

SMALL

UNMANNED

AIRCRAFT

This page intentionally left blank

SMALL

UNMANNED

AIRCRAFT

Theory and Practice

RANDAL W. BEARD

T IMOTHY W. McLA IN

PRINCETON UNIVERSITY PRESS

Princeton and Oxford

Copyright © 2012 by Princeton University Press

Published by Princeton University Press, 41 William Street,

Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,

6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

press.prenceton.edu

Jacket art: Tempest and Farmhouse, 06/02/2010.

University of Colorado Boulder. © Jack Elston.

All Rights Reserved

ISBN 978-0-691-14921-9

Library of Congress Cataloging-in-Publication Data

Beard, Randal W.

Small unmanned aircraft: theory and practice / Randal W.

Beard, Timothy W. McLain.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-691-14921-9 (hardcover: alk. paper) 1. Drone

aircraft–Control systems. 2. Drone aircraft–Automatic

control. 3. Guidance systems (Flight) I. McLain,

Timothy W., 1963-II. Title.

UG1242.D7B43 2012

623.74’69–dc23

2011025926

British Library Cataloging-in-Publication Data is available

This book has been composed in ITC Stone

Printed on acid-free paper. ∞

Typeset by S R Nova Pvt Ltd, Bangalore, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

To our families

Andrea, Laurann, Kaitlyn, Aubrey, Kelsey

Amber, Regan, Caitlin, Tab, Colby, Rorie

This page intentionally left blank

Contents

Preface xi

1 Introduction 1

1.1 System Architecture 1

1.2 DesignModels 4

1.3 Design Project 6

2 Coordinate Frames 8

2.1 RotationMatrices 9

2.2 MAV Coordinate Frames 12

2.3 Airspeed,Wind Speed, and Ground Speed 18

2.4 TheWind Triangle 20

2.5 Differentiation of a Vector 24

2.6 Chapter Summary 25

2.7 Design Project 27

3 Kinematics and Dynamics 28

3.1 State Variables 28

3.2 Kinematics 30

3.3 Rigid-body Dynamics 31

3.4 Chapter Summary 37

3.5 Design Project 38

4 Forces and Moments 39

4.1 Gravitational Forces 39

4.2 Aerodynamic Forces andMoments 40

4.3 Propulsion Forces andMoments 52

4.4 Atmospheric Disturbances 54

4.5 Chapter Summary 57

4.6 Design Project 58

5 Linear Design Models 60

5.1 Summary of Nonlinear Equations of Motion 60

5.2 Coordinated Turn 64

5.3 Trim Conditions 65

5.4 Transfer FunctionModels 68

viii Contents

5.5 Linear State-space Models 77

5.6 Reduced-order Modes 87

5.7 Chapter Summary 91

5.8 Design Project 92

6 Autopilot Design Using Successive Loop Closure 95

6.1 Successive Loop Closure 95

6.2 Saturation Constraints and Performance 97

6.3 Lateral-directional Autopilot 99

6.4 Longitudinal Autopilot 105

6.5 Digital Implementation of PID Loops 114

6.6 Chapter Summary 117

6.7 Design Project 118

7 Sensors for MAVs 120

7.1 Accelerometers 120

7.2 Rate Gyros 124

7.3 Pressure Sensors 126

7.4 Digital Compasses 131

7.5 Global Positioning System 134

7.6 Chapter Summary 141

7.7 Design Project 141

8 State Estimation 143

8.1 BenchmarkManeuver 143

8.2 Low-pass Filters 144

8.3 State Estimation by Inverting the Sensor Model 145

8.4 Dynamic-observer Theory 149

8.5 Derivation of the Continuous-discrete Kalman

Filter 151

8.6 Attitude Estimation 156

8.7 GPS Smoothing 158

8.8 Chapter Summary 161

8.9 Design Project 162

9 Design Models for Guidance 164

9.1 Autopilot Model 164

9.2 Kinematic Model of Controlled Flight 165

9.3 Kinematic GuidanceModels 168

9.4 Dynamic GuidanceModel 170

9.5 Chapter Summary 172

9.6 Design Project 173

Contents ix

10 Straight-line and Orbit Following 174

10.1 Straight-line Path Following 175

10.2 Orbit Following 181

10.3 Chapter Summary 183

10.4 Design Project 185

11 Path Manager 187

11.1 Transitions BetweenWaypoints 187

11.2 Dubins Paths 194

11.3 Chapter Summary 202

11.4 Design Project 204

12 Path Planning 206

12.1 Point-to-Point Algorithms 207

12.2 Coverage Algorithms 220

12.3 Chapter Summary 223

12.4 Design Project 224

13 Vision-guided Navigation 226

13.1 Gimbal and Camera Frames and Projective

Geometry 226

13.2 Gimbal Pointing 229

13.3 Geolocation 231

13.4 Estimating Target Motion in the Image Plane 234

13.5 Time to Collision 238

13.6 Precision Landing 240

13.7 Chapter Summary 244

13.8 Design Project 245

APPENDIX A: Nomenclature and Notation 247

APPENDIX B: Quaternions 254

B.1 Quaternion Rotations 254

B.2 Aircraft Kinematic and Dynamic Equations 255

B.3 Conversion Between Euler Angles and

Quaternions 259

APPENDIX C: Animations in Simulink 260

C.1 Handle Graphics inMatlab 260

C.2 Animation Example: Inverted Pendulum 261

x Contents

C.3 Animation Example: Spacecraft Using Lines 263

C.4 Animation Example: Spacecraft Using Vertices and

Faces 268

APPENDIX D: Modeling in Simulink Using

S-Functions 270

D.1 Example: Second-order Differential Equation 270

APPENDIX E: Airframe Parameters 275

E.1 Zagi FlyingWing 275

E.2 Aerosonde UAV 276

APPENDIX F: Trim and Linearization in Simulink 277

F.1 Using the Simulink trimCommand 277

F.2 Numerical Computation of Trim 278

F.3 Using the Simulink linmodCommand to

Generate a State-space Model 282

F.4 Numerical Computation of State-space Model 284

APPENDIX G: Essentials from Probability Theory 286

APPENDIX H: Sensor Parameters 288

H.1 Rate Gyros 288

H.2 Accelerometers 288

H.3 Pressure Sensors 289

H.4 Digital Compass/Magnetometer 289

H.5 GPS 290

Bibliography 291

Index 299

Preface

Unmanned aircraft systems (UAS) are playing increasingly prominent

roles in defense programs and defense strategy around the world. Tech-

nology advancements have enabled the development of both large

unmanned aircraft (e.g., Global Hawk, Predator) and smaller, increas-

ingly capable unmanned aircraft (e.g., Wasp, Nighthawk). As recent

conflicts have demonstrated, there are numerous military applications

for unmanned aircraft, including reconnaissance, surveillance, battle

damage assessment, and communications relays.

Civil and commercial applications are not as well developed, al-

though potential applications are extremely broad in scope, including

environmental monitoring (e.g., pollution, weather, and scientific ap-

plications), forest fire monitoring, homeland security, border patrol,

drug interdiction, aerial surveillance and mapping, traffic monitoring,

precision agriculture, disaster relief, ad hoc communications networks,

and rural search and rescue. For many of these applications to develop

to maturity, the reliability of UAS needs to increase, their capabilities

need to be extended further, their ease of use needs to be improved, and

their cost must decrease. In addition to these technical and economic

challenges, the regulatory challenge of integrating unmanned aircraft

into national and international air space needs to be overcome.

