pass filter you already con-
figured in the MPU-6050, the resulting angles cannot be handled by your PID con-
troller. This is visible in the picture to the right; the gyro integration over time stays 
quite continuous, while the accelerometer angles are not continuous at all. This effect 
will be magnified when the motors are running. The disadvantages of  both methods 
necessitate a different solution, which you will explore with the next project. 

Accelerometer trigonometry or gyro integration?
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 36	 AccX=(float)AccXLSB/4096-0.05-0.05;
37	 AccY=(float)AccYLSB/4096+0.01+0.01;
38	 AccZ=(float)AccZLSB/4096-0.11-0.11;

54 void loop() {
55	 gyro_signals();
56	 Serial.print("Roll angle [°]= ");
57 	 Serial.print(AngleRoll);
58	 Serial.print(" Pitch angle [°]= ");
59	 Serial.println(AnglePitch);
60	 delay(50);
61 }

Angle

Time [minutes]

0°

1°

-0,5°

0,5°

1 2 30

gyro integration

accelerometer trigonometry

Correct the acceler-
ometer values after 
calibration

Check the measured 
roll and pitch angles
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The Kalman filter - one dimension
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        Project 15 

A final equation is necessary to update the uncertainty on the new angle prediction, 
once again by using the Kalman Gain:

Congratulations, you now learned how to combine the two methods, each with their 
own uncertainties and errors, to predict the most accurate value for the angle. This 
approach can be followed for both the roll and pitch angles. 

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)
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Co mbine two imperfect measurements

During the previous project you explored two methods of  measuring and cal-
culating angles and found out that the disadvantages of  both make them un-
suitable for a flight controller. However, what if  you can combine both meas-
urements to get rid of  their individual disadvantages? This is exactly what you 
are going to do during this project, through an iterative mathematical concept 
called the Kalman filter.

Let’s begin by rewriting the equation that you used to transform the rotation rate of  
the gyroscope to the angle, with Ts the time of  one iteration k (0.004 s in our case):

Assume now that this calculation gives you a prediction for the angle, but not its final 
value, because it is prone to a number of  errors. Calculate the uncertainty on the pre-
diction of  the angle as the sum of  the uncertainty on the previous angle prediction 
(iteration k-1) and the uncertainty on the evolution of  the angle:

The uncertainty on the evolution of  the angle is estimated as Ts
2 . 42  because:

•	 The standard deviation σ of  the rotation rate measurement error is 4°/s, giving 
a variance σ² of  4²=16. The rotation rate measurement error is an estimation; it 
includes the actual imperfection of  the sensor itself, but also the fact that you do 
not take into account the yaw rotation rate in the angle calculation.

•	 Because the rotation rate is multiplied with Ts (=0.004 s) in the equation, this has 
to be taken into account in the variance calculation as well, using the factor Ts

2.

In the next step you determine the so-called Kalman gain. This gain weighs your 
prediction of  the angle (Anglekalman(k)) as calculated above with the measured angle 
(Angle) using our accelerometer to obtain a new prediction for the angle:

Now how do you calculate this Kalman gain? The gain is defined as the relative ratio 
of  the uncertainty on the predicted angle to the uncertainty on the measured angle 
with the accelerometer:

In the equation, you assume that the standard deviation σ of  the accelerometer meas-
urement error is equal to 3°.

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)
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The Kalman filter - one dimension 

 

 

General form of  the Kalman filter
The Kalman filter that you derived in this project is specifically adapted to predict 
the roll or pitch angle. This is a one dimensional Kalman filter, as the so-called 
‘state’ of  the system consists of  only one value: the roll (or pitch) angle. This ap-
proach can be expanded to multi-dimensional states using vectors and matrices. 
The ‘general’ form of  the Kalman filter is written below and will be used when 
you are estimating the altitude of  the quadcopter further on. For comparison, the 
values for all vectors and matrices in our current example are also written.
1. Predict the current state of  the system:

2. Calculate the uncertainty of  the prediction:

S=state vector (Anglekalman)
F=state transition matrix (1)
G=control matrix (0.004)
U=input variable (Rate)

P=prediction uncertainty vector (Un-
certaintyangle)
Q=process uncertainty (Ts

2 . 42)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Coding

Connect your MPU-6050 to your Teensy to test the Kalman filter.

Define the roll and pitch angles coming from our Kalman filter. Your initial guess for 
the angle values is zero, because the quadcopter will generally take off  from a rather 
level surface. Off  course, the surface will never be exactly level, so you take the uncer-
tainty (=variance σ²) on the initial guess for the angles to be (2°)². If  you take off  from 
a surface that is not level at all, the Kalman filter will use the accelerometer values to 
quickly correct this initial wrong guess.

Define the output from the Kalman filter; this are two variables: the Kalman predic-
tion for the state (the angle in our case) and the uncertainty on this prediction. Both 
variables are updated during each iteration. 
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3. Calculate the Kalman gain from the uncertainties on the predictions and 
measurements:

4. Update the predicted state of  the system with the measurement of  the 
state through the Kalman gain:

5. Update the uncertainty of  the predicted state:

L= Intermediate matrix
K=Kalman gain
H=Observation matrix (=1)
R=Measurement uncertainty (Ts

2 . 32)

M=measurement vector (Angle)

I=unity matrix (=1)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

Anglekalman(k) = Anglekalman(k − 1) + Ts · Rate(k)

Uncertaintyangle(k) = Uncertaintyangle(k − 1) + T 2
s · 42

Anglekalman(k) = Anglekalman(k) + Gainkalman · (Angle(k) − Anglekalman)

Gainkalman = Uncertaintyangle(k)
Uncertaintyangle(k) + 32

Uncertaintyangle(k) = (1 − Gainkalman) · Uncertaintyangle(k)

S(k) = F · S(k − 1) + G · U(k)

P (k) = F · P (k − 1) · F T + Q

L(k) = H · P (k) · HT + R

K = P (k) · HT

L(k) = P (k) · HT · L(k)−1

S(k) = S(k) + K · (M(k) − H · S(k))

P (k) = (I − K · F ) · P (k)

1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;
3  float RateCalibrationRoll, RateCalibrationPitch, 
	 RateCalibrationYaw;
4  int RateCalibrationNumber;
5  float AccX, AccY, AccZ;
6  float AngleRoll, AnglePitch;
7  uint32_t LoopTimer;

8  float KalmanAngleRoll=0, 
	 KalmanUncertaintyAngleRoll=2*2;
9  float KalmanAnglePitch=0, 
	 KalmanUncertaintyAnglePitch=2*2;

10  float Kalman1DOutput[]={0,0};

Define the gyroscope 
and accelerometer 
variables

Define the predicted 
angles and the uncer-
tainties

Initialize the output 
of  the filter
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The Kalman filter - one dimension 

 

  

 11  void kalman_1d(float KalmanState, 
          float KalmanUncertainty, float KalmanInput, 
          float KalmanMeasurement) {
12  	 KalmanState=KalmanState+0.004*KalmanInput;
13  	 KalmanUncertainty=KalmanUncertainty + 0.004 
	  * 0.004 * 4 * 4;
14  	 float KalmanGain=KalmanUncertainty * 1/
	 (1*KalmanUncertainty + 3 * 3);
15  	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
16  	 KalmanUncertainty=(1-KalmanGain) * 
  	 KalmanUncertainty;

17  	 Kalman1DOutput[0]=KalmanState; 
	 Kalman1DOutput[1]=KalmanUncertainty;
18  }

19  void gyro_signals(void) {
20  	 Wire.beginTransmission(0x68);
21  	 Wire.write(0x1A);
22  	 Wire.write(0x05);
23  	 Wire.endTransmission();
24  	 Wire.beginTransmission(0x68);
25  	 Wire.write(0x1C);
26  	 Wire.write(0x10);
27  	 Wire.endTransmission();
28  	 Wire.beginTransmission(0x68);
29  	 Wire.write(0x3B);
30  	 Wire.endTransmission(); 
31  	 Wire.requestFrom(0x68,6);
32  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
33  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
34  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();
35  	 Wire.beginTransmission(0x68);
36  	 Wire.write(0x1B); 
37  	 Wire.write(0x8);
38  	 Wire.endTransmission();        

Create the function 
that calculates the 
predicted angle and 
uncertainty using the 
Kalman equations

Kalman filter output

Read the rotation 
rates, acceleration 
and angles from the 
MPU-6050 (project 
14)
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 The next step is to create the function for the Kalman filter. Four variables are nec-
essary to initiate this function; 
•	 the Kalman prediction for the previous state (the angle in this case); 
•	 the uncertainty on the Kalman prediction for the previous state;
•	 the input for the new Kalman prediction of  the state (the rotation rate from the 

gyroscope in this case);
•	 the measurement that will be compared with the new Kalman prediction of  the 

state (the angles measured by the accelerometer in this case).

You use these four variables to solve the five equations that were explained on the 
previous pages. 

The output of  the Kalman filter function consists of  a prediction for the state (the 
angle) and the corresponding uncertainty.

39       	 Wire.beginTransmission(0x68);
40  	 Wire.write(0x43);
41  	 Wire.endTransmission();
42  	 Wire.requestFrom(0x68,6);
43  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
44  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
45  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
46  	 RateRoll=(float)GyroX/65.5;
47  	 RatePitch=(float)GyroY/65.5;
48  	 RateYaw=(float)GyroZ/65.5;

49  	 AccX=(float)AccXLSB/4096-0.050.05;
50  	 AccY=(float)AccYLSB/4096+0.01+0.01;
51  	 AccZ=(float)AccZLSB/4096-0.11-0.11;

52  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);
53  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
54  }
55  void setup() {
56  	 Serial.begin(57600);
57  	 pinMode(13, OUTPUT);
58  	 digitalWrite(13, HIGH);
59  	 Wire.setClock(400000);

Do not forget to put 
your own accelerom-
eter calibration values 
here here (project 14)
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The Kalman filter - one dimension 

 When the rotation rates from the gyro and the angles from the accelerometer are 
measured, start the iteration for the Kalman filter. As already seen, the output of  the 
filter will be the Kalman prediction for the roll and pitch angles together with their 
uncertainties.

60  	 Wire.begin();
61  	 delay(250);
62  	 Wire.beginTransmission(0x68);	
63  	 Wire.write(0x6B);
64  	 Wire.write(0x00);
65  	 Wire.endTransmission();
66  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
67  	       	 gyro_signals();
68  		  RateCalibrationRoll+=RateRoll;
69  		  RateCalibrationPitch+=RatePitch;
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4°

Angle

Time [s]
20155 10

motor speed increase

motors stopped

kalman filter

accelerometer
trigonometry

motors started

Communication with 
the gyroscope and 
calibration (project 4 
and 5)
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70  		  RateCalibrationYaw+=RateYaw;
71  		  delay(1);
72  	 }
73  	 RateCalibrationRoll/=2000;
74  	 RateCalibrationPitch/=2000;
75  	 RateCalibrationYaw/=2000;
76  	 LoopTimer=micros();
77  }
78  void loop() {
79  	 gyro_signals();
80  	 RateRoll-=RateCalibrationRoll;
81  	 RatePitch-=RateCalibrationPitch;
82  	 RateYaw-=RateCalibrationYaw;
83  	 kalman_1d(KalmanAngleRoll, 
         KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
84  	 KalmanAngleRoll=Kalman1DOutput[0]; 
         KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
85  	 kalman_1d(KalmanAnglePitch, 
         KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
86  	 KalmanAnglePitch=Kalman1DOutput[0]; 
         KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

87  	 Serial.print("Roll Angle [°] ");
88  	 Serial.print(KalmanAngleRoll);
89  	 Serial.print(" Pitch Angle [°] ");
90  	 Serial.println(KalmanAnglePitch);
91  	 while (micros() - LoopTimer < 4000);
92  	 LoopTimer=micros();
93  }

The measurement results for the angles coming directly from the accelerometer and 
the angles as predicted by the Kalman filter are shown in the figure to the left, without 
any vibrations from the motors and when the motors are started. In both cases the 
quadcopter stayed stationary on the ground; you can observe the noisiness of  the 
accelerometer values, with angles that vary between plus and minus 3° around the real 
quadcopter angle. The angle calculation from the Kalman filter on the other hand 
stays very stable and is therefore more suited as input for your new flight controller. 

Testing

Calculate the rotation 
rates

Start the iteration 
for the Kalman fil-
ter with the roll and 
pitch angles

Print the predicted 
angle values



128

The Kalman filter - one dimension 

What is the Kalman gain, physically?

A key element of  the Kalman filter is the Kalman gain. This gain weighs the im-
portance of  the angle prediction, through the gyro integration, with the measured 
angle using the accelerometer. As the gain is a weighting factor, its value always 
lies between zero and one. A high Kalman gain gives a large importance to the 
measurement (e.g. the accelerometer), while a low Kalman gain gives a larger im-
portance to the prediction (e.g. the integration of  the rotation rate).

For the angle Kalman filter, the evolution of  the gain in time is given in the fig-
ure below. As you can see, the Kalman gain is high initially, because of  the initial 
importance of  the absolute accelerometer values. But rather quickly, the angle 
prediction using the integration of  the rotation rate becomes more important. 
Essentially the Kalman filter uses the gyroscope integration prediction most of  
the time during the flight. The accelerometer pitch angles are used to make sure 
that the gyroscope integration does diverge too much from the accelerometer 
pitch angles, for example due to drift. You now truly have a method to combine 
best of  both measurements!

0
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0.2

0.3

kalman gain
(angle calculation)

Time [s]
0.80.60 0.2 0.4

steady state ≈ 0.005
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St  abilize your quadcopter based on its angles

With your previous flight controller, you stabilized your quadcopter based on 
its rotation rates measured by the gyroscope. You experienced that this made 
your quadcopter rather difficult to fly. An easier-to-fly flight controller stabiliz-
es your drone based on its angles. To achieve this stabilization, you will use a 
so-called cascaded controller.

Flying a quadcopter with a flight controller based on rotation rates is rather difficult, 
because each time you have to manually adjust the quadcopter back to a level position; 
releasing the roll and pitch sticks stops the rotation rate because the command sent 
from the radiotransmitter becomes 0°/s, but the flight angle remains the same and 
does not return to 0°. So if  you were flying with a roll angle of  30° at the moment 
you release the stick, the angle would remain equal to 30°.

You will now implement a controller that stabilizes the quadcopter based on its an-
gles; this will be easier to fly because when you release the roll and pitch stick of  the 
radiotransmitter, the quadcopter will self-level itself  to a roll and pitch angle of  0°. 
Angle control is not necessary for the yaw direction, as you usually do not want the 
yaw angle to go back to a reference point during flight. To implement roll and pitch 
angle control, you will keep the PID controller that you used for the rate mode as the 
so-called inner control loop, and add a second PID controller in front that uses the 
angles instead of  the rotation rates as outer loop. This is a cascaded controller.

The idea for this cascaded controller is illustrated with the figure on the left. You have 
already programmed the inner loop with the rate PID controller in your first flight 
controller; the desired rotation rate will not be given by the radiotransmitter values 
in this case, but by the angle controller through the outer loop. The angle is calculat-
ed using the Kalman filter from the gyroscope and accelerometer measurements as 
learned in the previous project. For this controller, only a P term is necessary; the P 
values for roll and pitch can be set equal to 2 for good stability & performance.

The last thing that you need to do, is to transform the values sent from the receiver to 
physical roll and pitch angles, as you did before with the roll, pitch and yaw rotation 
rates. In this case, you will choose the minimal and maximal values for the desired 
angles to be -50° and +50°; this will be sufficient to achieve high speeds with your 
quadcopter. Since you already programmed an angle Kalman filter and a PID control-
ler has no more secrets to you, you are now ready to develop a stabilize-mode flight 
controller.
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The flight controller: stabilize mode 

1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;
3  float RateCalibrationRoll, RateCalibrationPitch, 
	 RateCalibrationYaw;
4  int RateCalibrationNumber;
5  #include <PulsePosition.h>
6  PulsePositionInput ReceiverInput(RISING);
7  float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
8  int ChannelNumber=0; 
9  float Voltage, Current, BatteryRemaining, BatteryAtStart;
10  float CurrentConsumed=0;
11  float BatteryDefault=1300;
12  uint32_t LoopTimer;
13  float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
14  float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
15  float InputRoll, InputThrottle, InputPitch, InputYaw;
16  float PrevErrorRateRoll, PrevErrorRatePitch, 
	 PrevErrorRateYaw;
17  float PrevItermRateRoll, PrevItermRatePitch, 
	 PrevItermRateYaw;
18  float PIDReturn[]={0, 0, 0};
19  float PRateRoll=0.6; float PRatePitch=PRateRoll; 
	 float PRateYaw=2;
20  float IRateRoll=3.5; float IRatePitch=IRateRoll; 
	 float IRateYaw=12;
21  float DRateRoll=0.03; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;
22  float MotorInput1, MotorInput2, MotorInput3, 
	 MotorInput4;
23  float AccX, AccY, AccZ;
24  float AngleRoll, AnglePitch; 

25  float KalmanAngleRoll=0, 
	 KalmanUncertaintyAngleRoll=2*2;
26  float KalmanAnglePitch=0, 
	 KalmanUncertaintyAnglePitch=2*2;
27  float Kalman1DOutput[]={0,0};

Coding

Initialize the same 
variables that you al-
ready needed for rate 
mode (project 12)

Initialize the accel-
erometer variables 
(project 14)

Define the Kalman 
variables (project 15)
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 28  float DesiredAngleRoll, DesiredAnglePitch;
29  float ErrorAngleRoll, ErrorAnglePitch;

30  float PrevErrorAngleRoll, PrevErrorAnglePitch;
31  float PrevItermAngleRoll, PrevItermAnglePitch;

32  float PAngleRoll=2; float PAnglePitch=PAngleRoll;
33  float IAngleRoll=0; float IAnglePitch=IAngleRoll;
34  float DAngleRoll=0; float DAnglePitch=DAngleRoll;

35  void kalman_1d(float KalmanState, 
          float KalmanUncertainty, float KalmanInput, 
          float KalmanMeasurement) {
36  	 KalmanState=KalmanState+0.004*KalmanInput;
37  	 KalmanUncertainty=KalmanUncertainty + 0.004 
	  * 0.004 * 4 * 4;
94       	 float KalmanGain=KalmanUncertainty * 1/
	 (1*KalmanUncertainty + 3 * 3);
38  	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
39  	 KalmanUncertainty=(1-KalmanGain) * 
  	 KalmanUncertainty;
40  	 Kalman1DOutput[0]=KalmanState; 
	 Kalman1DOutput[1]=KalmanUncertainty;
41  }

42  void battery_voltage(void) {
43  	 Voltage=(float)analogRead(15)/62;
44  	 Current=(float)analogRead(21)*0.089;
45  }
46  void read_receiver(void){
47  	 ChannelNumber = ReceiverInput.available();	
48  	 if  (ChannelNumber > 0) {
49  	        for (int i=1; i<=ChannelNumber;i++){
50  		  ReceiverValue[i-1]=ReceiverInput.read(i);
51  	        }
52  	 }
53  }

Define the desired 
roll and pitch angles 
and corresponding 
errors for the outer 
loop PID controller

Define the values 
necessary for the out-
er loop PID control-
ler, including the P, I 
and D parameters

The Kalman filter 
function (project 15)

Battery voltage func-
tion (project 9)

Receiver function 
(project 7)
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54  void gyro_signals(void) {
55  	 Wire.beginTransmission(0x68);
56  	 Wire.write(0x1A);
57  	 Wire.write(0x05);
58  	 Wire.endTransmission();
59  	 Wire.beginTransmission(0x68);
60  	 Wire.write(0x1C);
61  	 Wire.write(0x10);
62  	 Wire.endTransmission();
63  	 Wire.beginTransmission(0x68);
64  	 Wire.write(0x3B);
65  	 Wire.endTransmission(); 
66  	 Wire.requestFrom(0x68,6);
67  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
68  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
69  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();
70  	 Wire.beginTransmission(0x68);
71  	 Wire.write(0x1B); 
72  	 Wire.write(0x8);
73  	 Wire.endTransmission();                                                   
74  	 Wire.beginTransmission(0x68);
75  	 Wire.write(0x43);
76  	 Wire.endTransmission();
77  	 Wire.requestFrom(0x68,6);
78  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
79  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
80  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
81  	 RateRoll=(float)GyroX/65.5;
82  	 RatePitch=(float)GyroY/65.5;
83  	 RateYaw=(float)GyroZ/65.5;

84  	 AccX=(float)AccXLSB/4096-0.050.05;
85  	 AccY=(float)AccYLSB/4096+0.01+0.01;
86  	 AccZ=(float)AccZLSB/4096-0.11-0.11;

87  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);

Gyro and accelerom-
eter function (project 
14)

Do not forget to put 
your own accelerom-
eter calibration values 
here here (project 14)
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88  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
89  }
90  void pid_equation(float Error, float P , float I, float D,  	
           float PrevError, float PrevIterm) {
91  	 float Pterm=P*Error;
92  	 float Iterm=PrevIterm+I*(Error+
		  PrevError)*0.004/2;
93  	 if  (Iterm > 400) Iterm=400;
94  	 else if  (Iterm <-400) Iterm=-400;
95  	 float Dterm=D*(Error-PrevError)/0.004;
96  	 float PIDOutput= Pterm+Iterm+Dterm;
97  	 if  (PIDOutput>400) PIDOutput=400;
98  	 else if  (PIDOutput <-400) PIDOutput=-400;
99  	 PIDReturn[0]=PIDOutput;
100  	 PIDReturn[1]=Error;
101  	 PIDReturn[2]=Iterm;
102  }
103  void reset_pid(void) {
104  	 PrevErrorRateRoll=0; PrevErrorRatePitch=0; 
	 PrevErrorRateYaw=0;
105  	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;

106  	 PrevErrorAngleRoll=0; PrevErrorAnglePitch=0;    
107  	 PrevItermAngleRoll=0; PrevItermAnglePitch=0;
108  }

109  void setup() {
110  	 pinMode(5, OUTPUT);
111  	 digitalWrite(5, HIGH);
112  	 pinMode(13, OUTPUT);
113  	 digitalWrite(13, HIGH); 	

114  	 Wire.setClock(400000);
115  	 Wire.begin();
116  	 delay(250);
117  	 Wire.beginTransmission(0x68);
118  	 Wire.write(0x6B);
119  	 Wire.write(0x00);
120  	 Wire.endTransmission();

PID function (pro-
ject 12)

PID reset function 
(project 12)

Reset the PID error 
and integral values 
for the outer PID 
loop as well

Visualize the setup 
phase using the red 
LED

Communication with 
the gyroscope and 
calibration (project 4 
and 5)
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121  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
122  	       	 gyro_signals();
123  		  RateCalibrationRoll+=RateRoll;
124  		  RateCalibrationPitch+=RatePitch;
125  		  RateCalibrationYaw+=RateYaw;
126  		  delay(1);
127  	 }
128  	 RateCalibrationRoll/=2000;
129  	 RateCalibrationPitch/=2000;
130  	 RateCalibrationYaw/=2000;

131  	 analogWriteFrequency(1, 250);
132  	 analogWriteFrequency(2, 250);
133  	 analogWriteFrequency(3, 250);
134  	 analogWriteFrequency(4, 250);
135  	 analogWriteResolution(12);

136  	 pinMode(6, OUTPUT);
137  	 digitalWrite(6, HIGH);
138  	 battery_voltage();
139  	 if  (Voltage > 8.3) { digitalWrite(5, LOW);
140  		  BatteryAtStart=BatteryDefault; }
141  	 else if  (Voltage < 7.5) {
142  		  BatteryAtStart=30/100*BatteryDefault ;}
143  	 else { digitalWrite(5, LOW);
144  		  BatteryAtStart=(82*Voltage-580)/100*
		  BatteryDefault; }

145  	 ReceiverInput.begin(14);
146  	 while (ReceiverValue[2] < 1020 || 
	        ReceiverValue[2] > 1050) {
147  		  read_receiver();
148  		  delay(4);
149  	 }
150  	 LoopTimer=micros();
151  }

Set the PWM fre-
quency to 250 Hz 
and the resolution to 
12 bit for all motors 
(project 8)

Show the end of  the 
setup process and 
determine the initial 
battery voltage per-
centage (project 9)

SAFETY RELAT-
ED LINES: Avoid 
accidental lift off  af-
ter the setup process 
(project 12)
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152  void loop() {
153  	 gyro_signals();
154  	 RateRoll-=RateCalibrationRoll;
155  	 RatePitch-=RateCalibrationPitch;
156  	 RateYaw-=RateCalibrationYaw;

157  	 kalman_1d(KalmanAngleRoll, 
         KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
158  	 KalmanAngleRoll=Kalman1DOutput[0]; 
         KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
159  	 kalman_1d(KalmanAnglePitch, 
         KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
160  	 KalmanAnglePitch=Kalman1DOutput[0]; 
         KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

161  	 read_receiver();

162  	 DesiredAngleRoll=0.10*(ReceiverValue[0]-1500);
163  	 DesiredAnglePitch=0.10*(ReceiverValue[1]-1500);

164  	 InputThrottle=ReceiverValue[2];
165  	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

166  	 ErrorAngleRoll=DesiredAngleRoll-
	    KalmanAngleRoll;
167  	 ErrorAnglePitch=DesiredAnglePitch-
	    KalmanAnglePitch;

168  	 pid_equation(ErrorAngleRoll, PAngleRoll, 
	    IAngleRoll, DAngleRoll, PrevErrorAngleRoll,
	    PrevItermAngleRoll); 		
169  	 DesiredRateRoll=PIDReturn[0]; 
	 PrevErrorAngleRoll=PIDReturn[1];
	 PrevItermAngleRoll=PIDReturn[2];
170  	 pid_equation(ErrorAnglePitch, PAnglePitch, 
 	     IAnglePitch, DAnglePitch, PrevErrorAnglePitch,
  	     PrevItermAnglePitch);
171  	 DesiredRatePitch=PIDReturn[0]; 
	 PrevErrorAnglePitch=PIDReturn[1];
	 PrevItermAnglePitch=PIDReturn[2];

Measure the rotation 
rates and subtract 
the calibration values 
(project 5)

Calculate the roll and 
pitch angles through 
the Kalman filter 
(project 15)

Calculate the desired 
angles from the re-
ceiver values

Calculate the differ-
ence between the de-
sired and the actual 
roll and pitch angles

Calculate the desired 
roll and pitch angles 
through the outer 
loop PID controller
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172  	 ErrorRateRoll=DesiredRateRoll-RateRoll;
173  	 ErrorRatePitch=DesiredRatePitch-RatePitch;
174  	 ErrorRateYaw=DesiredRateYaw-RateYaw;

175  	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll, 
	      DRateRoll, PrevErrorRateRoll,
	      PrevItermRateRoll);
176              InputRoll=PIDReturn[0];
	      PrevErrorRateRoll=PIDReturn[1]; 
	      PrevItermRateRoll=PIDReturn[2];
177  	 pid_equation(ErrorRatePitch, PRatePitch,
	      IRatePitch, DRatePitch, PrevErrorRatePitch,
 	      PrevItermRatePitch);
178              InputPitch=PIDReturn[0]; 
	      PrevErrorRatePitch=PIDReturn[1]; 
	      PrevItermRatePitch=PIDReturn[2];
179  	 pid_equation(ErrorRateYaw, PRateYaw,
	      IRateYaw, DRateYaw, PrevErrorRateYaw,
 	      PrevItermRateYaw);
180              InputYaw=PIDReturn[0]; 
	      PrevErrorRateYaw=PIDReturn[1]; 
	      PrevItermRateYaw=PIDReturn[2];

181  	 if  (InputThrottle > 1800) InputThrottle = 1800;

173  	 MotorInput1= 1.024*(InputThrottle-InputRoll
	    -InputPitch-InputYaw);
174  	 MotorInput2= 1.024*(InputThrottle-InputRoll
	    +InputPitch+InputYaw);
175  	 MotorInput3= 1.024*(InputThrottle+InputRoll
	    +InputPitch-InputYaw);
176  	 MotorInput4= 1.024*(InputThrottle+InputRoll
	    -InputPitch+InputYaw);

182  	 if  (MotorInput1 > 2000)MotorInput1 = 1999;
183  	 if  (MotorInput2 > 2000)MotorInput2 = 1999; 
184  	 if  (MotorInput3 > 2000)MotorInput3 = 1999; 
185  	 if  (MotorInput4 > 2000)MotorInput4 = 1999;

Calculate the differ-
ence between the de-
sired and the actual 
roll, pitch and yaw 
rotation rates. Use 
these for the PID 
controller of  the in-
ner loop (project 12)

Limit the throttle val-
ue to 80% (project 
12)

Use the quadcopter 
dynamics equations 
(project 11)

Limit the maximal 
power commands 
sent to the motors
(project 12)
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186  	 int ThrottleIdle=1180;
187  	 if  (MotorInput1 < ThrottleIdle) MotorInput1 =   
	    ThrottleIdle;
188  	 if  (MotorInput2 < ThrottleIdle) MotorInput2 = 
	    ThrottleIdle;
189  	 if  (MotorInput3 < ThrottleIdle) MotorInput3 = 
	    ThrottleIdle;
190  	 if  (MotorInput4 < ThrottleIdle) MotorInput4 = 
	    ThrottleIdle;

191  	 int ThrottleCutOff=1000;
192  	 if  (ReceiverValue[2]<1050) {
193  		  MotorInput1=ThrottleCutOff; 
194  		  MotorInput2=ThrottleCutOff;
195  		  MotorInput3=ThrottleCutOff; 
196  		  MotorInput4=ThrottleCutOff;
197  		  reset_pid();
198  	 }
199  	 analogWrite(1,MotorInput1);
200  	 analogWrite(2,MotorInput2);
201  	 analogWrite(3,MotorInput3); 
202  	 analogWrite(4,MotorInput4);

203  	 battery_voltage();
204  	 CurrentConsumed=Current*1000*0.004/3600+
		  CurrentConsumed;
205  	 BatteryRemaining=(BatteryAtStart-
		  CurrentConsumed)/BatteryDefault*100;
206  	 if  (BatteryRemaining<=30) digitalWrite(5, HIGH);
207  	 else digitalWrite(5, LOW);

208  	 while (micros() - LoopTimer < 4000);
209  	 LoopTimer=micros();
210  }

Keep the quadcopter 
motors running at 
minimally 18% pow-
er during flight

SAFETY RELAT-
ED LINES: make 
sure you are able to 
turn off  the motors

Sent the commands 
to the motors

Keep track of  battery 
level (project 9)

Finish the 250 Hz 
control loop

To start and fly your quadcopter with the new stabilize-mode controller, follow the 
same steps as you did with your rate-mode controller. You should notice that fly-
ing the quadcopter with your new flight controller is much easier than with the old 
one. To further simplify flying, a third and final flight controller will be developed 
in the next part to give you a better control over the altitude of  the quadcopter. 

Start-up and flying your quadcopter



Part III: velocity mode



stabilization mode is a major step to re-
duce the pilot’s effort necessary to keep the 
quadcopter in the air. But there is one fea-
ture which would make flying even more 
easy; being able to hold your altitude auto-
matically.

in this third part, you will explore the pos-
sibilities of  a barometric sensor and adapt 
your flight controller accordingly.

this flight controller will be optimized for 
indoor navigation only; outdoors the need 
for such a controller is limited, because you 
generally stay a lot higher above ground.
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Us e a barometer to measure the altitude

To help you holding your quadcopter at a constant altitude, you first need to be 
able to measure the altitude. You will use a barometric sensor for the altitude 
measurements: the BMP-280. 

A barometric sensor is a sensor that measures the atmospheric pressure. Because the 
pressure decreases with increasing altitude, the relation between both can be used to 
measure the altitude. One of  the advantages of  a barometric sensor is its ability to 
detect very small pressure changes, making it a suitable measurement for your flight 
controller. The relation between the atmospheric pressure and the altitude is given 
through the barometric formula, which assumes in its standard form a constant tem-
perature of  15°C and a standard pressure at sea level of  1013.25 hPa:

Where the altitude is given in meter and the pressure in hPa. Off  course, the tem-
perature when flying your drone is not always 15°C and the pressure at sea level also 
differs from 1013.25 hPa, depending on the weather. However, since you are only 
interested in the relative change of  altitude between startup and a certain position, 
both the actual temperature and pressure at sea level does not matter for your flight 
controller. The relation between the altitude and pressure as given in the equation is 
plotted below. 

0
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12 000

Altitude [m]

Atmospheric pressure [hPa]
1000800200 400 600

standard pressure
1013.25 hPa

4000

altitude = 44330 ·
[
1 −

(
pressure

1013.25

) 1
5.255

]

AccZ,i = −AccX · sin(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccY · sin(ϕroll) · cos(θpitch)

AccZ,i = AccZ,1 · cos(θpitch) = AccZ · cos(ϕroll) · cos(θpitch)

AccZ,i = −AccX ·sin(θpitch)+AccY ·sin(ϕroll)·cos(θpitch)+AccZ ·cos(ϕroll)·cos(θpitch)

Now you understand this essential piece of  theory, let’s connect the BMP-280 pres-
sure sensor to your Teensy. Normally you already installed the sensor on your quad-
copter: you can either choose to test directly on the printed circuit board of  your 
quadcopter, or you can connect the sensor separately using your breadboard.
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Measuring altitude 

 

 

 

 

As with your MPU-6050, the SCL and SDA pins are connected to pins 19 and 18 of  
the Teensy respectively to be able to communicate through the I2C protocol. Because 
the BMP-280 sensor has a different address than the MPU-6050 sensor, you can use 
the same Teensy pins for communication with both sensors. Connect the ground of  
the sensor to the ground of  the sensor. Be very carefull to connect the VCC pin 
of  the sensor to the 3V output on your Teensy, not the 5V output! The BMP-280 
sensor is only 3V tolerant so powering it with 5V might damage it. When you’re all 
wired up, let’s start programming.