The terminology unmanned aircraft system refers not only to the

aircraft, but also to all of the supporting equipment used in the system,

including sensors, microcontrollers, software, groundstation comput-

ers, user interfaces, and communications hardware. This text focuses

on the aircraft and its guidance, navigation, and control subsystems.

Unmanned aircraft (UA) can generally be divided into two categories:

fixed-wing aircraft and rotorcraft. Both types of aircraft have distinctive

characteristics that make autonomous behavior difficult to design. In

this book we focus exclusively on fixed-wing aircraft, which can be

roughly categorized by size. We use the term small unmanned aircraft

to refer to the class of fixed-wing aircraft with a wing span between 5

and 10 feet. Small unmanned aircraft are usually gas powered and

typically require a runway for take off and landing, although the Boeing

ScanEagle, which uses a catapult for take off and a skyhook for recovery,

is a notable exception. Small unmanned aircraft are typically designed

to operate on the order of 10 to 12 hours, with payloads of approxi-

mately 10 to 50 pounds.

xii Preface

The term miniature air vehicle, which we will denote with the

acronym MAV1, will be used to refer to the class of fixed-wing aircraft

with wingspans less than 5 feet. MAVs are typically battery powered,

hand launched, andbelly landed, and therefore donot require a runway

for take off or landing. They are designed to operate from 20minutes to

several hours. Payloads range from ounces to several pounds. The small

payload severely restricts the sensor suite that can be placed on MAVs,

and also restricts the computer that can be put on board. These re-

strictions pose interesting challenges for designing autonomousmodes

of operation. While many of the concepts described in this book also

apply to larger unmanned aircraft and smaller micro air vehicles, the

primary focus of the book is on the challenges that are inherent in

guiding and controlling limited-payload small and miniature aircraft

systems.

This textbook was inspired by our desire to teach a course to our

graduate students that prepared them to do work in the area of co-

operative control for unmanned aircraft. Most of our students come

from a background in electrical engineering, computer engineering,

mechanical engineering, or computer science. Only a few of them have

had courses in aerodynamics, and the electrical and computer engi-

neering and computer science students generally have not had courses

in kinematics, dynamics, or fluid mechanics. Most of our students,

however, have had courses in signals and systems, feedback control,

robotics, and computer vision.

There are a large number of textbooks that cover aircraft dynamics

and control; however, most of them assume a background in aeronau-

tics and assume that the student has not had exposure to feedback con-

trol. Therefore, textbooks like [1, 2, 3, 4, 5, 6] discuss aerodynamic forces

without discussing basic ideas in fluid mechanics and aeronautics. On

the other hand, they typically include a detailed introduction to feed-

back control concepts like root locus. The textbook [7] is muchmore in

line with what we wanted to teach our students, but the focus of that

text is on stability augmentation systems as opposed to autonomous

operations. Autonomous operations require more than a simple au-

topilot; they require autonomous take off and landing, path planning,

and path-following operations, integrated with higher-level decision-

making processes. To our knowledge, another textbook is not cur-

rently available that covers aircraft dynamicmodels, low-level autopilot

1 We acknowledge that MAV is more commonly used as an abbreviation for micro

air vehicles, which have wingspans of 10 inches or smaller. Given that MAV is a single-

syllable word that is easily pronounced in singular and plural forms, we could not resist

adopting it to represent miniature air vehicles.

Preface xiii

design, state estimation, and high-level path planning. Our hope is that

this book fills that gap. Our target audience is electrical engineering,

computer engineering, mechanical engineering, and computer science

students who have had a course in introductory feedback control or

robotics. We hope that the textbook is also interesting to aeronautics

engineers seeking an introduction to autonomous systems.

In writing this book, our objective was to have 13 chapters, each

of which could be covered in three one-hour lectures and thereby fit

comfortably into a one-semester course.While some of the chapters are

longer thanwehadoriginally hoped, our experience is that thematerial

in this book canbe covered in one semester. The additionalmaterialwill

allow the instructor some flexibility in the topics that are covered.

One of the unique features of the book is the associated design

project. As we have taught this course, we have evolved from assigning

pencil-and-paper homework assignments, to assigning computer simu-

lation assignments. We have found that students are more engaged in

thematerial and tend to understand it better when they implement the

concepts in a computer simulation.

When we teach the course, we have our students develop a com-

plete end-to-end flight simulator that includes realistic flight dynamics,

sensor models, autopilot design, and path planning. By the end of the

course, they have implemented each piece of the puzzle and therefore

understand how each piece fits together. In addition, they understand

the inner workings of a fairly sophisticated flight simulation package

that can be used in their future research projects.

Our design exercises were originally developed for implementation

in C/C++, requiring the students to be proficient programmers. This

sometimes created an unnecessary burden on both the instructor and

the students. Subsequently, we have altered the project exercises so that

they are completed in Matlab/Simulink. We feel that this allows the

students to focus more intently on the key concepts related to MAVs

rather than on the details of programming. The appendices provide

supplemental information that describes the main Matlab/Simulink

tools that will be used in the development of the MAV simulation. The

book also has an associated website that includes skeleton simulation

files that will help the reader in the project assignments.

This page intentionally left blank

SMALL

UNMANNED

AIRCRAFT

This page intentionally left blank

1
Introduction

1.1 System Architecture
The objective of this book is to prepare the reader to do research in

the exciting and rapidly developing field of autonomous navigation,

guidance, and control of unmanned air vehicles. The focus is on the

design of the software algorithms required for autonomous and semi-

autonomous flight. To work in this area, researchers must be familiar

with a wide range of topics, including coordinate transformations,

aerodynamics, autopilot design, state estimation, path planning, and

computer vision. The aim of this book is to cover these essential topics,

focusing in particular on their application to small and miniature air

vehicles, which we denote by the acronymMAV.

In the development of the topics, we have in mind the software

architecture shown in figure 1.1. The block labeled unmanned aircraft

in figure 1.1 is the six-degree-of-freedom (DOF) physical aircraft that

responds to servo command inputs (elevator, aileron, rudder, and throt-

tle) and wind and other disturbances. The mathematical models re-

quired to understand fixed-wing flight are complicated and are covered

in chapters 2 to 5 and chapter 9. In particular, in chapter 2 we discuss

coordinate frames and transformations between frames. A study of co-

ordinate frames is required sincemost specifications forMAVs are given

in the inertial frame (e.g., orbit a specific coordinate), whereas most

of the sensor measurements are with respect to the body frame, and

the actuators exert forces and torques in the body frame. In chapter 3

we develop the kinematic and dynamic equations of motion of a rigid

body. In chapter 4 we describe the aerodynamic forces and moments

that act on fixed-wing aircraft. Chapter 5 begins by combining the

results of chapters 3 and 4 to obtain a six-DOF, 12-state, nonlinear

dynamic model for a MAV. While incorporating the fidelity desired

for simulation purposes, the six-DOF model is fairly complicated and

cumbersome. The design and analysis of aircraft control approaches are

more easily accomplished using lower-order linearmodels. Linearmod-

els that describe small deviations from trim are derived in chapter 5,

including linear transfer function and state-space models.