Each individual sensor is calibrated beforehand by the manufacturer. The calibration 
values are stored on the sensor’s memory in the form of  twelve trimming parameters; 
three for the temperature and nine for the pressure. They are all 16-bit signed or 
unsigned integers (see datasheet BMP-280). The names of  the variables used in this 
part of  the code correspond to the names in the datasheet of  the BMP-280 sensor. 

Define the altitude measured by the barometer as a global variable, together with the 
altitude at startup. To have a steady value for the altitude at startup, the average of  
a large integer number of  altitude readouts will be taken (RateCalibrationNumber). 

The I2C address for the BMP-280 is 0x76. The pressure and temperature data is read 
by starting a burst read from the 6 registers 0xF7 to 0xFC; the measurement of  the 
raw temperature and pressure is spread out over three registers each. Request 6 bytes 
to read the registers; the data comes in unsigned 32 bit format. 

The three registers for the temperature and three for the pressure are combined to 
form the raw, uncompensated and uncalibrated pressure (adc_P) and temperature 
(adc_T). The msb register contains bits 19 to 12, the LSB register contains bits 11 to 
4 and the xlsb register contains bits 3 to 0 of  the raw measurements. 

Coding
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1  #include <Wire.h>

2  uint16_t dig_T1, dig_P1;
3  int16_t  dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
4  int16_t  dig_P6, dig_P7, dig_P8, dig_P9; 

5  float AltitudeBarometer, AltitudeBarometerStartUp;
6  int RateCalibrationNumber;

7  void barometer_signals(void){

8  	 Wire.beginTransmission(0x76);
9  	 Wire.write(0xF7);
10  	 Wire.endTransmission();
11  	 Wire.requestFrom(0x76,6);
12  	 uint32_t press_msb = Wire.read();
13  	 uint32_t press_lsb = Wire.read();
14  	 uint32_t press_xlsb = Wire.read();
15  	 uint32_t temp_msb = Wire.read();
16  	 uint32_t temp_lsb = Wire.read();
17  	 uint32_t temp_xlsb = Wire.read();

18  	 unsigned long int adc_P = (press_msb << 12) | (
	     press_lsb << 4) | (press_xlsb >>4);
19  	 unsigned long int adc_T = (temp_msb << 12) | (
	     temp_lsb << 4) | (temp_xlsb >>4);

Define the pressure 
sensor calibration 
values

Define the altitude 
variables

Make connection 
with the pressure 
sensor and read the 
raw uncombined 
pressure and temper-
ature measurements

Construct the raw 
temperature and 
pressure measure-
ments
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Measuring altitude 

 

 

 To calculate the compensated and calibrated pressure, first the fine resolution temper-
ature value t_fine needs to be determined from the raw temperature values and the 
trimming parameters. These calculations are entirely given by the manufacturer in the 
datasheet of  the BMP-280 and are therefore not further explained here. 

The compensated and calibrated pressure p (in Pa) is calculated with these lines from 
the raw pressure values and the trimming parameters. Once again, these lines are en-
tirely given by the manufacturer in the datasheet of  the BMP-280 and are therefore 
not further explained here. 

Convert the pressure in Pa to the pressure in hPa and calculate the altitude from the 
standard pressure to the barometric formula. Multiply by 100 to convert from meter 
to centimetre. This marks the end of  the barometric function; continue with the setup 
part of  the code.
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 20  	 signed long int var1, var2;
21  	 var1 = ((((adc_T >> 3) - ((signed long int )dig_T1 
	     <<1)))* ((signed long int )dig_T2)) >> 11;
22  	 var2 = (((((adc_T >> 4) - ((signed long int )dig_T1
	     )) * ((adc_T>>4) - ((signed long int )dig_T1)))
  	     >> 12) * ((signed long int )dig_T3)) >> 14;
23  	 signed long int t_fine = var1 + var2;

24  	 unsigned long int p;
25  	 var1 = (((signed long int )t_fine)>>1) - (signed
  	     long int )64000;
26  	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed 
	     long int )dig_P6);
27  	 var2 = var2 + ((var1*((signed long int )dig_P5)) 
	     <<1);
28  	 var2 = (var2>>2)+(((signed long int )dig_P4)
	     <<16);
29  	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13
	     ))>>3)+((((signed long int )dig_P2) * 
	     var1)>>1))>>18;
30  	 var1 = ((((32768+var1))*((signed long int )dig_P1)) 
	     >>15);
31  	 if  (var1 == 0) { p=0;}    
32  	 p = (((unsigned long int )(((signed long int ) 
	     1048576)-adc_P)-(var2>>12)))*3125;
33  	 if(p<0x80000000){ p = (p << 1) / ((unsigned 
	     long int ) var1);}
34  	 else { p = (p / (unsigned long int )var1) * 2;  }
35  	 var1 = (((signed long int )dig_P9) * ((signed long 
	     int ) (((p>>3) * (p>>3))>>13)))>>12;
36  	 var2 = (((signed long int )(p>>2)) * 
  	     ((signed long int )dig_P8))>>13;
37  	 p = (unsigned long int)((signed long int )p + 
	     ((var1 + var2+ dig_P7) >> 4));

38  	 double pressure=(double)p/100;
39  	 AltitudeBarometer=44330*(1-pow(pressure
	    /1013.25, 1/5.255))*100;
40  }

Construct the fine 
resolution tempera-
ture value

Construct the com-
pensated and cali-
brated pressure p

Calculate the altitude
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 In the setup phase, you configure the BMP-280 in such a manner that the sensor is 
optimized for indoor navigation. The datasheet recommends to set the power mode 
of  the sensor in normal mode, with an oversampling setting for the pressure (osrs_p) 
of  x16 and the similar setting for the temperature (osrs_t) of  x2. According to the 
datasheet, these settings correspond to osrs_t[2:0] bits of  010, osrs_p[2:0] bits of  101 
and mode [1:0] bits of  11 in the data acquisition control register 0xF4, which has a 
layout that is visualised in the table:

Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

F4 244 osrs_t[2:0] osrs_p[2:0] mode[1:0]

Binary representation 0 1 0 1 0 1 1 1

Converting the resulting binary representation of  01010111 to a hexadecimal value 
gives an address of  0x57.

The configuration register 0xF5, with a layout shown in the second table, sets the 
standby time t_sb[2:0], the internal IIR filter filter[2:0] and the SPI interface spi3w_
en[0]. For indoor navigation, the manufacturer recommends to set the IIR filter co-
efficient to 16 (101). As you do not use the SPI interface and the standby time is only 
helpful to reduce the power the device needs (which is anyway much smaller than the 
power the motors need), these remain on their default values (0):

Register
(Hex)

Register
(Decimal) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

F5 245 t_sb[2:0] filter[2:0] read only spi3w_en[0]

Binary representation 0 0 0 1 0 1 0 0

Converting the resulting binary representation of  00010100 to a hexadecimal value 
gives an address of  0x14.

Import the twelve calibration (e.g. trimming) parameters from the sensor’s memory. 
As they are stored in two’s complement, you need to foresee 2x12 or 24 variables. The 
i variable will be used to indicate the trimming parameters in the subsequent while 
loop during import.
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41  void setup() {
42  	 Serial.begin(57600);
43  	 pinMode(13, OUTPUT);
44  	 digitalWrite(13, HIGH);
45  	 Wire.setClock(400000);
46  	 Wire.begin();
47  	 delay(250);

48  	 Wire.beginTransmission(0x76);
49  	 Wire.write(0xF4);
50  	 Wire.write(0x57);
51         	 Wire.endTransmission();   

52  	 Wire.beginTransmission(0x76);
53  	 Wire.write(0xF5); 
54  	 Wire.write(0x14);
55  	 Wire.endTransmission();   

56  	 uint8_t data[24], i=0; 

Optimize the barom-
eter for indoor navi-
gation

Setup the configura-
tion register

Import the calibra-
tion parameters
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 The register address of  the first trimming parameter is 0x88 according to the data-
sheet. Request 24 bytes such that you can pull the information from the 24 registers 
0x88 to 0x9E.

Rearrange the trimming parameters, that are split in their two’s complement values, 
such that they are readable in one single parameter. You need to carry out this step 
for all twelve parameters.

Before you will start your quadcopter, you need the altitude level from which you take 
off. Take the average of  2000 iterations to get a steady altitude reference level.

Now it is finally time to read the barometer in the loop part. Call the function and 
subtract the average startup altitude to get the altitude variation in flight.
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 57  	 Wire.beginTransmission(0x76);
58  	 Wire.write(0x88);
59  	 Wire.endTransmission();
60  	 Wire.requestFrom(0x76,24);      
61  	 while(Wire.available()){
62  		  data[i] = Wire.read();
63  		  i++;
64  	 }
65  	 dig_T1 = (data[1] << 8) | data[0]; 
66  	 dig_T2 = (data[3] << 8) | data[2];
67  	 dig_T3 = (data[5] << 8) | data[4];
68  	 dig_P1 = (data[7] << 8) | data[6]; 
69  	 dig_P2 = (data[9] << 8) | data[8];
70  	 dig_P3 = (data[11]<< 8) | data[10];
71  	 dig_P4 = (data[13]<< 8) | data[12];
72  	 dig_P5 = (data[15]<< 8) | data[14];
73  	 dig_P6 = (data[17]<< 8) | data[16];
74  	 dig_P7 = (data[19]<< 8) | data[18];
75  	 dig_P8 = (data[21]<< 8) | data[20];
76  	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);

77  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
78  		  barometer_signals();
79  		  AltitudeBarometerStartUp+=
		      AltitudeBarometer;
80  		  delay(1);
81  	 }
82  	 AltitudeBarometerStartUp/=2000;
83  }

84  void loop() {
85  	 barometer_signals();
86  	 AltitudeBarometer-=AltitudeBarometerStartUp;
87  	 Serial.print("Altitude [cm]: ");
88  	 Serial.println(AltitudeBarometer);
89  	 delay(50);
90  }

Calculate the altitude 
reference level

Read the barometer 
and print the altitudes
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Measuring altitude 

Testing the barometric sensor

Test the barometric sensor by moving your breadboard or quadcopter up and 
down. You will notice that the readings do not change very fast, are not very con-
stant over a longer time and are overall not very accurate. This is illustrated by the 
figure below for changes in altitude between 50 cm and -30 cm. The reason for this 
poor performance are rapid pressure changes in the atmosphere, for example due 
to wind gusts or opening/closing windows when flying indoors. 

The ‘jumpy’ performance of  the sensor readings also mean that if  you only use a 
barometer for your vertical velocity PID, its performance will not be very good. By 
now you have probably guessed already how you can solve this issue; use Kalman 
filter with another, complimentary measurement. In this case, the additional meas-
urement will be the vertical velocity, obtained through the accelerometer.

-100
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0
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Time [s]
0 30252015105
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100
barometric sensor
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Measuring vertical velocity
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The results from measuring the altitude using your barometer are not suffi-
ciently accurate. Fortunately, your quadcopter hovers not only when the alti-
tude stays the same, but also when the vertical velocity is equal to zero. Meas-
uring this vertical velocity is surprisingly easy using your accelerometer.

Imagine that there exist three inertial directions for the acceleration of  your quad-
copter: AccX,i, AccY,i and AccZ,i. These are always aligned respectively horizontally and 
vertically to the surface of  the earth and are coloured in red in the figure to the left. 
If  your accelerometer or quadcopter turns, these red inertial axes keep pointing in 
the same direction. This means that AccZ,i will always be perpendicular to the earth’s 
surface and is hence suitable for measuring the vertical velocity after integration.
 
When your quadcopter and its accelerometer rolls and pitches, it does not measure 
the acceleration in its inertial axes anymore, but it measures along the axes that are 
defined on the accelerometer itself. These are the acceleration vectors AccX, AccY 
and AccZ. All three vectors will have a component that can be related back to the 
acceleration along the inertial Z axis AccZ,i. Using basic trigonometry and the roll φrol 
and pitch θpitch angles, you can calculate the total acceleration along the inertial Z axis 
AccZ,i by adding the components of  the acceleration AccX, AccY and AccZ along this 
axis. This is visualized on the figure to the left. The acceleration in the X direction 
gives the following component in the inertial Z axis:

The acceleration in the Y and Z direction of  the accelerometer give the following 
components in the inertial Z axis:

This means that the total acceleration in the inertial Z axis can be calculated by adding 
all separate components:

Let's test this mathematical representation for the acceleration in the inertial Z axis 
with the MPU-6050 and your Teensy.

Me asure vertical velocity with an accelerometer
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To run this code, you once again need to connect your accelerometer to your Teensy. 
You can test this part either on a breadboard or directly on the printed circuit board 
of  your quadcopter.

Define two additional variables for this part: the acceleration in the inertial Z axis 
AccZ,i and the velocity in the inertial Z direction, which will be obtained by integrating 
AccZ,i.

Coding
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1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;
3  float AngleRoll, AnglePitch;
4  float AccX, AccY, AccZ;

5  float AccZInertial;
6  float VelocityVertical;

7  float LoopTimer;
8  void gyro_signals(void) {
9  	 Wire.beginTransmission(0x68);
10  	 Wire.write(0x1A);
11  	 Wire.write(0x05);
12  	 Wire.endTransmission();
13  	 Wire.beginTransmission(0x68);
14  	 Wire.write(0x1C);
15  	 Wire.write(0x10);
16  	 Wire.endTransmission();
17  	 Wire.beginTransmission(0x68);
18  	 Wire.write(0x3B);
19  	 Wire.endTransmission(); 
20  	 Wire.requestFrom(0x68,6);
21  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
22  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
23  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();
24  	 Wire.beginTransmission(0x68);
25  	 Wire.write(0x1B); 
26  	 Wire.write(0x8);
27  	 Wire.endTransmission();                                                   
28  	 Wire.beginTransmission(0x68);
29  	 Wire.write(0x43);
30  	 Wire.endTransmission();
31  	 Wire.requestFrom(0x68,6);
32  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
33  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
34  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();

Initialize the gyro and 
accelerometer varia-
bles (project 14)

Define the accelera-
tion and velocity var-
iables

Define the gyro/ac-
celerometer function 
(project 14)
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 The acceleration in the inertial Z axis is calculated through the formula you have 
developed on the first page of  this project. Do not forget to transform the roll and 
pitch angles from degrees to radians by multiplying them with �/180, as the sines and 
cosines functions in Arduino only accept radians. The resulting acceleration AccZIn-
ertial has the same units as AccX, AccY and AccZ, namely the gravitational constant 
equivalent g. Be mindful that for the flight controller, the angles will come from the 
one-dimensional Kalman filter to eliminate the effect of  the quadcopter vibrations.

The acceleration in the inertial Z axis is equal to 1 g even when the accelerometer is 
stationary because of  the gravitation. Therefore you need to subtract 1 g from the ac-
celeration in order to obtain the values for the vertical acceleration of  the quadcopter. 
Because 1 g is equal to 9.81 m/s², you can multiply the acceleration with this constant 
to get the values in m/s². The unit m/s² is too large to be practical so multiply the 
value with 100 cm/m to get the acceleration in cm/s².

To obtain the vertical velocity, perform an integration by adding the previous velocity 
to the acceleration multiplied with the length of  one loop, 0.004 seconds. You now 
have the velocity in cm/s.

Print out the value for the vertical velocity to be able to test your code.

35  	 RateRoll=(float)GyroX/65.5;
36  	 RatePitch=(float)GyroY/65.5;
37  	 RateYaw=(float)GyroZ/65.5;

38  	 AccX=(float)AccXLSB/4096-0.050.05;
39  	 AccY=(float)AccYLSB/4096+0.01+0.01;
40  	 AccZ=(float)AccZLSB/4096-0.11-0.11;

41  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);
42  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
43  }

Do not forget to put 
your own accelerom-
eter calibration values 
here here (project 14)
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Communication with 
the gyroscope and 
calibration (project 4 
and 5)

Calculate the acceler-
ation in the inertial Z 
axis

Convert the accelera-
tion to cm/s²

Calculate and print 
the vertical velocity

44  void setup() {
45  	 Serial.begin(57600);
46  	 pinMode(13, OUTPUT);
47  	 digitalWrite(13, HIGH);
48  	 Wire.setClock(400000);
49  	 Wire.begin();
50  	 delay(250);
51  	 Wire.beginTransmission(0x68);	
52  	 Wire.write(0x6B);
53  	 Wire.write(0x00);
54  	 Wire.endTransmission();
55  }
56  void loop() {
57  	 gyro_signals();
58  	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll* 
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;

59  	 AccZInertial=(AccZInertial-1)*9.81*100;

60  	 VelocityVertical=VelocityVertical
		  +AccZInertial*0.004;

61  	 Serial.print("Vertical velocity [cm/s]: ");
62  	 Serial.println(VelocityVertical);

63  while (micros() - LoopTimer < 4000);  
64  		  LoopTimer=micros();                 
65  }
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Measuring vertical velocity 

When testing the code on the previous pages, you will notice that the calculated 
vertical velocity changes linearly with time even when the accelerometer/quad-
copter is not moving. The rate of  change depends on how well you performed 
your accelerometer calibration as this is once again an example of  accumulation 
of  small integration errors. This issue is represented in the figure below, where 
the vertical velocity calculated through accelerometer integration is visualized, as 
opposed to the real vertical velocity. It is clear that the error on the vertical velocity 
becomes so large after a couple of  seconds, that this method of  measuring and 
calculating the vertical velocity gives not sufficiently satisfactory results to use in  
your control system. You will use a second Kalman filter to combine the altitude 
and vertical velocity measurements in order to obtain an accurate value for the 
vertical velocity. 
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Testing the vertical velocity code
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Just as you did when measuring the roll and pitch angles, you will use another 
Kalman filter to combine the accelerometer and barometer measurements in 
order to obtain the vertical velocity. Because the state of  your system contains 
two variables - the vertical velocity and the altitude - this Kalman filter will be 
two dimensional.

The approach you will follow to construct the two dimensional Kalman filter is very 
similar as the one dimensional case. However, you will now try to do it in a more 
structured way. The state of  our system in this case consists of  both the vertical 
velocity Velocitykalman and the altitude Altitudekalman. Put both variables in the state 
vector S:

Knowing that the measurement you will use to predict the vertical velocity and alti-
tude is the acceleration in the z direction, AccZ,inertial, you just need to integrate once to 
obtain the velocity in the z direction:

This gives a fully similar equation as the one you obtained when integrating the roll 
rate to get the roll angle in project 15. Integrating the above equation a second time 
gives you the altitude:

Both equations can be summarized in state space matrix form as:

This corresponds to the general equation for the state prediction S(k)=F.S(k-
1)+G.U(k). The uncertainty on this prediction is calculated through P(k)=F.P(k-1)
FT+Q. Because you will set both the altitude and velocity at startup to zero, the initial 
prediction for S at iteration k=0 is equal to:

De termine the vertical velocity accurately

F
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Because this initial prediction for S is 100% accurate, the initial uncertainty on the 
prediction P can be set to zero as well:

To be able to calculate to prediction uncertainty, you still need the process uncertain-
ty. Let’s take a standard deviation of  10 cm/s² on the accelerometer values; together 
with the control matrix G and because Q is essentially the variance of  the process 
uncertainty, you get:

The observation matrix H links the state with the measurement M; the error between 
both will be multiplied by the Kalman gain. M is in this case the altitude measured by 
the barometer, meaning that you can write the error between the measurement and 
the state as:  

Writing this more generally in matrix form gives an observation matrix H equal to [1 
0] and the measurement vector M equal to Altitudekalman:

With the observation matrix H, calculate the intermediate matrix L(k)=H.P(k).HT+R. 
R is the uncertainty on the barometer altitude measurement; let’s take a standard devi-
ation of  30 cm yielding R=30². From here onward, the Kalman gain can easily be cal-
culated with the formula K=P(k).HT.L(k)-1 and the update of  the prediction through 
S(k)=S(k)+K.(M-H.S). Finally the uncertainty on the predicted state is updated using 
the equation P(k)=(I-K.F)P(k). In this case, I is the 2x2 identity matrix:

And this is all there is to it, you now have a two-dimensional Kalman filter! Let’s try 
to implement your new filter in Arduino. For this part you need both the MPU-6050 
gyro and the BMP-280 barometer, so either test the code directly on the printed cir-
cuit board of  you quadcopter, or connect the sensor and Teensy separately using your 
breadboard as visualized on the previous page. Be careful to connect the Vcc of  
the barometer to the 3.3V power source of  your Teensy and not the 5V power 
source to avoid damaging the sensor. 
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1. Predict the current state of  the system:

2. Calculate the uncertainty of  the prediction:

3. Calculate the Kalman gain from the uncertainties on the predictions and 
measurements:

4. Update the predicted state of  the system with the measurement of  the 
state through the Kalman gain:

5. Update the uncertainty of  the predicted state:

S=state vector

F=state transition matrix 

G=control matrix

U=input variable (AccZ,inertial)

P=prediction uncertainty vector 

Q=process uncertainty

L= Intermediate matrix
K=Kalman gain
H=Observation matrix
R=Measurement uncertainty (302)

M=measurement vector (AltitudeKalman)

I=unity matrix
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Two-dimensional form of  the Kalman filter
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The Kalman filter - two dimensions 

 

 Use a dedicated library to be able to implement and calculate with matrices: the Ba-
sicLinearAlgebra library. Make sure you import it by clicking on Sketch → include 
library → manage libraries because this is not a standard library. A namespace called 
BLA is used to define the matrices; for each matrix you need to declare the size; H=[1 
0] for example is a 1x2 matrix while the state space S is a 2x1 matrix. Do not forget to 
define the altitude and vertical velocity that will be predicted with the Kalman filter.
 

Construct the function that will hold the two-dimensional Kalman filter. The acceler-
ation value that will come from the accelerometer AccZInertial has to be transformed 
to the 1x1 matrix Acc. The prediction for the state space is calculated according to 
the formula seen in the theory of  this project, together with the uncertainty on the 
prediction. Calculate the transpose of  matrix F (FT) by placing a ~ in front of  the 
matrix. For the calculation of  the Kalman gain, the matrix L should be inverted (L-1) 
which you can do with the function Invert. The measurement matrix M consists only 
of  the measured altitude with the barometer. Now everything is ready to calculate the 
updated state vector S; extract the altitude (in cm) from the first position in the vector 
and the vertical velocity (in cm/s) from the second position. Do not forget to update 
the uncertainty on the prediction.

 

Coding
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1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;
3  float AngleRoll, AnglePitch;
4  float AccX, AccY, AccZ;
5  float AccZInertial;
6  float LoopTimer;
7  uint16_t dig_T1, dig_P1;
8  int16_t  dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
9  int16_t  dig_P6, dig_P7, dig_P8, dig_P9; 
10  float AltitudeBarometer, AltitudeBarometerStartUp;
11  int RateCalibrationNumber;

12  #include <BasicLinearAlgebra.h>
13  using namespace BLA;
14  float AltitudeKalman, VelocityVerticalKalman;
15  BLA::Matrix<2,2> F; BLA::Matrix<2,1> G;
16  BLA::Matrix<2,2> P; BLA::Matrix<2,2> Q;
17  BLA::Matrix<2,1> S; BLA::Matrix<1,2> H;
18  BLA::Matrix<2,2> I; BLA::Matrix<1,1> Acc;
19  BLA::Matrix<2,1> K; BLA::Matrix<1,1> R;
20  BLA::Matrix<1,1> L; BLA::Matrix<1,1> M;

21  void kalman_2d(void){
22  	 Acc = {AccZInertial};
23  	 S=F*S+G*Acc;
24  	 P=F*P*~F+Q;
25  	 L=H*P*~H+R;
26  	 K=P*~H*Invert(L);
27  	 M={AltitudeBarometer};
28  	 S=S+K*(M-H*S);
29  	 AltitudeKalman=S(0,0); 
30  	 VelocityVerticalKalman=S(1,0); 
31  	 P=(I-K*H)*P;
32  }

33  void barometer_signals(void){
34  	 Wire.beginTransmission(0x76);
35  	 Wire.write(0xF7);
36  	 Wire.endTransmission();
37  	 Wire.requestFrom(0x76,6);
38  	 uint32_t press_msb = Wire.read();

Include all variables 
for the gyro and ac-
celerometer (project 
14)

Include all variables 
for the barometer 
(project 17)

Define the matrices 
for the two-dimen-
sional Kalman filter

Create the function 
that holds the two 
dimensional Kalman 
filter

Calculate the altitude 
in cm from the baro-
metric measurement
(project 17)
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39  	 uint32_t press_lsb = Wire.read();
40  	 uint32_t press_xlsb = Wire.read();
41  	 uint32_t temp_msb = Wire.read();
42  	 uint32_t temp_lsb = Wire.read();
43  	 uint32_t temp_xlsb = Wire.read();
44  	 unsigned long int adc_P = (press_msb << 12) | (
	     press_lsb << 4) | (press_xlsb >>4);
45  	 unsigned long int adc_T = (temp_msb << 12) | (
	     temp_lsb << 4) | (temp_xlsb >>4);
46  	 signed long int var1, var2;
47  	 var1 = ((((adc_T >> 3) - ((signed long int )dig_T1 
	     <<1)))* ((signed long int )dig_T2)) >> 11;
48  	 var2 = (((((adc_T >> 4) - ((signed long int )dig_T1
	     )) * ((adc_T>>4) - ((signed long int )dig_T1)))
  	     >> 12) * ((signed long int )dig_T3)) >> 14;
49  	 signed long int t_fine = var1 + var2;
50  	 unsigned long int p;
51  	 var1 = (((signed long int )t_fine)>>1) - (signed
  	     long int )64000;
52  	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed 
	     long int )dig_P6);
53  	 var2 = var2 + ((var1*((signed long int )dig_P5)) 
	     <<1);
54  	 var2 = (var2>>2)+(((signed long int )dig_P4)
	     <<16);
55  	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13
	     ))>>3)+((((signed long int )dig_P2) * 
	     var1)>>1))>>18;
56  	 var1 = ((((32768+var1))*((signed long int )dig_P1)) 
	     >>15);
57  	 if  (var1 == 0) { p=0;}    
58  	 p = (((unsigned long int )(((signed long int ) 
	     1048576)-adc_P)-(var2>>12)))*3125;
59  	 if(p<0x80000000){ p = (p << 1) / ((unsigned 
	     long int ) var1);}
60  	 else { p = (p / (unsigned long int )var1) * 2;  }
61  	 var1 = (((signed long int )dig_P9) * ((signed long 
	     int ) (((p>>3) * (p>>3))>>13)))>>12;
62  	 var2 = (((signed long int )(p>>2)) * 
  	     ((signed long int )dig_P8))>>13;
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63  	 p = (unsigned long int)((signed long int )p + 
	     ((var1 + var2+ dig_P7) >> 4));
64  	 double pressure=(double)p/100;
65  	 AltitudeBarometer=44330*(1-pow(pressure
	    /1013.25, 1/5.255))*100;
66  }
67  void gyro_signals(void) {
68  	 Wire.beginTransmission(0x68);
69  	 Wire.write(0x1A);
70  	 Wire.write(0x05);
71  	 Wire.endTransmission();
72  	 Wire.beginTransmission(0x68);
73  	 Wire.write(0x1C);
74  	 Wire.write(0x10);
75  	 Wire.endTransmission();
76  	 Wire.beginTransmission(0x68);
77  	 Wire.write(0x3B);
78  	 Wire.endTransmission(); 
79  	 Wire.requestFrom(0x68,6);
80  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
81  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
82  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();
83  	 Wire.beginTransmission(0x68);
84  	 Wire.write(0x1B); 
85  	 Wire.write(0x8);
86  	 Wire.endTransmission();                                                   
87  	 Wire.beginTransmission(0x68);
88  	 Wire.write(0x43);
89  	 Wire.endTransmission();
90  	 Wire.requestFrom(0x68,6);
91  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
92  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
93  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
94  	 RateRoll=(float)GyroX/65.5;
95  	 RatePitch=(float)GyroY/65.5;
96  	 RateYaw=(float)GyroZ/65.5;
97  	 AccX=(float)AccXLSB/4096-0.050.05;
98  	 AccY=(float)AccYLSB/4096+0.01+0.01;

Define the gyro/ac-
celerometer function 
(project 14)

Do not forget to put 
your own accelerom-
eter calibration values 
here here (project 14)
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The Kalman filter - two dimensions 

 

99  	 AccZ=(float)AccZLSB/4096-0.11-0.11;
100  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);
101  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
102  }
103  void setup() {
104  	 Serial.begin(57600);
105  	 pinMode(13, OUTPUT);
106  	 digitalWrite(13, HIGH);
107  	 Wire.setClock(400000);
108  	 Wire.begin();
109  	 delay(250);
110  	 Wire.beginTransmission(0x68);	
111  	 Wire.write(0x6B);
112  	 Wire.write(0x00);
113  	 Wire.endTransmission();
114  	 Wire.beginTransmission(0x76);
115  	 Wire.write(0xF4);
116  	 Wire.write(0x57);
117         Wire.endTransmission();   
118  	 Wire.beginTransmission(0x76);
119  	 Wire.write(0xF5); 
120  	 Wire.write(0x14);
121  	 Wire.endTransmission();   
122  	 uint8_t data[24], i=0;
123  	 Wire.beginTransmission(0x76);

Setup the MPU-6050 
(project 4)

Setup the BMP-280 
(project 17)

In the final setup step, you need to initialize the matrices and vectors that you will 
use in the two dimensional Kalman filter. Matrices F, G, H, I, Q and R stay constant 
throughout all iterations and were already defined in the theory part at the beginning 
of  this project, with TS=0.004 s. For matrix P and vector S, you only need to set the 
initial value, when k is equal to zero. As seen in the theory, you can set all elements of  
these matrices to zero since you know the exact starting altitude and speed, namely 0 
cm and 0 cm/s respectively.
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124  	 Wire.write(0x88);
125  	 Wire.endTransmission();
126  	 Wire.requestFrom(0x76,24);      	
127  	 while(Wire.available()){
128  		  data[i] = Wire.read();
129  		  i++;
130  	 } 
131  	 dig_T1 = (data[1] << 8) | data[0]; 
132  	 dig_T2 = (data[3] << 8) | data[2];
133  	 dig_T3 = (data[5] << 8) | data[4];
134  	 dig_P1 = (data[7] << 8) | data[6]; 
135  	 dig_P2 = (data[9] << 8) | data[8];
136  	 dig_P3 = (data[11]<< 8) | data[10];
137  	 dig_P4 = (data[13]<< 8) | data[12];
138  	 dig_P5 = (data[15]<< 8) | data[14];
139  	 dig_P6 = (data[17]<< 8) | data[16];
140  	 dig_P7 = (data[19]<< 8) | data[18];
141  	 dig_P8 = (data[21]<< 8) | data[20];
142  	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);
143  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
144  		  barometer_signals();
145  		  AltitudeBarometerStartUp+=
146  		      AltitudeBarometer; delay(1); 
147  	 }
148  	 AltitudeBarometerStartUp/=2000;

149  	 F = {1, 0.004,
150  	           0, 1};	
151  	 G = {0.5*0.004*0.004,
152  	           0.004};
153  	 H = {1, 0};
154  	 I = {1, 0,
155  	          0, 1};
156  	 Q = G * ~G*10*10;
157  	 R = {30*30};
158  	 P = {0, 0,
159  	          0, 0};
160  	 S = {0,
161  	          0};

Calculate the altitude 
reference level (pro-
ject 17)

Define the Kalman 
matrix values
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The Kalman filter - two dimensions 

 

 Measure the acceleration in the inertial Z direction and the altitude for each iteration 
of  TS=0.004. Both measurements are subsequently used in the Kalman filter function 
to calculate the Kalman altitude and velocity. 

Print out the Kalman-filtered values for both the altitude and the velocity.

 

When you test the 2D Kalman filter, you will notice that the values for both the alti-
tude and the vertical velocity are sometimes significantly off. This is due to changes 
in the atmospheric pressure which is unfortunately inherent to the type of  meas-
urement. However, when implementing the filter in the flight control controller and 
testing the quadcopter, you will not really notice this when flying because you use a 
velocity control and not an altitude control. Even if  the measured velocity is slightly 
wrong, you will be able to hover the quadcopter by adjusting the throttle stick on 
your radiocontroller to match this velocity; this will happen intuitively when flying.

The evolution of  the Kalman gain in time is given in the figure to the right. The 
Kalman gain is zero initially, because you have set the initial uncertainty matrix P 
to zero. After a few seconds, the Kalman gain reaches its steady state at 0.0033 for 
the altitude calculations and 0.0013 for the vertical velocity. This means physically 
that the Kalman filter relies heavily on the accelerometer integration and less on 
the barometer measurements, so the latter is used mostly to ensure that the altitude 
obtained from accelerometer integration does not diverges too far.