The block labeled autopilot in figure 1.1 refers to the low-level con-

trol algorithms that maintain roll and pitch angles, airspeed, altitude,

and course heading. Chapter 6 introduces the standard technique of

2 Chapter 1

Figure 1.1 The system architecture that will be assumed throughout the book.

The path planner produces straight-line or Dubins paths through an obstacle

field. The path manager switches between orbit following and straight-line path

following to maneuver along the waypoint paths. The path-following block

produces commands to the low-level autopilot, which controls the airframe.

Each of the blocks relies on estimates of the states produced by filtering the

onboard sensors.

successive loop closure to design the autopilot control laws. Nested

control loops are closed one at a time, with inner loopsmaintaining roll

and pitch angles and outer loops maintaining airspeed, altitude, and

course.

The autopilot and the higher level blocks rely on accurate state

estimates obtained by dynamically filtering the onboard sensors, which

include accelerometers, rate gyros, pressure sensors, magnetometers,

and GPS receivers. A description of these sensors and their mathemati-

cal models is given in chapter 7. Because it is not possible tomeasure all

the states of small unmanned aircraft using standard sensors, state esti-

mation plays an important role. Descriptions of several state-estimation

techniques that are effective for MAVs are given in chapter 8.

A complete model of the flight dynamics coupled with the auto-

pilot and state estimation techniques represents a high dimensional,

highly complex, nonlinear system of equations. The full model of

the system is too complicated to facilitate the development of high

level guidance algorithms. Therefore, chapter 9 develops low-order

nonlinear equations thatmodel the closed-loop behavior of the system.

These models are used in subsequent chapters to develop guidance

algorithms.

One of the primary challenges with MAVs is flight in windy condi-

tions. Since airspeeds in the range of 20 to 40 mph are typical forMAVs,

Introduction 3

and since wind speeds at several hundred feet above ground level (AGL)

almost always exceed 10 mph, MAVs must be able to maneuver effec-

tively in wind. Traditional trajectory tracking methods used in robotics

do not work well for MAVs. The primary difficulty with these methods

is the requirement to be in a particular location at a particular time,

which cannot properly take into account the variations in ground speed

caused by the unknown and changing effects of thewind. Alternatively,

path-following methods that simply maintain the vehicle on a desired

path have proven to be effective in flight tests. Chapter 10 describes the

algorithms and methods used to provide the capabilities of the path

following block in figure 1.1. We will focus exclusively on straight-line

paths and circular orbits and arcs. Other useful paths can be built up

from these straight-line and circular path primitives.

The block labeled path manager in figure 1.1 is a finite-state machine

that converts a sequence of waypoint configurations (positions and

orientations) into sequences of straight-line paths and circular arcs that

can be flown by the MAV. This makes it possible to simplify the path

planning problem so that the path planner produces either a sequence

of straight-line paths thatmaneuver theMAV through an obstacle field,

or aDubin’s path thatmaneuvers through the obstacle field. Chapter 11

describes the path manager, while chapter 12 describes the path planner.

For path planning we consider two classes of problems. The first class

of problems is point-to-point algorithms, where the objective is to

maneuver from a start position to an end position while avoiding a set

of obstacles. The second class of problems is search algorithms, where

the objective is to cover a region, potentially having no-go regions, with

a sensor footprint.

Almost all applications involvingMAVs require the use of anonboard

electro-optical/infrared (EO/IR) video camera. The typical objective of

the camera is to provide visual information to the end user. Since

MAV payload capacities are limited, however, it makes sense to also

use the video camera for navigation, guidance, and control. Effective

use of camera information is currently an active research topic. In

chapter 13 we discuss several potential uses of video cameras on MAVs,

including geolocation and vision-based landing. Geolocation uses a

sequence of images as well as the onboard sensors to estimate the world

coordinates of objects on the ground. Vision-based landing uses video

images captured by the MAV to guide it to a target identified in the

image plane. We feel that an understanding of these problems will

enable further investigations in vision-based guidance of MAVs.

In chapter 13, we use the software architecture shown in figure 1.2,

where the path planner block has been replaced with the block vision-

based guidance. However, the vision-based guidance laws interact with

4 Chapter 1

Figure 1.2 System architecture for vision-based navigation, guidance, and

control. A video camera is added as an additional sensor and the path planner

has been replaced with a vision-based guidance block.

Figure 1.3 The design process. Using principles of physics, the physical system

is modeled mathematically, resulting in the simulation model. The simulation

model is simplified to create design models that are used for the control design.

The control design is then tested and debugged in simulation and finally

implemented on the physical system.

the architecture in the samemanner as the path planner. Themodular-

ity of the architecture is one of its most appealing features.

1.2 Design Models
Thedesignphilosophy thatwe follow throughout the book is illustrated

schematically in figure 1.3. The unmanned aircraft operating in its

Introduction 5

environment is depicted in figure 1.3 as the “Physical System,” and

includes the actuators (control flaps and propeller) and the sensors

(IMU, GPS, camera, etc.). The first step in the design process is to model

the physical system using nonlinear differential equations. While ap-

proximations and simplifications will be necessary at this step, the

hope is to capture in mathematics all of the important characteristics

of the physical system. In this book, the model of the physical system

includes rigid body kinematics and dynamics (chapter 3), aerodynamic

forces and moments (chapter 4), and the onboard sensors (chapter 7).

The resulting model is called the “Simulation Model” in figure 1.3 and

will be used for the high fidelity computer simulation of the physical

system. However, we should note that the simulation model is only an

approximation of the physical system, and simply because a design is

effective on the simulation model, we should not assume that it will

function properly on the physical system.

The simulation model is typically nonlinear and high order and is

too mathematically complex to be useful for control design. Therefore,

to facilitate design, the simulation model is simplified and usually

linearized to create lower-order designmodels. For any physical system,

there may be multiple design models that capture certain aspects of

the design process. For MAVs, we will use a variety of different design

models for both low-level control and also for high-level guidance.

In chapter 5, we will decompose the aircraft motion into longitudi-

nal (pitching and climbing) motion and lateral (rolling and heading)

motion, and we will have different design models for each type of

motion. The linear designmodels developed in chapter 5will be used in

chapter 6 to develop low-level autopilot loops that control the airspeed,

altitude, and course angle of the vehicle. In chapter 8, we show how to

estimate the states needed for the autopilot loops using sensors typically

found on small andmicro air vehicles.

The mathematical equations describing the physics of the system,

the low-level autopilot, and the state estimation routines, when con-

sidered as a whole, are very complex and are not useful for designing

the higher level guidance routines. Therefore, in chapter 9 we develop

nonlinear design models that model the closed-loop behavior of the

system, where the input is commanded airspeed, altitude, and course

angle, and the outputs are the inertial position and orientation of

the aircraft. The design models developed in chapter 9 are used in

chapters 10 through 13 to develop guidance strategies for theMAV.

As shown in figure 1.3, the designmodels are used to design the guid-

ance and control systems. The designs are then tested against the high

fidelity simulation model, which sometimes requires that the design

models bemodified or enhanced if they have not captured the essential

6 Chapter 1

features of the system. After the designs have been thoroughly tested

against the simulation model, they are implemented on the physical

system and are again tested and debugged, sometimes requiring that

the simulation model be modified to more closely match the physical

system.