Testing the two-dimensional Kalman filter
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162  	 LoopTimer=micros();
163  }

164  void loop() {
165  	 gyro_signals();
166  	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll* 
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;   
167  	 AccZInertial=(AccZInertial-1)*9.81*100;
168  	 barometer_signals();
169  	 AltitudeBarometer-=AltitudeBarometerStartUp;
170  	 kalman_2d();

171  	 Serial.print("Altitude [cm]: ");
172  	 Serial.print(AltitudeKalman);
173  	 Serial.print(" Vertical velocity [cm/s]: ");
174  	 Serial.println(VelocityVerticalKalman);

175  	 while (micros() - LoopTimer < 4000); 
176  		  LoopTimer=micros();                  
177  }

Calculate the Kalman 
altitude and velocity

Print the altitude and 
velocity

0

0.001

0.002

0.003

kalman gain

Time [s]
860 2 4

kalman gain velocity
(steady state ≈ 0.0013)

kalman gain altitude
(steady state ≈ 0.0033)
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Velocity
Controller

motor throttle 
command

motor power

quadcopter 
altitude

Barometer

measured 
altitude

desired
vertical velocity +

-

vertical velocity
error

gyroscope and 
Accelerometer

quadcopter 
vertical velocity

measured
vertical velocity

kalman filter

Kalman
vertical velocity

150 cm/s 

ReceiverValue[2] (=channel 3)1000 µs 1500 µs

desiredVelocityVertical

2000 µs

desiredVelocity = 0.3 (ReceiverValue - 1500)

0 cm/s 

150 cm/s 

The flight controller: velocity mode
        Project 20 
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The second flight controllers you programmed allowed you to stabilize your 
quadcopter based on its angles, which makes flying a lot easier. By addition-
ally controlling the vertical velocity, the effort of  flying will be reduced even 
more. 

The flight controller you will program during this project will allow you to control 
the vertical velocity of  your quadcopter, instead of  the throttle. You can compare this 
with your own car; with the accelerator pedal, you control the acceleration of  your 
car but not the speed. In order to stay at a constant speed, you almost continuously 
have to adjust the pedal in order to remain at a more or less equal speed. This was 
also true for your quadcopter when using the previous two flight controllers; you had 
to adjust the throttle stick almost continuously in order to hover. The velocity control 
that you will develop in this project is similar to the cruise control in your car; you set 
the speed once and the motor of  your car will adjust its power in order to keep going 
at the required speed.

The control loop you will implement for the vertical velocity is a similar loop as you 
used for the rate control in your first flight controller. There are only two noticeable 
differences: the output for this controller is the throttle input command, instead of  
the roll, pitch and yaw commands. Furthermore, the measurement of  the vertical ve-
locity goes through the two dimensional Kalman filter as constructed in the previous 
project. The velocity controller is once again a PID controller for which you can use 
the already programmed function in Arduino. Good P, I and D parameters for the 
velocity control are:

•	 PVelocity Vertical= 3.5
•	 IVelocity Vertical= 0.0015
•	 DVelocity Vertical=0.01

Finally, you also need to do decide how the vertical velocity input values correspond 
with the receiver commands. A too steep correlation will lead to very sensitive con-
trols, while a more horizontal correlation will lead to insensitive controls. A good 
balance for the controls is when the maximal and minimal receiver values correspond 
with a vertical velocity of  respectively ± 150 cm/s. 

You are now ready to program your third and final flight controller, so let’s start!

Ho ver your quadcopter with ease
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The flight controller: velocity mode 

Coding

1  #include <Wire.h>
2  float RateRoll, RatePitch, RateYaw;
3  float RateCalibrationRoll, RateCalibrationPitch, 
	 RateCalibrationYaw;
4  int RateCalibrationNumber;
5  #include <PulsePosition.h>
6  PulsePositionInput ReceiverInput(RISING);
7  float ReceiverValue[]={0, 0, 0, 0, 0, 0, 0, 0};
8  int ChannelNumber=0; 
9  float Voltage, Current, BatteryRemaining, BatteryAtStart;
10  float CurrentConsumed=0;
11  float BatteryDefault=1300;
12  uint32_t LoopTimer;
13  float DesiredRateRoll, DesiredRatePitch,
	 DesiredRateYaw;
14  float ErrorRateRoll, ErrorRatePitch, ErrorRateYaw;
15  float InputRoll, InputThrottle, InputPitch, InputYaw;
16  float PrevErrorRateRoll, PrevErrorRatePitch, 
	 PrevErrorRateYaw;
17  float PrevItermRateRoll, PrevItermRatePitch, 
	 PrevItermRateYaw;
18  float PIDReturn[]={0, 0, 0};
19  float PRateRoll=0.6; float PRatePitch=PRateRoll; 
	 float PRateYaw=2;
20  float IRateRoll=3.5; float IRatePitch=IRateRoll; 
	 float IRateYaw=12;
21  float DRateRoll=0.03; float DRatePitch=DRateRoll; 	
	 float DRateYaw=0;
22  float MotorInput1, MotorInput2, MotorInput3, 
	 MotorInput4;
23  float AccX, AccY, AccZ;
24  float AngleRoll, AnglePitch;

25  float KalmanAngleRoll=0, 
	 KalmanUncertaintyAngleRoll=2*2;
26  float KalmanAnglePitch=0, 
	 KalmanUncertaintyAnglePitch=2*2;
27  float Kalman1DOutput[]={0,0};

Initialize the same 
variables that you al-
ready needed for rate
mode (project 12)

Initialize the accel-
erometer variables 
(project 14)

Define the Kalman 
variables (project 15)
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28  float DesiredAngleRoll, DesiredAnglePitch;
29  float ErrorAngleRoll, ErrorAnglePitch;
30  float PrevErrorAngleRoll, PrevErrorAnglePitch;
31  float PrevItermAngleRoll, PrevItermAnglePitch;
32  float PAngleRoll=2; float PAnglePitch=PAngleRoll;
33  float IAngleRoll=0; float IAnglePitch=IAngleRoll;
34  float DAngleRoll=0; float DAnglePitch=DAngleRoll;
35  uint16_t dig_T1, dig_P1;
36  int16_t  dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5;
37  int16_t  dig_P6, dig_P7, dig_P8, dig_P9; 
38  float AltitudeBarometer, AltitudeBarometerStartUp;
39  float AccZInertial;
40  #include <BasicLinearAlgebra.h>
41  using namespace BLA;
42  float AltitudeKalman, VelocityVerticalKalman;
43  BLA::Matrix<2,2> F; BLA::Matrix<2,1> G;
44  BLA::Matrix<2,2> P; BLA::Matrix<2,2> Q;
45  BLA::Matrix<2,1> S; BLA::Matrix<1,2> H;
46  BLA::Matrix<2,2> I; BLA::Matrix<1,1> Acc;
47  BLA::Matrix<2,1> K; BLA::Matrix<1,1> R;
48  BLA::Matrix<1,1> L; BLA::Matrix<1,1> M;

49  float DesiredVelocityVertical, ErrorVelocityVertical;
50  float PVelocityVertical=3.5;
       float IVelocityVertical=0.0015; 
       float DVelocityVertical=0.01; 
51  float PrevErrorVelocityVertical, 
	 PrevItermVelocityVertical;

52  void kalman_2d(void){
53  	 Acc = {AccZInertial};
54  	 S=F*S+G*Acc;
55  	 P=F*P*~F+Q;
56  	 L=H*P*~H+R;
57  	 K=P*~H*Invert(L);
58  	 M = {AltitudeBarometer};
59  	 S=S+K*(M-H*S);
60  	 AltitudeKalman=S(0,0); 
61  	 VelocityVerticalKalman=S(1,0); 
62  	 P=(I-K*H)*P;
63  }

Define the values 
necessary for the out-
er loop PID control-
ler, including the P, 
I and D parameters 
(project 16)

Define the variables 
that you need for 
the two dimensional 
Kalman filter and ba-
rometer (project 19)

Define the values 
necessary for the ve-
locity PID controller, 
including the P, I and 
D parameters

Define the two di-
mensional Kalman 
filter (project 19)
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The flight controller: velocity mode 

64  void barometer_signals(void){
65  	 Wire.beginTransmission(0x76);
66  	 Wire.write(0xF7);
67  	 Wire.endTransmission();
68  	 Wire.requestFrom(0x76,6);
69  	 uint32_t press_msb = Wire.read();
70  	 uint32_t press_lsb = Wire.read();
71  	 uint32_t press_xlsb = Wire.read();
72  	 uint32_t temp_msb = Wire.read();
73  	 uint32_t temp_lsb = Wire.read();
74  	 uint32_t temp_xlsb = Wire.read();
75  	 unsigned long int adc_P = (press_msb << 12) | (
	     press_lsb << 4) | (press_xlsb >>4);
76  	 unsigned long int adc_T = (temp_msb << 12) | (
	     temp_lsb << 4) | (temp_xlsb >>4);
77  	 signed long int var1, var2;
78  	 var1 = ((((adc_T >> 3) - ((signed long int )dig_T1 
	     <<1)))* ((signed long int )dig_T2)) >> 11;
79  	 var2 = (((((adc_T >> 4) - ((signed long int )dig_T1
	     )) * ((adc_T>>4) - ((signed long int )dig_T1)))
  	     >> 12) * ((signed long int )dig_T3)) >> 14;
80  	 signed long int t_fine = var1 + var2;
81  	 unsigned long int p;
82  	 var1 = (((signed long int )t_fine)>>1) - (signed
  	     long int )64000;
83  	 var2 = (((var1>>2) * (var1>>2)) >> 11) * ((signed 
	     long int )dig_P6);
84  	 var2 = var2 + ((var1*((signed long int )dig_P5)) 
	     <<1);
85  	 var2 = (var2>>2)+(((signed long int )dig_P4)
	     <<16);
86  	 var1 = (((dig_P3 * (((var1>>2)*(var1>>2)) >> 13 
	     ))>>3)+((((signed long int )dig_P2) * 
	     var1)>>1))>>18;
87  	 var1 = ((((32768+var1))*((signed long int )dig_P1)) 
	     >>15);
88  	 if  (var1 == 0) { p=0;}    
89  	 p = (((unsigned long int )(((signed long int ) 
	     1048576)-adc_P)-(var2>>12)))*3125;
90  	 if(p<0x80000000){ p = (p << 1) / ((unsigned 
	     long int ) var1);}

Calculate the altitude 
in cm from the baro-
metric measurement
(project 17)



Ca rbon aeronautics

179

91  	 else { p = (p / (unsigned long int )var1) * 2;  }
92  	 var1 = (((signed long int )dig_P9) * ((signed long 
	     int ) (((p>>3) * (p>>3))>>13)))>>12;
93  	 var2 = (((signed long int )(p>>2)) * 
  	     ((signed long int )dig_P8))>>13;
94  	 p = (unsigned long int)((signed long int )p + 
	     ((var1 + var2+ dig_P7) >> 4));
95  	 double pressure=(double)p/100;
96  	 AltitudeBarometer=44330*(1-pow(pressure
	    /1013.25, 1/5.255))*100;
97  }
98  void kalman_1d(float KalmanState, 
          float KalmanUncertainty, float KalmanInput, 
          float KalmanMeasurement) {
99  	 KalmanState=KalmanState+0.004*KalmanInput;
100  	 KalmanUncertainty=KalmanUncertainty + 0.004 
	  * 0.004 * 4 * 4;
101       	 float KalmanGain=KalmanUncertainty * 1/ 
	 (1*KalmanUncertainty + 3 * 3);
102  	 KalmanState=KalmanState+KalmanGain * (
	 KalmanMeasurement-KalmanState);
103  	 KalmanUncertainty=(1-KalmanGain) * 
  	 KalmanUncertainty;
104  	 Kalman1DOutput[0]=KalmanState; 
	 Kalman1DOutput[1]=KalmanUncertainty;
105  }
106  void battery_voltage(void) {
107  	 Voltage=(float)analogRead(15)/62;
108  	 Current=(float)analogRead(21)*0.089;
109  }
110  void read_receiver(void){
111  	 ChannelNumber = ReceiverInput.available();	
112  	 if  (ChannelNumber > 0) {
113  	        for (int i=1; i<=ChannelNumber;i++){
114  		  ReceiverValue[i-1]=ReceiverInput.read(i);
115  	        }
116  	 }
117  }
118  void gyro_signals(void) {
119  	 Wire.beginTransmission(0x68);
120  	 Wire.write(0x1A);

Define the 1D Kal-
man filter function 
(project 15)

Battery voltage func-
tion (project 9)

Receiver function 
(project 7)

Gyro and accelerom-
eter function (project 
14)
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The flight controller: velocity mode 

121  	 Wire.write(0x05);
122  	 Wire.endTransmission();
123  	 Wire.beginTransmission(0x68);
124  	 Wire.write(0x1C);
125  	 Wire.write(0x10);
126  	 Wire.endTransmission();
127  	 Wire.beginTransmission(0x68);
128  	 Wire.write(0x3B);
129  	 Wire.endTransmission(); 
130  	 Wire.requestFrom(0x68,6);
131  	 int16_t AccXLSB = Wire.read() << 8 | 
	     Wire.read();
132  	 int16_t AccYLSB = Wire.read() << 8 |
	     Wire.read();
133  	  int16_t AccZLSB = Wire.read() << 8 | 
	     Wire.read();
134  	 Wire.beginTransmission(0x68);
135  	 Wire.write(0x1B); 
136  	 Wire.write(0x8);
137  	 Wire.endTransmission();                                                   
138  	 Wire.beginTransmission(0x68);
139  	 Wire.write(0x43);
140  	 Wire.endTransmission();
141  	 Wire.requestFrom(0x68,6);
142  	 int16_t GyroX=Wire.read()<<8 | Wire.read();
143  	 int16_t GyroY=Wire.read()<<8 | Wire.read();
144  	 int16_t GyroZ=Wire.read()<<8 | Wire.read();
145  	 RateRoll=(float)GyroX/65.5;
146  	 RatePitch=(float)GyroY/65.5;
147  	 RateYaw=(float)GyroZ/65.5;

148  	 AccX=(float)AccXLSB/4096-0.050.05;
149  	 AccY=(float)AccYLSB/4096+0.01+0.01;
150  	 AccZ=(float)AccZLSB/4096-0.11-0.11;

151  	 AngleRoll=atan(AccY/sqrt(AccX*AccX+AccZ*   
	    AccZ))*1/(3.142/180);
152  	 AnglePitch=-atan(AccX/sqrt(AccY*AccY+AccZ*
	    AccZ))*1/(3.142/180);
153  }

Do not forget to put 
your own accelerom-
eter calibration values 
here here (project 14)



Ca rbon aeronautics

181

  

154  void pid_equation(float Error, float P , float I, float D,  	
           float PrevError, float PrevIterm) {
155  	 float Pterm=P*Error;
156  	 float Iterm=PrevIterm+I*(Error+
		  PrevError)*0.004/2;
157  	 if  (Iterm > 400) Iterm=400;
158  	 else if  (Iterm <-400) Iterm=-400;
159  	 float Dterm=D*(Error-PrevError)/0.004;
160  	 float PIDOutput= Pterm+Iterm+Dterm;
161  	 if  (PIDOutput>400) PIDOutput=400;
162  	 else if  (PIDOutput <-400) PIDOutput=-400;
163  	 PIDReturn[0]=PIDOutput;
164  	 PIDReturn[1]=Error;
165  	 PIDReturn[2]=Iterm;
166  }
167  void reset_pid(void) {
168  	 PrevErrorRateRoll=0; PrevErrorRatePitch=0; 
	 PrevErrorRateYaw=0;
169  	 PrevItermRateRoll=0; PrevItermRatePitch=0; 	
	 PrevItermRateYaw=0;
170  	 PrevErrorAngleRoll=0; PrevErrorAnglePitch=0;    
171  	 PrevItermAngleRoll=0; PrevItermAnglePitch=0;

172  	 PrevErrorVelocityVertical=0; 
	        PrevItermVelocityVertical=0;
173  }

174  void setup() {
175  	 pinMode(5, OUTPUT);
176  	 digitalWrite(5, HIGH);
177  	 pinMode(13, OUTPUT);
178  	 digitalWrite(13, HIGH);
179  	 Wire.setClock(400000);
180  	 Wire.begin();
181  	 delay(250);
182  	 Wire.beginTransmission(0x68);	
183  	 Wire.write(0x6B);
184  	 Wire.write(0x00); 	
185  	 Wire.endTransmission();

PID function (pro-
ject 12)

PID reset function 
(project 12)

Reset the PID error 
and integral values 
for the vertical veloc-
ity controller loop as 
well

Visualize the setup 
phase using the red 
LED

Setup the MPU-6050 
(project 4)
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The flight controller: velocity mode 

186  	 Wire.beginTransmission(0x76);	
187  	 Wire.write(0xF4);
188  	 Wire.write(0x57);
189         Wire.endTransmission();   
190  	 Wire.beginTransmission(0x76);
191  	 Wire.write(0xF5); 
192  	 Wire.write(0x14);
193  	 Wire.endTransmission();   
194  	 uint8_t data[24], i=0;
195  	 Wire.beginTransmission(0x76);
196  	 Wire.write(0x88);
197  	 Wire.endTransmission();
198  	 Wire.requestFrom(0x76,24);      
199  	 while(Wire.available()){
200  		  data[i] = Wire.read();
201  		  i++;
202  	 } 
203  	 dig_T1 = (data[1] << 8) | data[0]; 
204  	 dig_T2 = (data[3] << 8) | data[2];
205  	 dig_T3 = (data[5] << 8) | data[4];
206  	 dig_P1 = (data[7] << 8) | data[6]; 
207  	 dig_P2 = (data[9] << 8) | data[8];
208  	 dig_P3 = (data[11]<< 8) | data[10];
209  	 dig_P4 = (data[13]<< 8) | data[12];
210  	 dig_P5 = (data[15]<< 8) | data[14];
211  	 dig_P6 = (data[17]<< 8) | data[16];
212  	 dig_P7 = (data[19]<< 8) | data[18];
213  	 dig_P8 = (data[21]<< 8) | data[20];
214  	 dig_P9 = (data[23]<< 8) | data[22]; delay(250);
215  	 for (RateCalibrationNumber=0; 
	       RateCalibrationNumber<2000;
	       RateCalibrationNumber ++) {
216  	       	 gyro_signals();
217  		  RateCalibrationRoll+=RateRoll;
218  		  RateCalibrationPitch+=RatePitch;
219  		  RateCalibrationYaw+=RateYaw;
220  		  barometer_signals();
221  		  AltitudeBarometerStartUp+=
222  		      AltitudeBarometer; delay(1);
223  	 }
224  	 RateCalibrationRoll/=2000;

Setup the BMP-280 
(project 17)

Calculate the altitude 
reference level (pro-
ject 17)
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225  	 RateCalibrationPitch/=2000;
226  	 RateCalibrationYaw/=2000;
227  	 AltitudeBarometerStartUp/=2000;
228  	 F = {1, 0.004,
229  	           0, 1};	
230  	 G = {0.5*0.004*0.004,
231  	           0.004};
232  	 H = {1, 0};
233  	 I = {1, 0,
234  	          0, 1};
235  	 Q = G * ~G*10*10;
236  	 R = {30*30};
237  	 P = {0, 0,
238  	          0, 0};
239  	 S = {0,
240  	          0};
241  	 analogWriteFrequency(1, 250);
242  	 analogWriteFrequency(2, 250);
243  	 analogWriteFrequency(3, 250);
244  	 analogWriteFrequency(4, 250);
245  	 analogWriteResolution(12);

246  	 pinMode(6, OUTPUT);
247  	 digitalWrite(6, HIGH);
248  	 battery_voltage();
249  	 if  (Voltage > 8.3) { digitalWrite(5, LOW);
250  		  BatteryAtStart=BatteryDefault; }
251  	 else if  (Voltage < 7.5) {
252  		  BatteryAtStart=30/100*BatteryDefault ;}
253  	 else { digitalWrite(5, LOW);
254  		  BatteryAtStart=(82*Voltage-580)/100*
			   BatteryDefault; }

255  	 ReceiverInput.begin(14);
256  	 while (ReceiverValue[2] < 1020 || 
	        ReceiverValue[2] > 1050) {
257  		  read_receiver();
258  		  delay(4);
259  	 }
260  	 LoopTimer=micros();
261  }

Setup the matrices 
for the two-dimen-
sional Kalman filter 
(project 19)

Set the PWM fre-
quency to 250 Hz 
and the resolution to 
12 bit for all motors 
(project 8)

Show the end of  the 
setup process and 
determine the initial 
battery voltage per-
centage (project 9)

SAFETY RELAT-
ED LINES: Avoid 
accidental lift off  af-
ter the setup process 
(project 12)
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The flight controller: velocity mode 

  

262  void loop() {
263  	 gyro_signals();
264  	 RateRoll-=RateCalibrationRoll;
265  	 RatePitch-=RateCalibrationPitch;
266  	 RateYaw-=RateCalibrationYaw;

267  	 kalman_1d(KalmanAngleRoll, 
         KalmanUncertaintyAngleRoll, RateRoll, AngleRoll);
268  	 KalmanAngleRoll=Kalman1DOutput[0]; 
         KalmanUncertaintyAngleRoll=Kalman1DOutput[1];
269  	 kalman_1d(KalmanAnglePitch, 
         KalmanUncertaintyAnglePitch, RatePitch, AnglePitch);
270  	 KalmanAnglePitch=Kalman1DOutput[0]; 
         KalmanUncertaintyAnglePitch=Kalman1DOutput[1];

271  	 AccZInertial=-sin(AnglePitch*(3.142/180))*AccX
	 +cos(AnglePitch*(3.142/180))*sin(AngleRoll* 
	 (3.142/180))* AccY+cos(AnglePitch*(3.142/180))*
	 cos(AngleRoll*(3.142/180))*AccZ;   
272  	 AccZInertial=(AccZInertial-1)*9.81*100;
273  	 barometer_signals();
274  	 AltitudeBarometer-=AltitudeBarometerStartUp;
275  	 kalman_2d();

276  	 read_receiver();

277  	 DesiredAngleRoll=0.10*(ReceiverValue[0]-1500);
278  	 DesiredAnglePitch=0.10*(ReceiverValue[1]-1500);
279  	 DesiredRateYaw=0.15*(ReceiverValue[3]-1500);

280  	 DesiredVelocityVertical=0.3*(ReceiverValue[2]-
	     1500);
281  	 ErrorVelocityVertical=DesiredVelocityVertical-
	     VelocityVerticalKalman;
282  	 pid_equation(ErrorVelocityVertical,  
	      PVelocityVertical, IVelocityVertical, 
	      DVelocityVertical, PrevErrorVelocityVertical, 
	      PrevItermVelocityVertical);

Measure the rotation 
rates and subtract 
the calibration values 
(project 5)

Calculate the roll and 
pitch angles through 
the Kalman filter 
(project 15)

Calculate the vertical 
acceleration and the 
altitude (project 18)

Calculate the desired 
angles from the re-
ceiver (project 16)

Calculate the desired 
velocity from the re-
ceiver and start the 
PID loop for the 
throttle
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  283  	 InputThrottle=1500+PIDReturn[0]; 
	     PrevErrorVelocityVertical=PIDReturn[1]; 
	     PrevItermVelocityVertical=PIDReturn[2];

284  	 ErrorAngleRoll=DesiredAngleRoll-
	    KalmanAngleRoll;
285  	 ErrorAnglePitch=DesiredAnglePitch-
	    KalmanAnglePitch;

286  	 pid_equation(ErrorAngleRoll, PAngleRoll, 
	    IAngleRoll, DAngleRoll, PrevErrorAngleRoll,
	    PrevItermAngleRoll); 		
287  	 DesiredRateRoll=PIDReturn[0]; 
	 PrevErrorAngleRoll=PIDReturn[1];
	 PrevItermAngleRoll=PIDReturn[2];
288  	 pid_equation(ErrorAnglePitch, PAnglePitch, 
 	     IAnglePitch, DAnglePitch, PrevErrorAnglePitch,
  	     PrevItermAnglePitch);
289  	 DesiredRatePitch=PIDReturn[0]; 
	 PrevErrorAnglePitch=PIDReturn[1];
	 PrevItermAnglePitch=PIDReturn[2];

290  	 ErrorRateRoll=DesiredRateRoll-RateRoll;
291  	 ErrorRatePitch=DesiredRatePitch-RatePitch;
292  	 ErrorRateYaw=DesiredRateYaw-RateYaw;

293  	 pid_equation(ErrorRateRoll, PRateRoll, IRateRoll, 
	      DRateRoll, PrevErrorRateRoll,
	      PrevItermRateRoll);
294              InputRoll=PIDReturn[0];
	      PrevErrorRateRoll=PIDReturn[1]; 
	      PrevItermRateRoll=PIDReturn[2];

Because the zero ve-
locity point and thus 
the hover point will 
be around the point 
where the throttle 
stick is in the middle 
(1500 µs), add this 
value to the PID out-
put

Calculate the differ-
ence between the de-
sired and the actual 
roll and pitch angles 
(project 16)

Calculate the desired 
roll and pitch rota-
tion rates through the 
outer loop PID con-
troller (project 16)

Calculate the differ-
ence between the de-
sired and the actual 
pitch, roll and yaw 
rotation rates. Use 
these for the PID 
contoller of  the inner 
loop (project 12)
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The flight controller: velocity mode 

295  	 pid_equation(ErrorRatePitch, PRatePitch,
	      IRatePitch, DRatePitch, PrevErrorRatePitch,
 	      PrevItermRatePitch);
296              InputPitch=PIDReturn[0]; 
	      PrevErrorRatePitch=PIDReturn[1]; 
	      PrevItermRatePitch=PIDReturn[2];
297  	 pid_equation(ErrorRateYaw, PRateYaw,
	      IRateYaw, DRateYaw, PrevErrorRateYaw,
 	      PrevItermRateYaw);
298              InputYaw=PIDReturn[0]; 
	      PrevErrorRateYaw=PIDReturn[1]; 
	      PrevItermRateYaw=PIDReturn[2];

299  	 if  (InputThrottle > 1800) InputThrottle = 1800;

300  	 MotorInput1= 1.024*(InputThrottle-InputPitch-
	    InputRoll-InputYaw);
301  	 MotorInput2= 1.024*(InputThrottle+InputPitch-
	    InputRoll+InputYaw);
302  	 MotorInput3= 1.024*(InputThrottle+InputPitch+
	    InputRoll-InputYaw);
303  	 MotorInput4= 1.024*(InputThrottle-InputPitch+
	    InputRoll+InputYaw);

304  	 if  (MotorInput1 > 2000)MotorInput1 = 1999;
305  	 if  (MotorInput2 > 2000)MotorInput2 = 1999; 
306  	 if  (MotorInput3 > 2000)MotorInput3 = 1999; 
307  	 if  (MotorInput4 > 2000)MotorInput4 = 1999;

308  	 int ThrottleIdle=1180;
309  	 if  (MotorInput1 < ThrottleIdle) MotorInput1 =   
	    ThrottleIdle;
310  	 if  (MotorInput2 < ThrottleIdle) MotorInput2 = 
	    ThrottleIdle;
311  	 if  (MotorInput3 < ThrottleIdle) MotorInput3 = 
	    ThrottleIdle;
312  	 if  (MotorInput4 < ThrottleIdle) MotorInput4 = 
	    ThrottleIdle;

Limit the throttle val-
ue to 80% (project 
12)

Use the quadcopter 
dynamics equations 
(project 11)

Limit the maximal 
power commands 
sent to the motors 
(project 12)

Keep the quadcop-
ter minimally at 18% 
power during flight
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  313  	 int ThrottleCutOff=1000;
314  	 if  (ReceiverValue[2]<1050) {
315  		  MotorInput1=ThrottleCutOff; 
316  		  MotorInput2=ThrottleCutOff;
317  		  MotorInput3=ThrottleCutOff; 
318  		  MotorInput4=ThrottleCutOff;
319  		  reset_pid();
320  	 }
321  	 analogWrite(1,MotorInput1);
322  	 analogWrite(2,MotorInput2);
323  	 analogWrite(3,MotorInput3); 
324  	 analogWrite(4,MotorInput4);

325  	 battery_voltage();
326  	 CurrentConsumed=Current*1000*0.004/3600+
			   CurrentConsumed;
327  	 BatteryRemaining=(BatteryAtStart-
		  CurrentConsumed)/BatteryDefault*100;
328  	 if  (BatteryRemaining<=30) digitalWrite(5, HIGH);
329  	 else digitalWrite(5, LOW);

330  	 while (micros() - LoopTimer < 4000);
331  	 LoopTimer=micros();
332  }

SAFETY RELAT-
ED LINES: stop the 
motors when throttle 
stick is fully down

Sent the commands 
to the motors

Keep track of  battery 
level (project 9)

Finish the 250 Hz 
control loop

To start and fly your quadcopter with the new vertical velocity-mode flight con-
troller, follow the same steps as with your rate-mode controller and your stabi-
lize-mode controller. Remember that this controller is meant for flying indoors. 
You should notice that flying the quadcopter with your new flight controller is 
even easier as the controller facilitates the hovering. Congratulations, you have 
successfully reached the end of  the practical part of  this manual!

Start-up and flying your quadcopter



Part IV: quadcopter 
design and simulation



in this final part, you will learn how to de-
sign and simulate your quadcopter in order 
to fully understand its control.

first, you will characterize the main com-
ponents; the power train, sensors and the 
controller coded in your Teensy. This ena-
bles you to describe your quadcopter math-
ematically and optimize the PID values you 
use in the controller.

at the end of  this part, you will be fully 
equipped to design, build and operate a to-
tally new quadcopter yourself.
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Motor and sensor simulation

motor power 
command quadcopter 

dynamics

quadcopter 
rotation rate

PId
controller

+
-

rotation rate
error

desired 
rotation rate motor

dynamics

motor thrust 
and torque

sensor
dynamics

measured 
rotation rate

        Project 21 

Your two bladed propeller generates a less thrust than the three bladed 3035 propel-
ler, although it is driven by a motor that turns less fast (4500 kV instead of  5000 kV). 
The reason is simple; the three bladed propeller ‘catches’ more air under its surface, 
generating more thrust but also requiring the motor to overcome more air resistance; 
this means that the current consumption increases as well. 

The thrust and current relation with the motor power evolves almost linearly; this 
means that you can simply perform linear regression in order to estimate the throt-
tle-thrust and throttle-current relationship. For the GEPRC 1105 5000 kV motor and 
3018 propeller combination, these relationships are:

Where the throttle is a value between 0 (0%) and 1 (100%). The measurements from 
which these linear regressions are constructed were performed at a constant battery 
voltage of  7.8 V. 

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
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s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)
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Understanding how to characterize the motors and sensors you use to fly is 
critical for the design and simulation of  your quadcopter. The static and dy-
namic aspects of  both components will be investigated thoroughly during this 
theoretical project.

When starting to think about the design and simulation of  your quadcopter, it is 
useful to take a step back and look to the basic loop of  the rate-mode controller, visu-
alized in the figure to the left. You start with a desired rotation rate, given by the posi-
tion of  the sticks of  your radiocontroller. The desired rotation rate is fed to your PID 
controller and gives a motor power command. The power command is subsequently 
converted to a certain amount of  thrust generated by each individual motor, which 
in turn will affect the movement (e.g. rotation rate) of  your quadcopter. The rotation 
rate is then measured with your sensor, compared to the desired rotation rate and fed 
back into your PID controller to start the second loop. In this project, you will char-
acterize two important components of  this control loop: the motors and the sensors. 

Le arn to characterize your motors and sensors

When modelling your brushless motors, you are primarily interested in the relation 
between the throttle and the thrust provided by your motor-propeller combination, 
as well as the current consumption. A general rule in quadcopter design says 
that the maximal thrust generated by your four motors should be equal to two 
times the quadcopter weight, to ensure enough flexibility during flight. This 
means that one motor should generate about half  the thrust necessary to hover the 
quadcopter. Your quadcopter weights around 250 gram (g), which means that the 
maximal thrust of  one motor should be equal to at least 125 g. 

The relation between the thrust and throttle can be measured with a thrust bench; you 
can create this device yourself  by mounting your motor on a load cell connected to a 
microchip (for example the HX711), amplifying the load cell signals and connecting 
this in turn to your Teensy. When you have a lab power supply, you can also measure 
the current that goes to the motors during testing. The datasheet of  the motor man-
ufacturer usually gives the maximal thrust and current for a given type of  propeller. 
The thrust and current data for the motors used in this project are visualised on the 
next pages: the relation between the motor thrust and current is displayed each time 
with respect to the throttle level. To highlight the importance of  the propeller used, 
your two bladed propeller (Gemfan 3018) is compared to a three bladed propeller 
(Gemfan 3035).