1.3 Design Project
In this textbook we have decided to replace traditional pencil-and-

paper homework problemswith a complete and rather extensive design

project. The designproject is an integral part of the book, andwebelieve

that it will play a significant role in helping the reader to internalize the

material that is presented.

The design project involves building aMAV flight simulator from the

ground up. The flight simulator will be built using Matlab/Simulink,

and we have specifically designed the assignments so that additional

add-on packages are not required.1 The website for the book contains

a number of different Matlab and Simulink files that will assist you in

developing the flight simulator. Our strategy is to provide you with the

basic skeleton files that pass the right information between blocks, but

tohave youwrite the internalworkings of eachblock. Theproject builds

upon itself and requires the successful completion of each chapter

before it is possible tomove to the next chapter. To help you knowwhen

the design from each chapter is working, we have included graphs and

pictures on the website that show the output of our simulator at each

stage.

The project assignment in chapter 2 is to develop an animation of

an aircraft and to ensure that you can properly rotate the body of the

aircraft on the screen. A tutorial on animating graphics in Matlab is

provided in appendix C. The assignment in chapter 3 is to drive the ani-

mation using amathematical model of the rigid body equations of mo-

tion. In chapter 4 the force andmoments acting on a fixed wing aircraft

are added to the simulation. The assignment in chapter 5 is to use the

Simulink commands trim and linmod to find the trim conditions of

the aircraft and to derive linear transfer function and state-spacemodels

of the system. The assignment in chapter 6 adds an autopilot block that

uses the real states to control the aircraft. In chapter 7, a model of the

sensors is added to the simulator, and in chapter 8, state estimation

1 We have also taught the course using the public domain flight simulator Aviones,

which is available for download at Sourceforge.net. For those who do not have access to

Matlab/Simulink andwould prefer to develop the project in C/C++, we encourage the use

of Aviones.

Introduction 7

schemes are added to estimate the states needed for the autopilot using

the available sensors. The result of the project assignment in chapter 8 is

a closed-loop system that controls airspeed, altitude, and course angle

using only available sensor information. The assignment in chapter 9

is to approximate the closed-loop behavior using simple design models

and to tune the parameters of the design model so that it essentially

matches the behavior of the closed-loop high-fidelity simulation. The

assignment in chapter 10 is to develop simple guidance algorithms

for following straight-lines and circular orbits in the presence of wind.

In chapter 11, straight-line and orbit following are used to synthesize

more complicated paths, with emphasis on following Dubins paths.

The assignment in chapter 12 is to implement the RRT path planning

scheme to plan Dubins paths through an obstacle field. The project

assignment in chapter 13 is to point a camera at amoving ground target

and to estimate the inertial position of the target using camera data and

onboard sensors (geolocation).

2
Coordinate Frames

In studying unmanned aircraft systems, it is important to understand

howdifferent bodies are oriented relative to each other.Most obviously,

we need to understand how the aircraft is oriented with respect to

the earth. We may also want to know how a sensor (e.g., a camera) is

oriented relative to the aircraft or how an antenna is oriented relative

to a signal source on the ground. This chapter describes the various

coordinate systems used to describe the position and orientation of

the aircraft and its sensors, and the transformation between these

coordinate systems. It is necessary to use several different coordinate

systems for the following reasons:

• Newton’s equations of motion are derived relative to a fixed,

inertial reference frame. However, motion is most easily

described in a body-fixed frame.

• Aerodynamic forces and torques act on the aircraft body and are

most easily described in a body-fixed reference frame.

• On-board sensors like accelerometers and rate gyros measure

information with respect to the body frame. Alternatively, GPS

measures position, ground speed, and course angle with respect

to the inertial frame.

• Most mission requirements, like loiter points and flight

trajectories, are specified in the inertial frame. In addition, map

information is also given in an inertial frame.

One coordinate frame is transformed into another through two ba-

sic operations: rotation and translation. Section 2.1 describes rotation

matrices and their use in transforming between coordinate frames.

Section 2.2 describes the specific coordinate frames used for miniature

air vehicle systems. In section 2.3 we define airspeed, ground speed,

and wind speed and the relationship between these quantities. This

leads to themore detailed discussion of thewind triangle in section 2.4.

In section 2.5 we derive an expression for differentiating a vector in a

rotating and translating frame.

Coordinate Frames 9

Figure 2.1 Rotation in 2D.

2.1 Rotation Matrices
Webegin by considering the two coordinate frames shown in figure 2.1.

The vector p can be expressed in both the F0 frame (specified by

(i0, j0, k0)) and in theF1 frame (specified by (i1, j1, k1)). In theF0 frame

we have

p = p0xi
0 + p0

y
j0 + p0zk

0.

Alternatively in the F1 frame we have

p = p1xi
1 + p1

y
j1 + p1zk

1.

The vector sets (i0, j0, k0) and (i1, j1, k1) are eachmutually perpendicu-

lar sets of unit basis vectors.

Setting these two expressions equal to each other gives

p1xi
1 + p1

y
j1 + p1zk

1 = p0xi
0 + p0

y
j0 + p0zk

0.

Taking the dot product of both sides with i1, j1, and k1 respectively, and

stacking the result into matrix form gives

p1 △
=





p1x
p1

y

p1z



 =





i1 · i0 i1 · j0 i1 · k0

j1 · i0 j1 · j0 j1 · k0

k1 · i0 k1 · j0 k1 · k0









p0x
p0

y

p0z



 .

From the geometry of figure 2.1 we get

p1 = R1
0p

0, (2.1)

10 Chapter 2

where

R1
0

△
=







cos θ sin θ 0

−sin θ cos θ 0

0 0 1






.

The notationR1
0 is used to denote a rotation from coordinate frame F0

to coordinate frame F1.

Proceeding in a similar way, a right-handed rotation of the coordi-

nate system about the y-axis gives

R1
0

△
=







cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ






,

and a right-handed rotation of the coordinate system about the

x-axis is

R1
0

△
=







1 0 0

0 cos θ sin θ

0 −sin θ cos θ






.

As pointed out in [7], the negative sign on the sine term appears above

the line with only ones and zeros.

The matrix R1
0 in the above equations is an example of a more

general class of orthonormal rotation matrices that have the following

properties:

P.1. (Rb
a)

−1 = (Rb
a)

⊤ = Ra
b.

P.2. Rc
bR

b
a = Rc

a.

P.3. det
(

Rb
a

)

= 1,

where det(·) is the determinant of a matrix.

In the derivation of equation (2.1), note that the vector p remains

constant and the new coordinate frame F1 was obtained by rotating

F0 through a right-handed rotation of angle θ . Alternatively, rotation

matrices can be used to rotate a vector through a prescribed angle in a

fixed reference frame. As an example, consider the left-handed rotation

of a vector p in frame F0 about the k0-axis by the angle θ , as shown in

figure 2.2.

Coordinate Frames 11

Figure 2.2 Rotation of p about the

k0-axis.

Assuming p and q are confined to the i0-j0 plane, we can write the

components of p and q as

p =





p cos(θ + φ)

p sin(θ + φ)

0





=





p cos θ cos φ − p sin θ sin φ

p sin θ cos φ + p cos θ sin φ

0



 (2.2)

and

q =





q cos φ

q sin φ

0



 , (2.3)

where p
△
= |p| = q

△
= |q|. Expressing equation (2.2) in terms of (2.3)

gives

p =





cos θ −sin θ 0

sin θ cos θ 0

0 0 1



 q

= (R1
0)

⊤q

and

q = R1
0p.