Static motor modelling
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Motor and sensor simulation 

This is important because a higher/lower voltage will off  course generate a higher/
lower thrust and current. For a quadcopter that weighs about 250 g, the motors need 
to provide a thrust equal to 4 x 62.5 g when hovering. Using the formula from the 
previous page, this corresponds to a power level for one motor of  62.5 / 160 = 0.4 
or 40%. The current consumption in this case will be equal to 4.4 . 0.4 + 0.132 = 1.9 
Ampere (A) for each motor, or 7.4 A for all motors together. This means that a 1300 
mAh (=1.3 Ah) battery will be able to keep your quadcopter 1.3 Ah / 7.8 A = 0.17 
h or 10 minutes in the air. In reality this value will be lower, as you do not only hover 
but also move the quadcopter around and accelerate, consuming more energy than 
during static hovering. The above calculation gives you nonetheless a good upper 
limit of  the flight time. 

By dividing the thrust with the consumed current, the motor efficiency (in g/A) can 
also be determined as displayed on the figure to the right. Two bladed propellers will 
be slightly more efficient than three bladed propellers and the larger the propeller, the 
more efficient as well.

Dynamic motor modelling

Besides the generated thrust and the consumed current of  your motor, another im-
portant parameter is necessary for modelling; how fast does your motor accelerate 
when increasing the motor power? This is important because your PID controller 
generates a new command every 0.004 seconds, but your motor generally needs more 
time to accelerate/decelerate up to this desired value. The easiest way to measure this 
(usually very short) time delay is by recording the sound; both your motor and your 
propeller generate noise which changes in amplitude and frequency when their speed 
increases or decreases. You can configure your Teensy in such a way that it gives a 
step increase for one of  the motor power commands and record the sound with your 
cellphone during this step increase. The evolution of  the sound wave amplitude is 
visualised in the figure below:

0

0.4

-0.4

sound wave amplitude

motor power command
1150 µs (11.5%)

motor power command
1500 µs (50%)

Time [s]0.30.20 0.1
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10 g/A

20 g/A

30 g/A

40 g/A

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

Throttle1200 µs 1800160014001000 µs 2000
100%80%60%40%20%0%

motor efficiency

200 g

150 g

62.5 g
50 g

Thrust

Current

6 A

4 A

2 A

two bladed 3018 propeller 
gEPRC 1105 motor (5000 kV)

three bladed 3035 propeller
gEPRC 1206 motor (4500 kV) 

100 g
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At 0.11 seconds, the motor power command changes from 1150 µs or 11.5% to 
1500 µs or 50%. Immediately the amplitude of  the sound coming from the motor/
propeller increases. It takes around 0.1 to 0.2 seconds before the amplitude reaches a 
new steady state. To characterize the time delay more accurately, you will not look at 
the amplitude change, but at the frequency change of  the sound during acceleration. 

Let’s now take a fast Fourier transform to transform the sound signal from the time 
domain to the frequency domain. By doing this, you will lose the information on the 
time, so let’s do it first for the part at which the motor power turns stationary at 1150 
µs or 11.5% throttle. You know that your motor has a 5000 kV rating. Since kV is the 
equivalent for rpm/V and the test was done with a constant battery voltage of  7.8 V, 
your motor frequency at full throttle (100 %) will be equal to:

Since your propeller has two blades, the frequency of  the sound emitted by the pro-
pellers will be equal to 2 x 650 Hz = 1300 Hz at full throttle and without losses. When 
not at full throttle, the ESC will lower the average voltage in order for the motor 
to spin slower. At 11.5% motor power, the fast Fourier transform of  the emitted 
sound gives the frequency spectrum displayed on the figure below. The first peak in 
the spectrum is due to the sound emitted by the motor; it is situated at 280 Hz for 
this low motor power, meaning that the motor turns at 280 Hz x 60 s/min = 16 800 
rpm. The second and largest peak is exactly equal to 2 x 280 Hz or 560 Hz: this is the 
two-bladed propeller frequency. Further in the spectrum, some small additional peaks 
are recorded at equal intervals; these are the propeller excitation frequencies.

A second fast Fourier transform is used to visualize the frequency after the motor 
power increase, at 1500 µs or 50% power. The first peak coming from the sound of  
the motor is now situated at 400 Hz, meaning that the motor turns at 400 Hz x 60 s/
min = 24 000 rpm. The propeller frequency is now equal to 2 x 400 Hz or 800 Hz.

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ ) · input(time)
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frequency [Hz]500 2000150010000

sound wave magnitude
(motor power: 1150 µs)

propeller frequency 
(560 Hz)

motor frequency 
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propeller excitation frequencies
(n x 560 Hz with n=2,3,...)

2500
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In the higher frequency ranges, you find once again the propeller excitation frequen-
cies.

This means that purely by recording the sound emitted by the motor, our fast Fourier 
transform reveals that the motor frequency increases from 280 Hz at 11.5% throttle 
to 400 Hz at 50% throttle. However, with this transformation all information with 
regard to time is lost. This can be solved with the so-called spectrogram; with a spec-
trogram, the frequencies are displayed for each chosen time interval allowing you to 
follow the change in frequency over time. The spectrogram for the acceleration of  
our motor (so frequency range up to 500 Hz) is given in the picture below. You can 
nicely follow the frequency increase from 280 Hz at a motor power of  11.5% to 400 
Hz at a motor power of  50%. The time it takes for the motor to accelerate up to 400 
Hz is equal to 0.09 seconds. This key piece of  information will enable you to model 
the transfer function for the motor.

frequency [Hz]500 2000150010000

sound wave magnitude
(motor power: 1500 µs)

propeller frequency 
(800 Hz)

motor frequency 
(400 Hz)

propeller excitation frequencies
(n x 800 Hz with n=2,3,...)

2500

100 Hz

200 Hz

300 Hz

400 Hz

0.1 0.2 0.3 0.4

280 Hz

frequency

0
0

Time [s]

step time ≈ 0.09 s
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You will now describe the time response of  the motor compared to the command 
you have given to the motor mathematically. This is done using a transfer function. 
When looking at the behaviour of  the motor visualized on the spectrogram, it resem-
bles a first order response to a step input. Consider a general example in which a step 
input command of  1 is given at time = 0 seconds to your motor. Mathematically, this 
can be described as:

input(time)= 0 if  time < 0
input(time)= 1 if  time > 0

Describe now the first order response of  a motor using one time-related parameter τ:

As visualised on the figures to the right with different step-response lengths, τ is de-
fined as the time at which the motor output reaches 95% of  the desired value divided 
by 3. For our motor, this gives a time parameter τ of  τ=0.09 seconds/3=0.03 seconds. 
For further calculations, your transfer function needs to be written in the frequency 
domain, not the time domain. This means that you need the Laplace transform of  the 
above equation. The Laplace transform of  1 is easy and equal to 1/s. In this notation, 
s is not the unit of  time, but a complex number with the form s= σ+i.ω. You also 
know that the Laplace transform of  e-a t is equal to 1/(s+a) by convention, so trans-
forming the above equation to the Laplace domain gives you:

And input(s)/s represents the unit step input considered in this example. In reality, 
you can have any input that you want, giving the final transfer function for a first 
order response:

With τ being equal to 0.03 seconds for your motor. This transfer function is a good 
approximation for the dynamics of  your motor. 

Transfer function for the motor response
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The state of  your quadcopter (absolute angle and angular rates) is measured by a 
separate measurement system; the MPU-6050 sensor. This measurement system also 
has a dynamic response, as it does not respond instantaneously to the demands of  
your Teensy to provide some data on the quadcopter state. However, the sampling 
time of  your MPU-6050 is equal to 1 kHz or 1000 Hz, which is much faster than the 
speed of  your control loop (250 Hz). In addition, you also configured a 10 Hz low 
pass filter for both the accelerometer and the gyroscope in your code. With this filter, 
you are able to filter out unwanted high-frequency motor vibrations. Hence to model 
the time response of  your MPU-6050 accurately, you only need to model its low-pass 
filter as its has the lowest frequency. The transfer function of  any low-pass filter in 
the frequency domain is equal to:

where ωc =2.π.fc with fc being the cutoff  frequency of  the filter, 10 Hz in this case. 
This means that the frequency domain transfer function for your sensor becomes:

Now what does this practically mean in the time domain? Well, the transfer function 
can be transformed to 1/(1/(2.π.10)s+1), which gives a first order step response τ of  
1/ 2.π.10 or 0.016 seconds. With this response, the same reasoning holds as with the 
motor response; any inputs that occur faster than 3.τ = 3. 0.016 seconds will be signif-
icantly attenuated. An input of  0.016 seconds (=τ) for example, is attenuated to 63% 
of  its value as 1-e-0.016/0.016=0,63. A fast vibration with a response of  0.001 seconds 
gets almost fully attenuated: 1-e-0.001/0.016 = 0.06 or 6%. This is why configuring a 10 
Hz low-pass filter in your MPU-6050 sensor was sufficient to filter out the high-fre-
quency vibrations coming from your motors. 

Dynamic sensor modelling

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)

thrust [g] = 160 · throttle [0 : 1]

current [A] = 4.4 · throttle [0 : 1] + 0.132

5000 rpm
V · 7.8 V = 39 000 rpm or 39 000 rounds/min

60 s/min = 650 Hz

output(time) = (1 − e− t
τ ) · input(time)

output(s) =
(

1
s

−
(

1
s + 1

τ

))
· input(s)

output(s) =
s + 1

τ
− s

s ·
(
s + 1

τ

) · input(s)

output(s) = 1
τ · s + 1 · input(s)

s

output(s) = 1
τ · s + 1 · input(s)

output(s) = ωc

s + ωc

· input(s)

output(s) = 2 · π · 10
s + 2 · π · 10 · input(s)
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Quadcopter dynamics simulation
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A mathematical discussion on quadcopter dynamics is essentially an analysis 
of  its roll, pitch, yaw and throttle reactions. As you already saw when pro-
gramming your the flight controller, these movements can all be calculated 
separately; this means that all four movements can be described independent 
of  each other. While it is not fully true that these movements are independent 
from each other, it will prove to be a very good approximation.

The previous project ended with the mathematical description of  the motors and 
sensor dynamics using transfer functions. In this project, you will try to find the trans-
fer function for the roll, pitch and yaw rotation rates, and also for the vertical velocity.  
These four transfer functions will form the "quadcopter dynamics". All movements 
of  the quadcopter are essentially generated by the thrust and torque developed by 
your motors, in combination with the gravitation force that acts on it during flight. 
You will describe the roll motion of  the quadcopter to derive the roll dynamics and 
proceed subsequently with the other movements.

De scribe how the quadcopter moves in space

Roll and pitch motion

Let’s first try to describe the roll motion of  the quadcopter in mathematical terms. 
To rotate the quadcopter in the roll direction, you need to apply a torque around the 
stationary x-axis: Torquex. The resulting angular acceleration Accelerationroll in the roll 
direction depends on this applied torque, but also on the distribution of  mass of  the 
object. This mass distribution is described by the moment of  inertia Ix, which results 
in the following relation:

Where N is the unit Newton (equivalent to kg.m²/s²) and rad the angle unit radians. 
In order to convert the angular acceleration from radians/s² to °/s², the formula 
needs to be multiplied with 180/π (°/rad):

Torque around the x axis

The torque around the x axis depends on the combination of  the thrust from all four 
motors and the distance of  each motor to the x axis:

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll
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You already determined the thrust of  one motor (in gram g):

This can be transformed to N (or kg.m²/s²) by multiplying the result with 9.81 m/
s² (the gravitational constant) divided by 1000 g/kg. Moreover, you do not input a 
motor power between 0 and 1 but rather a value between 0 µs and 1000 µs through 
the parameter inputroll (although in the PID loop it is restricted to a maximal value of  
400 µs). The formula transforms to:

The value of  inputroll is equal for all four motors, but has a positive sign for motors 
3 and 4 and a negative sign for motors 1 and 2. This means that the torque formula 
can be rewritten as:

Moment of  inertia around the x axis

The moment of  inertia Ix in turn describes the weight distribution of  the quadcopter 
and the distance of  all components to the stationary x axis. Using the two-dimen-
sional approximation of  the quadcopter, the moment of  inertia can be calculated as:

Where massi is the mass of  component i, and distancemass,i the distance between com-
ponent i and the x-axis. Most weight of  the quadcopter is situated very close to the 
x-axis: the battery and all the on-board electronics are stacked along the x-axis. Be-
cause this gives a very small distance, their contribution to Ix is negligible. The weight 
of  the frame is very small meaning that this contribution is also negligible. Therefore, 
the only components with a non-negligible weight and sufficiently far from the x-axis 
are the four motors and the ESCs. The formula reduces to:

Knowing that the mass of  each motor (including propeller and bolts) is 8 g with a 
distance of  8 cm to the x axis, and the ESC weighs 7 g with a distance of  4 cm to the 
x axis, you now have everything to calculate the angular roll acceleration.

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll
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distanceECS,x= 4 cm

distancemotor,x= 8 cm

massmotor= 8 g

massECS= 7 g

motor 1

motor 2

motor 4

motor 3

Roll and pitch dynamics

Introducing the formulas for the torque and the moment of  inertia in the angular roll 
acceleration formula gives:

Which results in a very simple formula for the angular acceleration in the time do-
main:

The angular roll acceleration can be replaced by the derivative of  the roll rate, giving:

For the simulation of  the PID controller, you want to have your equations in the 
frequency domain rather than the time domain. You can transform the time domain 
to the frequency domain by performing a Laplace transform to both sides of  the 
equation:

In this notation, s is not the unit of  time, but a complex number with the form s= 
σ+i.ω. This gives you finally the relation between the quadcopter roll rate and the 
input command given by the PID controller, which is called your quadcopter transfer 
function:

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

Accelerationroll [rad/s] = Torque [N · m]
Ix [kg · m2]

Accelerationroll [◦/s2] = Torquex [N · m]
Ix [kg · m2] · 180

π

Torquex[N ·m] = Thrustmotor 3+4[N ]·distancemotor,x[m]−Thrustmotor 1+2[N ]·distancemotor,x[m]

thrust [g] = 160 · throttle [0 : 1]

thrust [N ] = 160 ·
(

inputroll[0 : 1000]
1000

)
[g] · 9.81 [m/s2]

1000 [g/kg]

thrust [N ] = 0.160 · (inputroll[0 : 1000]) [g] · 9.81 [m/s2]
1000 [g/kg]

Torquex[N ·m] = 4·(0.160·inputroll[0 : 1000]) [g]·9.81 [m/s2]
1000 [g/kg] ·distancemotor,x[m]

Ix [kg · m2] =
∑
i=1

(
massi [kg] · distance2

mass,x[m2]
)

Ix = 4 · massmotor · distance2
motor,x + 4 · massESC · distance2

ESC,x

Accelerationroll [◦/s2] = 180
π

·
4 · 0.160 · inputroll · 9.81

1000 · 0.08
4 · 0.008 · 0.082 + 4 · 0.007 · 0.042

Accelerationroll [◦/s2] = 115 · inputroll

d

dt
(RateRoll [◦/s]) = 115 · inputroll

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m

A

Current [A] = 4.4 · inputyaw[0 : 1000]
1000 + 0.132

Torquez [N · m] = 0.0019 · 4 ·
(

4.4 · inputyaw[0 : 1000]
1000

)

Iz [kg · m2] =
∑
i=1

[
massi [kg] ·

(
distance2

mass,i,x[m2] + distance2
mass,i,y[m2]

)]

Iz = 4·massmotor·
(
distance2

motor,x + distance2
motor,y

)
+4·massECS·

(
distance2

ESC,x + distance2
ESC,y

)

Accelerationyaw [◦/s2] = 180
π

·
0.0019 · 4 · 4.4

1000 · inputyaw

4 · 0.008 · (0.082 + 0.052) + 4 · 0.007 · (0.042 + 0.052)
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You can construct a fully similar reasoning for the pitch dynamics, eventually giving 
the following formula:

s · Rateroll[s] = 115 · inputroll[s]

Rateroll[s] = 115
s

· inputroll[s]

Ratepitch[s] = 115
s

· inputpitch[s]

Accelerationyaw [◦/s2] = Torquez [N · m]
Iz [kg · m2] · 180

π

Torquez [N ·m] = −Torquemotor 1+Torquemotor 2−Torquemotor 3+Torquemotor 4

Torquemotor [N · m] = KT

[
N · m

A

]
· Current [A]

KT = 60
2 · π · Kv

= 60
2 · π · 5000 = 0.0019 N · m
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Yaw motion
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2d representation

yaw around the 
z axis

2d representation

output motor 1 = 25% power =   50%            - 25%
output motor 2 = 75% power =   50%           + 25%
output motor 3 = 25% power =   50%            - 25%
output motor 4 = 75% power =   50%           + 25%
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The value of  inputyaw is equal for all four motors, but has a positive sign for motors 2 
and 4 and a negative sign for motors 1 and 3. The torque formula results in:

Moment of  inertia around the z axis

The moment of  inertia Iz describes the weight distribution of  the quadcopter and 
its distance to the stationary z axis. In the two-dimensional representation, this gives:

Notice that not only the distance of  the mass to the x axis matters, but also the dis-
tance of  the mass to the y axis. This is different compared to Ix , as the two-dimen-
sional representation in that case meant that distancemass,i,z is approximated as being 
zero. Once again only the components with a considerable mass that are far enough 
from the quadcopter X and Y axes are the motors and the ESCs.
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This gives the following formula:

Where the distance of  the motors and the ESCs from the Y axis are equal to 5 cm.