In this case, the rotation matrix R1
0 can be interpreted as a left-handed

rotation of the vector p through the angle θ to a new vector q in

the same reference frame. Notice that a right-handed rotation of a

vector (in this case from q to p) can be obtained by using (R1
0)

⊤. This

12 Chapter 2

Figure 2.3 The inertial coordinate frame. The ii -axis

points north, the ji -axis points east, and the ki -axis

points into the earth.

interpretation contrasts with our original use of the rotation matrix

to transform a fixed vector p from an expression in frame F0 to an

expression in frame F1 where F1 has been obtained from F0 by a right-

handed rotation.

2.2 MAV Coordinate Frames
To derive and understand the dynamic behavior of MAVs, several coor-

dinate systems are of interest. In this section,wewill define anddescribe

the following coordinate frames: the inertial frame, the vehicle frame,

the vehicle-1 frame, the vehicle-2 frame, the body frame, the stability

frame, and the wind frame. The inertial and vehicle frames are related

by a translation, while the remaining frames are related by rotations.

The angles defining the relative orientations of the vehicle, vehicle-

1, vehicle-2, and body frames are the roll, pitch, and yaw angles that

describe the attitude of the aircraft. These angles are commonly known

as Euler angles. The rotation angles that define the relative orientation

of the body, stability, andwind coordinate frames are the angle of attack

and sideslip angles. Throughout the bookwe assume aflat, non-rotating

earth—a valid assumption for MAVs.

2.2.1 The inertial frame F i

The inertial coordinate system is an earth-fixed coordinate systemwith

its origin at the defined home location. As shown in figure 2.3, the unit

vector ii is directed north, ji is directed east, and ki is directed toward

the center of the earth, or down. This coordinate system is sometimes

referred to as a north-east-down (NED) reference frame. It is common

for north to be referred to as the inertial x direction, east to be referred

to as the inertial y direction, and down to be referred to as the inertial z

direction.

2.2.2 The vehicle frame Fv

The origin of the vehicle frame is at the center of mass of the MAV.

However, the axes of Fv are aligned with the axis of the inertial frame

Coordinate Frames 13

Figure 2.4 The vehicle coordinate frame. The iv-axis points north, the jv-axis

points east, and the kv-axis points into the earth.

Figure 2.5 The vehicle-1 frame. The

iv1-axis points out the nose of the

aircraft, the jv1-axis points out the right

wing, and the kv1-axis points into the

earth.

F i . In other words, the unit vector iv points north, jv points east, and kv

points toward the center of the earth, as shown in figure 2.4.

2.2.3 The vehicle-1 frame Fv1

The origin of the vehicle-1 frame is identical to the vehicle frame: the

center of mass of the aircraft. However, Fv1 is rotated in the positive

right-handed direction aboutkv by the heading (or yaw) angleψ . In the

absence of additional rotations, iv1 points out the nose of the airframe,

jv1 points out the right wing, and kv1 is aligned with kv and points into

the earth. The vehicle-1 frame is shown in figure 2.5.

14 Chapter 2

Figure 2.6 The vehicle-2 frame. The iv2-axis points out the nose of the aircraft, the

jv2-axis points out the right wing, and the kv2-axis points out the belly.

The transformation from Fv to Fv1 is given by

pv1 = Rv1
v (ψ)pv,

where

Rv1
v (ψ) =





cos ψ sin ψ 0

−sin ψ cos ψ 0

0 0 1



 .

2.2.4 The vehicle-2 frame Fv2

The origin of the vehicle-2 frame is again the center of mass of the

aircraft and is obtained by rotating the vehicle-1 frame in a right-

handed rotation about the jv1 axis by the pitch angle θ . The unit vector

iv2 points out the nose of the aircraft, jv2 points out the right wing, and

kv2 points out the belly, as shown in figure 2.6.

The transformation from Fv1 to Fv2 is given by

pv2 = Rv2
v1(θ)p

v1,

where

Rv2
v1(θ) =





cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ



 .

2.2.5 The body frame Fb

The body frame is obtained by rotating the vehicle-2 frame in a right-

handed rotation about iv2 by the roll angle φ. Therefore, the origin is

the center of mass, ib points out the nose of the airframe, jb points out

the right wing, and kb points out the belly. The body frame is shown

Coordinate Frames 15

Figure 2.7 The body frame. The

ib-axis points out the nose of the

airframe, the jb-axis points out the

right wing, and the kb-axis points out

the belly.

in figure 2.7. The directions indicated by the ib, jb, and kb unit vectors

are sometimes referred to as the body x, the body y, and the body z

directions, respectively.

The transformation from Fv2 to Fb is given by

pb = Rb
v2(φ)p

v2,

where

Rb
v2(φ) =





1 0 0

0 cos φ sin φ

0 −sin φ cos φ



 .

The transformation from the vehicle frame to the body frame is

given by

Rb
v(φ, θ, ψ) = Rb

v2(φ)R
v2
v1(θ)R

v1
v (ψ) (2.4)

=





1 0 0

0 cos φ sin φ

0 −sin φ cos φ









cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ









cos ψ sin ψ 0

−sin ψ cos ψ 0

0 0 1





=





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ



 , (2.5)

where cφ
△
= cos φ and sφ

△
= sin φ. The angles φ, θ , and ψ are commonly

referred to as Euler angles. Euler angles are commonly used because they

provide an intuitivemeans for representing the orientation of a body in

three dimensions. The rotation sequence ψ-θ -φ is commonly used for

aircraft and is just one of several Euler angle systems in use [8].

The physical interpretation of Euler angles is clear and this

contributes to their widespread use. Euler angle representations,

16 Chapter 2

Figure 2.8 The stability frame. The is-axis points along the projection of the

airspeed vector onto the ib-kb plane of the body frame, the js-axis is identical to

the jb-axis of the body frame, and the ks-axis is constructed to make a

right-handed coordinate system. Note that the angle of attack is defined as a

left-handed rotation about the body jb-axis.

however, have a mathematical singularity that can cause computa-

tional instabilities. For the ψ-θ -φ Euler angle sequence, there is a sin-

gularity when the pitch angle θ is ±90 deg, in which case the yaw angle

is not defined. This singularity is commonly referred to as gimbal lock.

A common alternative to Euler angles is the quaternion. While the

quaternion attitude representation lacks the intuitive appeal of Euler

angles, they are free ofmathematical singularities and are computation-

ally more efficient. Quaternion attitude representations are discussed

in appendix B.

2.2.6 The stability frame F s

Aerodynamic forces are generated as the airframe moves through the

air surrounding it. We refer to the velocity of the aircraft relative to the

surrounding air as the airspeed vector, denoted Va. The magnitude of

the airspeed vector is simply referred to as the airspeed, Va. To generate

lift, the wings of the airframe must fly at a positive angle with respect

to the airspeed vector. This angle is called the angle of attack and is

denoted by α. As shown in figure 2.8, the angle of attack is defined

as a left-handed rotation about jb and is such that is aligns with the

projection ofVa onto the plane spannedby ib andkb. Theneed for a left-

handed rotation is caused by the definition of positive angle of attack,

which is positive for a right-handed rotation from the stability frame is

axis to the body frame ib axis.