Yaw dynamics

Introducing both formulas in the angular yaw acceleration formula gives:

Which results again in a very simple formula for the angular acceleration in the time 
domain:

Doing a similar Laplace transformation as before together with the integration of  the 
acceleration results in the transfer function for the yaw dynamics:
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thrustmotor 1+2+3+4[N ] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Accelerationyaw [◦/s2] = 4.8 · inputyaw

RateYaw[s] = 4.8
s

· inputyaw[s]

massquadcopter[kg]·Accelerationz [m/s2] = thrustmotor 1+2+3+4[N ]−massquadcopter[kg]·9.81 m/s2

thrustmotor 1+2+3+4[N ] = 4·(0.160·inputthrottle[0 : 1000])· 9.81
1000 = 0.0063·inputthrottle[0 : 1000]

0.250 [kg] · Accelerationz[m/s2] = 0.0063 · inputthrottle[0 : 1000]

Accelerationz[m/s2] = 0.025 · inputthrottle

Accelerationz[cm/s2] = 2.5 · inputthrottle

VelocityVertical [s] = 2.5
s

· inputthrottle[s]

Thrustmotor 3+4

2d representation

Increase altitude 
along the z axis

2d representation

z

y

Thrustmotor 1+2

Thrustmotor 3+4 z

y

Thrustmotor 1+2

Weightquadcopter

Weightquadcopter

output motor 1 = 75% power =   75%       
output motor 2 = 75% power =   75%      
output motor 3 = 75% power =   75%      
output motor 4 = 75% power =   75%       

InputThrottle

X

y

z

X

y

z

Increase altitude 
along the z axismotor 1

motor 2

motor 3

motor 4

motor 1

motor 2

motor 3

motor 4



Ca rbon aeronautics

207

ESC 3 ESC 2

ESC 1ESC 4
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Y

distanceECS,x= 4 cm

distancemotor,x= 8 cm

massmotor= 8 g

massECS= 7 g

motor 1

motor 2

motor 4

motor 3

distanceECS,y= distancemotor,y= 5 cm

The mathematical description of  the quadcopter dynamics along the stationary Z 
axis is rather intuitive; the resulting acceleration along this axis is equal to the thrust 
delivered by the motors minus the gravity acting on the quadcopter mass. Write this 
force balance as:

And the thrust of  all four motors was already calculated previously as:

In the flight controller, you programmed input Inputthrottle as InputThrottle=1500+P-
IDReturn[0], because the zero velocity and thus the hover point will be at the point 
where the throttle stick is in the middle (1500 µs). This means that if  you take this into 
account, the throttle stick at 1500 µs and gravity acting on the quadcopter mass cancel 
each other out. Knowing that the quadcopter mass is equal to 250 g, the dynamic 
equation of  the acceleration along the z axis becomes:

When coding the flight controller, you did not measure the vertical velocity in m/s 
but rather in cm/s. Just multiply the equation by 100 cm/m to get the correct units:

Vertical velocity dynamics
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Doing the same Laplace transformation as before together with the integration of  the 
acceleration results in the transfer function of  the vertical velocity dynamics:
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Open loop system response

You have now characterized the quadcopter dynamics for the roll, pitch, yaw and ver-
tical velocity movements. Combined with the motor dynamics, you can simulate the 
response of  the system to a command in the time domain (usually done with dedicat-
ed software). This is called the open loop system response and is visualised in the dia-
gram to the left. The quadcopter dynamics for all movements are summarized below: 

The value of  the nominator is the only part that changes for each of  the quadcopter 
dynamics. When you simulate an input step response in the time domain and evaluate 
the so called open loop system response, the system output gives an indication of  the 
inherent (in)stability for all four movements. The results are visualized in the figure 
to the left. You can see that the roll and pitch response happens much faster than 
the velocity response. This depends off  course on the value of  the nominator in the 
quadcopter dynamics transfer function: a large nominator (115) causes a much faster 
response than a small nominator (2.5). The quadcopter dynamics are an example of  
a meta-stable system, as control theory requires the poles of  the system to be in the 
left half  plane (e.g. negative). Since the pole of  the system lies in this case exactly in 
the origin (s=0), it means that the system is meta-stable; the system will continuously 
increase at the same rate in an open loop. The pole of  the motor dynamics is equal to 
0.03s+1=0 or s=-33 and thus very stable, meaning it does not have an impact on the 
open loop system as a whole. 

Physically, the behaviour of  the open loop system means that you can control the 
vertical velocity of  the quadcopter manually and you do not necessarily need a control 
loop. The first rate controller you developed did not have vertical velocity control 
yet you were able to control the altitude of  the quadcopter pretty well by constantly 
adjusting the throttle. It is a different story with the roll, pitch and yaw rate; trying 
to manually control these rates is practically impossible for the reaction times of  a 
human being. That is why the rate mode flight controller is the minimal controller you 
need to fly your quadcopter. The mathematical development of  this controller that 
automatically stabilizes your quadcopter will be explained in the next project.

RateRoll (s) = 115
s

· InputRoll (s)

RatePitch (s) = 115
s

· InputPitch (s)

RateYaw (s) = 4.8
s

· InputYaw (s)

VelocityVertical (s) = 2.5
s

· InputThrottle (s)
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InputRoll
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PId controller 
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+
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motor
dynamics
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sensor dynamics

measured roll 
rotation rate

2  π  10
s + 2  π  10

115
s

1
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ErrorRateRoll
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A more difficult transformation is the transformation of  the integral term; the bilin-
ear transformation is used together with the property of  the z-transform that a(k-1) 
in the discrete domain is equivalent to z-1.a(z) in the z-domain:

z-transform

bilinear transform

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts
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(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts
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1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
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2 + 1 − s · Ts
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· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts
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Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
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Dterm (z) = D · Error(z) − z−1 · Error(z)
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Dterm (z) = D · 1
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z
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·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
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·
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2 − 1 + s · Ts
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· Error(s)
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·
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2
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2
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Dterm (s) = D · 1
Ts

·
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Dterm (s) = D · 1
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The integral term
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De sign your quadcopter controller

During the previous project, you have characterized the quadcopter dynamics. 
The goal of  this characterization is the design of  a mathematical controller 
that is capable of  stabilizing your quadcopter. The PID controller that you 
used for your flight code will be designed in this project.

Your goal is once again to construct a transfer function for the controller that you 
want to use. Remember that a PID controller consists of  three terms:

which, in the discrete time domain of  your flight controller program (where each k is 
a new iteration that takes Ts=0.004 s or 250 Hz), translates to:

Now you want to transform this discrete representation to the s-domain. Such a 
transformation is only possible by first transforming the discrete time representation 
to the frequency domain using the z-transform. Next the z-domain will be trans-
formed to the s-domain using the bilinear or Tustin transformation:

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

The proportional term

The easiest transformation is the one of  the proportional term, as it requires only the 
transformation of  the in- and outputs to the z and s domains:

z-transform

bilinear transformation

As expected, the result is just a constant P multiplied with the error. Let's continue 
with the integral term.

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2

motor input(k) = Pterm (k) + Iterm (k) + Dterm (k)

motor input(k) = P ·Error(k)+Iterm (k−1)+I·(Error(k)+Error(k−1))·Ts

2 +

D ·
(

Error(k) − Error(k − 1)
Ts

)

z = e−s·Ts =
1 + s · Ts

2
1 − s · Ts

2

Pterm (k) = P · Error(k)

Pterm (z) = P · Error(z)

Pterm (s) = P · Error(s)

Iterm (k) = Iterm (k − 1) + I · (Error(k) + Error(k − 1)) · Ts

2

Iterm (z) = z−1 · Iterm (z) + I · (Error(z) + z−1 · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

(1 − z−1) · Iterm (z) = I · (1 + z−1) · Error(z)) · Ts

2

z − 1
z

· Iterm (z) = I · z + 1
z

· Error(z) · Ts

2
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Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts

2 ·

(
1+s· Ts

2
1−s· Ts

2
+ 1

)

(
1+s· Ts

2
1−s· Ts

2
− 1

) · Error(s)

Iterm (s) = I · Ts

2 ·
1 + s · Ts

2 + 1 − s · Ts

2
1 + s · Ts

2 − 1 + s · Ts

2
· Error(s)

Iterm (s) = I · Ts

2 · 2
2 · s · Ts

2

Iterm (s) = I · 1
s

Dterm (s) = D · Error(k) − Error(k − 1)
Ts

Dterm (z) = D · Error(z) − z−1 · Error(z)
Ts

Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
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·
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2
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2
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Dterm (s) = D · 1
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·
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· Error(s)

Dterm (s) = D · s

1 + s · Ts
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· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

The derivative term

The transformation of  the derivative term from the discrete to the s-domain is very 
similar to the work you have already carried out for the integral term:

z-transform

bilinear transform

When taking into account that Ts is equal to 0.004 seconds, the transport function for 
the derivative term becomes:

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)

Iterm (s) = I · Ts
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Dterm (z) = D · 1
Ts

· z − 1
z

· Error(z)

Dterm (s) = D · 1
Ts

·

(
1+s· Ts

2
1−s· Ts

2
− 1

)

(
1+s· Ts

2
1−s· Ts

2

) · Error(s)

Dterm (s) = D · 1
Ts

·
1 + s · Ts

2 − 1 + s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · 1
Ts

·
2 · s · Ts

2
1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · Ts

2
· Error(s)

Dterm (s) = D · s

1 + s · 0.002 · Error(s)

Iterm (z) = I · Ts

2 · z + 1
z − 1 · Error(z)
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Closed control loop response

During the previous projects you learned how to describe the quadcopter, motor 
and sensor dynamics in a mathematical way, subsequently transforming them to the 
frequency domain. Now that you can describe the PID controller as well, you are able 
to construct the full control loop. The figure on the right shows the full quadcopter 
rate control loop, with the P, I and D values that you used for your rate mode flight 
controller. For the pitch and yaw rate loop, the figure would be exactly the same, only 
the PID values and the quadcopter dynamics transfer function would change. You 
can simulate the time-domain response of  the full closed control loop with dedicated 
software.
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Let’s assume your desired roll rate changes from 0 to 30°/s and then back to 0 in 
respectively one second. The resulting quadcopter roll rate for the closed control 
loop is displayed on the figure below. At each step change, the quadcopter roll rate 
overshoots the desired roll rate with almost 20°/s, but within half  a second it is stable 
again. When looking at the commands sent to the motor, they follow the desired roll 
rate also closely. Notice that the commands saturate at ±400 µs; this was already pro-
grammed in the flight controller and can additionally be simulated as well.

With the mathematical representation of  the full control system, it is possible to op-
timize the response of  the system by adjusting the PID values. In reality, the system 
is first simulated using the mathematical representation, then the optimal PID values 
are chosen given a desired system response. Because the mathematical representation 
is an approximation of  the real physical system, further tuning of  the PID values will 
always be necessary when testing your quadcopter.
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Tu ne your controller for a smooth flight

You are now capable to mathematically simulate the full system and control 
loop. The goal of  this simulation is to 'tune' your PID controller in order to 
get a stable flight. In essence, you need to determine the best values for the P, 
I and D parameters.

Once you have the mathematical representation for the system and the sensor, a first 
estimation of  the PID values for the controller is usually calculated using dedicated 
software. However, the optimal values can also be calculated by hand using the root 
locus method. In this project you will derive an estimation of  the PID values for the 
yaw rate controller. A similar approach can be followed for the other controllers.

The closed loop transfer function of  the full yaw rate controller can be mathematical-
ly constructed using the figure on the left: the output of  the system Y(s) is related to 
the system input U(s) through: 

Rewriting the equation such that the system output Y(s) is isolated gives:
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The pole at zero is the only one that makes the system meta-stable, as the other poles 
are situated in the stable left half-plane far from the imaginary axis. To stabilize the 
system, you will have to add a zero near the origin to cancel out the pole. This means 
that you need a controller of  the type:

To make sure you do not have a steady-state error in the response, you put another 
pole at zero to finally obtain a controller of  the PI type:

With b and K the parameters that you will calculate using the root locus method. The 
full open loop system now becomes:

This is a fourth order system, because the highest power of  s in the denominator is 
s4 when you multiply all fractions. However, as b will be close to zero, it will help to 
cancel out the two poles at zero. This means that the system will behave as a second 
order system. The step response of  a general second order system can be character-
ized by two parameters: the maximal overshoot and the settling time, which is defined 
as the time at which the response goes to within 2% of  the desired value. Let’s say that 
you want the system to settle within 0.5 seconds with a maximal overshoot of  10%:
•	 overshoot (OS)=10%
•	 settling time (tsettling)=0.5 s

The damping ratio ζ for a second order system is defined by:

You already defined the settling time as the time necessary to reach 2% (=0.02) of  the 
desired response. This is related to the damping ratio through the formula:

Where ωn is the natural frequency of  the second-order system. Calculate the natural 
frequency by inverting the above formula:

The desired poles of  your full system are then equal to:
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The b and K parameters will be determined using the angle and magnitude conditions 
of  the root locus method.

Response

settling time Time 

maximal overshoot

Angle condition

The angle condition of  the root locus says that the sum of  the angles of  the open 
loop poles minus the sum of  the angles of  the open loop zeros has to be equal to 
180°:

Remember that your system contained the four poles and you want to add a zero at 
b. The angle condition becomes:

Using basic trigonometry, the angles can be determined (see figure below):
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C(s) · G(s) · H(s) =
1

0.03
s + 1

0.03
· 4.8

s
· 2 · π · 10

s + 2 · π · 10 · K · s + b

s

Kglobal = K · 1
0.03 · 4.8 · 2 · π · 10

10053 · K = L2 · L3 · L4 · L5

L1

K =
√

7.82 + 10.72 ·
√

(33 − 7.8)2 + 10.72 ·
√

(63 − 7.8)2 + 10.72 ·
√

7.82 + 10.72

10053 ·
√

(7.8 − 4.7)2 + 10.72

C(s) = 2.4 · s + 4.7
s

C(s) = 2.4 + 11.3
s

You will now determine the final parameter K using the magnitude condition of  the 
root locus:

In which Kglobal comprises not only the parameter K, but the full amplification 
throughout the open loop system:

Meaning that:

The magnitude condition of  the root locus is then equal to:

This gives K=2.4 and now you finally know the parameters of  your PI controller:

The PI values for the yaw rate you used in your flight controller are equal to 2 and 12, 
which is very close to your calculated estimation of  2.4 and 11.2. In practice, you will 
choose 2.4 and 11.2 as initial values when testing your flight controller then slightly 
tune the parameters to further improve the handling of  your quadcopter.
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This gives for θ1:

From which you can calculate the value for parameter b, again using trigonometry and 
the figure on the previous page:

Your PID controller becomes equal to C(s)=K(s-4.7)/s.

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

tsettling = −ln(0.02)
ξ · ωn

ωn = −ln(0.02)
0.59 · 0.5 s = 13 rad/s

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −ωn · ξ ± i · ωn ·
√

1 − ξ2

pdesired = −7.8 ± i · 10.7

∑
θpoles −

∑
θzeros = 180◦

θ2 + θ3 + θ4 + θ5 − θ1 = 180◦

tan(180◦ − θ2) = 10.7
7.8 → θ2 = θ5 = 126◦

tan(θ3) = 10.7
33 − 7.8 → θ3 = 23◦

tan(θ4) = 10.7
63 − 7.8 → θ4 = 11◦

θ1 = 126◦ + 23◦ + 11◦ + 126◦ − 180◦ = 106◦

tan(180◦ − θ1) = 10.7
7.8 − b

tan(180◦ − 106◦) = 10.7
7.8 − b

→ b = 4.7

=Kglobal
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Part V: expanding your 
horizon



congratulations, you reached the final part 
of  this book! By now, you have learned so 
much about quadcopters that you are ready 
to further develop, tweak and modify it 
yourself!

what about adding a GPS system to devel-
op a return to home function, an ultrasonic 
sensor enabling you to add obstacle avoid-
ance, a telemetry system or a camera to get 
into the exciting world of  FPV racing?

now that you know the basics, nothing is 
beyond your reach. Have fun developing 
your own projects!



Ca rbon aeronautics

This manual helps you to develop, program 
and construct your own quadcopter with 
the help of  24 small projects, explaining 
the essentials on aeronautics, electronics 
and embedded programming along the 
way. 

All components and code used in this man-
ual are fully hackable and adaptable, giving 
you the opportunity to create your own 
unique quadcopter.