Coordinate Frames 17

Figure 2.9 The wind frame. The iw-axis points along the airspeed vector.

Since α is given by a left-handed rotation, the transformation from

Fb to F s is given by

ps = Rs
b(α)p

b,

where

Rs
b(α) =





cos α 0 sin α

0 1 0

−sin α 0 cos α



 .

2.2.7 The wind frame Fw

The angle between the airspeed vector and the ib-kb plane is called the

side-slip angle and is denoted by β. As shown in figure 2.9, the wind

frame is obtained by rotating the stability frame by a right-handed

rotation of β about ks. The unit vector iw is aligned with the airspeed

vectorVa.

The transformation from F s to Fw is given by

pw = Rw
s (β)p

s,

where

Rw
s (β) =





cos β sin β 0

−sin β cos β 0

0 0 1



 .

18 Chapter 2

The total transformation from the body frame to the wind frame is

given by

Rw
b (α, β) = Rw

s (β)R
s
b(α)

=





cos β sin β 0

−sin β cos β 0

0 0 1









cos α 0 sin α

0 1 0

−sin α 0 cos α





=





cos β cos α sin β cos β sin α

−sin β cos α cos β −sin β sin α

−sin α 0 cos α



 .

Alternatively, the transformation from the wind frame to the body

frame is

Rb
w(α, β) = (Rw

b)
⊤(α, β) =





cos β cos α −sin β cos α −sin α

sin β cos β 0

cos β sin α −sin β sin α cos α



 .

2.3 Airspeed, Wind Speed, and Ground Speed
When developing the dynamic equations of motion for a MAV, it is

important to remember that the inertial forces experienced by the

MAV are dependent on velocities and accelerations relative to a fixed

(inertial) reference frame. The aerodynamic forces, however, depend on

the velocity of the airframe relative to the surrounding air. When wind

is not present, these velocities are the same. However, wind is almost

always present with MAVs and we must carefully distinguish between

airspeed, represented by the velocity with respect to the surrounding

air Va, and the ground speed, represented by the velocity with respect

to the inertial frameVg . These velocities are related by the expression

Va = Vg − Vw, (2.6)

whereVw is the wind velocity relative to the inertial frame.

The MAV velocity Vg can be expressed in the body frame in terms of

components along the ib, jb, and kb axes

Vb
g =





u

v

w



 ,

where Vb
g is the velocity of the MAV with respect to the inertial frame, as

expressed in the body frame. Similarly, if we define the north, east, and

Coordinate Frames 19

down components of the wind as wn, we, and wd respectively, we can

write an expression for the wind velocity in the body frame as

Vb
w =





uw

vw

ww



 = Rb
v(φ, θ, ψ)





wn

we

wd



 .

Keeping in mind that the airspeed vector Va is the velocity of

the MAV with respect to the wind, it can be expressed in the wind

frame as

Vw
a =





Va

0

0



 .

Defining ur , vr , and wr as the body-frame components of the airspeed

vector,1 it can be written in the body frame as

Vb
a =





ur
vr

wr



 =





u − uw

v − vw

w − ww



 .

When developing aMAV simulation, ur , vr , and wr are used to calculate

the aerodynamic forces and moments acting on the MAV. The body-

frame velocity components u, v, andw are states of theMAV system and

are readily available from the solution of the equations of motion. The

wind velocity components uw, vw, and ww typically come from a wind

model as inputs to the equations of motion. Combining expressions,

we can express the airspeed vector body-frame components in terms of

the airspeedmagnitude, angle of attack, and sideslip angle as

Vb
a =





ur
vr

wr



 = Rb
w





Va

0

0





=





cos β cos α −sin β cos α −sin α

sin β cos β −sin β sin α

cos β sin α 0 cos α









Va

0

0



 ,

which implies that





ur
vr

wr



 = Va





cos α cos β

sin β

sin α cos β



 . (2.7)

1 Some flightmechanics textbooks define u, v, and w as the body-frame components of

the airspeed vector. We define u, v, and w as the body-frame components of the ground

speed vector and ur , vr , and wr as the body-frame components of the airspeed vector to

clearly distinguish between the two.

20 Chapter 2

Inverting this relationship gives

Va =

√

u2r + v2
r + w2

r

α = tan−1

(

wr

ur

)

(2.8)

β = sin−1

(

vr
√

u2r + v2
r + w2

r

)

.

Given that aerodynamic forces and moments are commonly expressed

in terms of Va, α, and β, these expressions are essential in formulating

the equations of motion for a MAV.

2.4 The Wind Triangle
ForMAVs, thewind speed is often in the range of 20 to 50 percent of the

airspeed. The significant effect of wind onMAVs is important to under-

stand, more so than for larger conventional aircraft, where the airspeed

is typically much greater than the wind speed. Having introduced the

concepts of reference frames, airframe velocity, wind velocity, and the

airspeed vector, we can discuss some important definitions relating to

the navigation of MAVs.

The direction of the ground speed vector relative to an inertial frame

is specified using two angles. These angles are the course angleχ and the

(inertial referenced) flight path angle γ . Figure 2.10 shows how these

two angles are defined. The flight path angle γ is defined as the angle

between the horizontal plane and the ground velocity vector Vg , while

the course χ is the angle between the projection of the ground velocity

vector onto the horizontal plane and true north.

The relationship between the groundspeed vector, the airspeed vec-

tor, and the wind vector, which is given by equation (2.6) is called

the wind triangle. A more detailed depiction of the wind triangle is

given in the horizontal plane in figure 2.11 and in the vertical plane in

figure 2.12. Figure 2.11 shows an air vehicle following a ground track

represented by the dashed line. The north direction is indicated by

the ii vector, and the direction that the vehicle is pointed is shown

by the ib vector, which is fixed in the direction of the body x-axis. For

level flight, the heading (yaw) angle ψ , is the angle between ii and ib

and defines the direction that the vehicle is pointed. The direction the

vehicle is traveling with respect to the surrounding air mass is given by

the airspeed vector Va. In steady, level flight, Va is commonly aligned

with ib, meaning the sideslip angle β is zero.

Coordinate Frames 21

Figure 2.10 The flight path angle γ and the course angle χ .

Figure 2.11 Heading is

the direction that the

MAV is pointed. Course

is the direction of travel

relative to the earth’s

surface. The crab angle

is the difference

between course and

heading. In the absence

of wind, the crab angle

is zero.

The direction the vehicle is traveling with respect to the ground

is shown by the velocity vector Vg . The angle between the inertial

north and the inertial velocity vector projected onto the local north-

east plane is called the course angle χ . If there is a constant ambient

wind, the aircraft will need to crab into the wind in order to follow a

ground track that is not aligned with the wind. The crab angle χc is

defined as the difference between the course and the heading angles

22 Chapter 2

Figure 2.12 The wind triangle projected onto the vertical plane.

as follows:

χc
△
= χ − ψ.

Figure 2.12 depicts the vertical component of the wind triangle.

When there is a down component ofwind, we define the angle from the

inertial north-east plane toVa as the air-mass-referenced flight-path angle

and denote it by γa. The relationship between the air-mass-referenced

flight-path angle, the angle of attack, and the pitch angle is given by

γa = θ − α.

In the absence of wind γa = γ .

The ground speed vector in the inertial frame can be expressed as

Vi
g =





cos χ −sin χ 0

sin χ cos χ 0

0 0 1









cos γ 0 sin γ

0 1 0

−sin γ 0 cos γ









Vg

0

0



=Vg





cos χ cos γ

sin χ cos γ

−sin γ



,

where Vg =
∥

∥Vg

∥

∥. Similarly, the airspeed vector in the inertial frame can

be expressed as

Vi
a = Va





cos ψ cos γa

sin ψ cos γa

−sin γa



 ,

where Va = ‖Va‖. Therefore, the wind triangle can be expressed in

inertial coordinates as

Vg





cos χ cos γ

sin χ cos γ

− sin γ



−





wn

we

wd



 = Va





cos ψ cos γa

sin ψ cos γa

− sin γa



 . (2.9)

Coordinate Frames 23

Equation (2.9) allows us to derive relationships between Vg , Va, χ , ψ ,

γ and γa. Specifically, we will consider the case where χ , γ , the wind

components (wn, we, wd), and either Vg or Va are known. Taking the

squared norm of both sides of equation (2.9) results in the expression

V2
g − 2Vg





cos χ cos γ

sin χ cos γ

− sin γ





⊤ 



wn

we

wd



+ V2
w − V2

a = 0 (2.10)

where Vw = ‖Vw‖ =

√

w2
n + w2

e + w2
d is the wind speed. Given χ ,

γ , and the components of wind, equation (2.10) can be solved for Va

given Vg , or Vg given Va, depending on the need. When solving the

quadratic equation for Vg , the positive root is taken since Vg must be

positive.

With both Va and Vg known, the third row of equation (2.9) can be

solved for γa to obtain

γa = sin−1

(

Vg sin γ + wd

Va

)

. (2.11)

To derive an expression for ψ , multiply both sides of equation (2.9)

by (−sin χ, cos χ, 0) to get the expression

0 = Va cos γa (−sin χ cos ψ + cos χ sin ψ) +

(

wn

we

)⊤ (

−sin χ

cos χ

)

.

Solving for ψ gives

ψ = χ −sin−1

(

1

Va cos γa

(

wn

we

)⊤ (

−sin χ

cos χ

)

)

. (2.12)

Using equations (2.10) through (2.12), we can calculate ψ and γ

provided we have knowledge of the wind components and either Vg

or Va. Similar expressions allowing us to determine χ and γ from ψ

and γa can be derived from equation (2.9).

Becausewind typically has a significant impact on the flight behavior

of small unmanned aircraft, we have tried to carefully account for

it throughout the text. If wind effects are negligible, however, some

important simplifications result. For example, when Vw=0, we also have

that Va = Vg , u = ur , v = vr , w = wr , ψ = χ (assuming also that β = 0),

and γ = γa.

24 Chapter 2

Figure 2.13 A vector in a rotating

reference frame.

2.5 Differentiation of a Vector
In the process of deriving equations ofmotion for aMAV, it is necessary

to compute derivatives of vectors in reference frames that are moving

with respect to one another. Suppose that we are given two coordinate

frames, F i and Fb, as shown in figure 2.13. For example, F i might

represent the inertial frame andFb might represent the body frame of a

MAV. Suppose that the vector p is moving in Fb and that Fb is rotating

(but not translating) with respect toF i . Our objective is to find the time

derivative of p as seen from frame F i . To do this, denote the angular

velocity of frame Fb in F i as ωb/ i and express the vector p in terms of its

vector components as

p = pxi
b + pyj

b + pzk
b. (2.13)

The time derivative of p with respect to frame F i can be found by

differentiating equation (2.13) as

d

dti
p =

.
pxi

b +
.
p

yj
b +

.
pzk

b + px
d

dti
ib + py

d

dti
jb + pz

d

dti
kb, (2.14)

where d/dti represents time differentiation with respect to the inertial

frame. The first three terms on the right-hand side of equation (2.14)

represent the change in p as viewed by an observer in the rotating Fb

frame. Thus, the differentiation is carried out in the moving frame. We

denote this local derivative term by

d

dtb
p =

.
pxi

b +
.
p

yj
b +

.
pzk

b. (2.15)

The next three terms on the right-hand side of equation (2.14) represent

the change inpdue to the rotation of frameFb relative toF i . Given that

Coordinate Frames 25

ib, jb, and kb are fixed in theFb frame, their derivatives can be calculated

as shown in [9] as

.
i
b

= ωb/ i × ib

.
j
b

= ωb/ i × jb

.
k
b

= ωb/ i × kb.

We can rewrite the last three terms of equation (2.14) as

px
.
i
b
+ py

.
j
b
+ pz

.
k
b

= px(ωb/ i × ib) + py(ωb/ i × jb) + pz(ωb/ i × kb)

= ωb/ i × p. (2.16)

Combining results from equations (2.14), (2.15), and (2.16), we obtain

the desired relation

d

dti
p =

d

dtb
p + ωb/ i × p, (2.17)

which expresses the derivative of the vector p in frame F i in terms of

its change as observed in frame Fb and the relative rotation of the two

frames. We will use this relation as we derive equations of motion for

theMAV in chapter 3.

2.6 Chapter Summary
In this chapter, we have introduced the coordinate frames important

to describing the orientation of MAVs.We have described how rotation

matrices can be used to transform coordinates in one frame of reference

to coordinates in another frame of reference. We have introduced the

3-2-1 Euler angles (ψ , θ , and φ) as a means to rotate from the inertial

coordinate frame to the body frame.We have also introduced the angle

of attack α and the sideslip angle β to describe the relative orienta-

tion of the body frame, the stability frame, and the wind frame. An

understanding of these orientations is essential to the derivation of

equations of motion and the modeling of aerodynamic forces involved

in MAV flight. We have introduced the wind triangle and have made

the relationships between airspeed, ground speed, wind speed, head-

ing, course, flight-path angle, and air-mass-referenced flight-path angle

explicit. We have also derived an expression for the differentiation of a

vector in a rotating reference frame.

26 Chapter 2

Figure 2.14 Specifications for animation of aircraft for the design project.

Notes and References

There aremany references on coordinate frames and rotationsmatrices.

A particularly good overview of rotation matrices is [10]. Overviews of

attitude representations are included in [8, 11]. The definition of the

different aircraft frames can be found in [4, 1, 7, 12]. A particularly good

explanation is given in [13]. Vector differentiation is discussed in most

textbooks onmechanics, including [14, 15, 16, 9].

Coordinate Frames 27

2.7 Design Project
The objective of this assignment is to create a 3-D graphic of aMAV that

is correctly rotated and translated to the desired configuration. Creating

animations in Simulink is described in appendixC and example files are

contained on the textbook website.

2.1. Read appendix C and study carefully the spacecraft

animation using vertices and faces given at the textbook

website.

2.2. Create an animation drawing of the aircraft shown

in figure 2.14.

2.3. Using a Simulinkmodel like the one given on the website,

verify that the aircraft is correctly rotated and translated in

the animation.

2.4. In the animation file, switch the order of rotation and

translation so that the aircraft is first translated and then

rotated, and observe the effect.

3
Kinematics and Dynamics

The first step in developing navigation, guidance, and control strate-

gies for MAVs is to develop appropriate dynamic models. Deriv-

ing the nonlinear equations of motion for a MAV is the focus of

chapters 3 and 4. In chapter 5, we linearize the equations of motion to

create transfer-function and state-space models appropriate for control

design.

In this chapter, we derive the expressions for the kinematics and the

dynamics of a rigid body. We will apply Newton’s laws: for example,

f = m
.
v in the case of the linear motion. In this chapter, we will focus

on defining the relations between positions and velocities (the kine-

matics) and relations between forces andmoments and themomentum

(dynamics). In chapter 4, we will concentrate on the definition of the

forces and moments involved, particularly the aerodynamic forces and

moments. In chapter 5, we will combine these relations to form the

complete nonlinear equations of motion. While the expressions de-

rived in this chapter are general to any rigid body, we will use notation

and coordinate frames that are typical in the aeronautics literature. In

particular, in section 3.1 we define the notation that will be used for

MAV state variables. In section 3.2 we derive the kinematics, and in

section 3.3 we derive the dynamics.

3.1 State Variables
In developing the equations of motion for a MAV, twelve state variables

will be introduced. There are three position states and three velocity

states associated with the translational motion of the MAV. Similarly,

there are three angular position and three angular velocity states as-

sociated with the rotational motion. The state variables are listed in

table 3.1.

The state variables are shown schematically in figure 3.1. The north-

east-down positions of the MAV (pn, pe, pd) are defined relative to

the inertial frame. We will sometimes use h = −pd to denote

the altitude. The linear velocities (u, v, w) and the angular velocities

(p, q, r) of the MAV are defined with respect to the body frame. The

Kinematics and Dynamics 29

Table 3.1

State variables for MAV equations of motion

Name Description

pn Inertial north position of theMAV along ii in F i

pe Inertial east position of theMAV along ji in F i

pd Inertial down position (negative of altitude) of theMAV

measured along ki in F i

u Body frame velocity measured along ib in Fb

v Body frame velocity measured along jb in Fb

w Body frame velocity measured along kb in Fb

φ Roll angle defined with respect to Fv2

θ Pitch angle defined with respect to Fv1

ψ Heading (yaw) angle defined with respect to Fv

p Roll rate measured along ib in Fb

q Pitch rate measured along jb in Fb

r Yaw rate measured along kb in Fb

Figure 3.1 Definition of axes of motion.

Euler angles—roll φ, pitch θ , and heading (yaw) ψ—are defined with

respect to the vehicle-2 frame, the vehicle-1 frame, and the vehicle

frame, respectively. Because the Euler angles are defined relative to

intermediate frames of reference, we cannot say that the angular rates

(p, q, r) are simply the time derivatives of the attitude angles (φ, θ, ψ).

30 Chapter 3

As we will show in the following section, p =
.
φ, q =

.
θ , and r =

.
ψ

only at the instant that φ = θ = 0. Generally, the angular rates p, q,

and r are functions of the time derivatives of the attitude angles,
.
φ,

.
θ ,

and
.
ψ and the angles φ and θ . The remainder of this chapter is devoted

to formulating the equations of motion corresponding to each of the

states listed in table 3.1.

3.2 Kinematics
The translational velocity of the MAV is commonly expressed in terms

of the velocity components along each of the axes in a body-fixed

coordinate frame. The components u, v, and w correspond to the

inertial velocity of the vehicle projected onto the ib, jb, and kb axes,

respectively.On theother hand, the translational positionof theMAV is

usually measured and expressed in an inertial reference frame. Relating

the translational velocity and position requires differentiation and a

rotational transformation

d

dt





pn
pe
pd



 = Rv
b





u

v

w



 = (Rb
v)

⊤





u

v

w



 ,

which using equation (2.5) gives





.
pn.
pe.
pd



 =







cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ











u

v

w



 , (3.1)

where we have used the shorthand notation cx
△
= cos x and sx

△
= sin x.

This is a kinematic relation in that it relates the derivative of position to

velocity: forces or accelerations are not considered.

The relationship between angular positions φ, θ , and ψ and the

angular rates p, q, and r is also complicated by the fact that these

quantities are defined in different coordinate frames. The angular rates

are defined in the body frame Fb. The angular positions (Euler angles)

are defined in three different coordinate frames: the roll angle φ is a

rotation from Fv2 to Fb about the iv2 = ib axis; the pitch angle θ is a

Kinematics and Dynamics 31

rotation from Fv1 to Fv2 about the jv1 = jv2 axis; and the yaw angle ψ is

a rotation from Fv to Fv1 about the kv = kv1 axis.

The body-frame angular rates can be expressed in terms of the

derivatives of the Euler angles, provided that the proper rotational

transformations are carried out as follows:





p

q

r



 =





.
φ

0

0



+Rb
v2(φ)





0
.
θ

0



+Rb
v2(φ)R

v2
v1(θ)





0

0
.
ψ





=





.
φ

0

0



+





1 0 0

0 cos φ sin φ

0 −sin φ cos φ









0
.
θ

0





+





1 0 0

0 cos φ sin φ

0 −sin φ cos φ









cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ









0

0
.
ψ





=





1 0 −sin θ

0 cos φ sin φ cos θ

0 −sin φ cos φ cos θ











.
φ
.
θ.
ψ






. (3.2)

Inverting this expression yields







.
φ
.
θ.
ψ






=







1 sin φ tan θ cos φ tan θ

0 cos φ −sin φ

0 sin φ sec θ cos φ sec θ











p

q

r



 , (3.3)

which expresses the derivatives of the three angular position states

in terms of the angular positions φ and θ and the body rates p, q,

and r .

3.3 Rigid-body Dynamics
To derive the dynamic equations of motion for the MAV, we will apply

Newton’s second law—first to the translational degrees of freedom

and then to the rotational degrees of freedom. Newton’s laws hold

in inertial reference frames, meaning the motion of the body of in-

terest must be referenced to a fixed (i.e., inertial) frame of reference,

which in our case is the ground. We will assume a flat earth model,

which is appropriate for small and miniature air vehicles. Even though

motion is referenced to a fixed frame, it can be expressed using vector

components associated with other frames, such as the body frame.

32 Chapter 3

We do this with the MAV velocity vector Vg , which for convenience

is most commonly expressed in the body frame as Vb
g = (u, v, w)⊤.

Vb
g is the velocity of the MAV with respect to the ground as expressed

in the body frame.

3.3.1 Translational Motion

Newton’s second law applied to a body undergoing translational mo-

tion can be stated as

m
dVg

dti
= f, (3.4)

where m is the mass of the MAV,1 d
dti

is the time derivative in the

inertial frame, and f is the sum of all external forces acting on theMAV.

The external forces include gravity, aerodynamic forces, and propulsion

forces.

The derivative of velocity taken in the inertial frame can be written

in terms of the derivative in the body frame and the angular velocity

according to equation (2.17) as

dVg

dti
=

dVg

dtb
+ ωb/ i × Vg , (3.5)

whereωb/ i is the angular velocity of theMAVwith respect to the inertial

frame. Combining (3.4) and (3.5) results in an alternative representa-

tion ofNewton’s second lawwith differentiation carried out in the body

frame:

m

(

dVg

dtb
+ ωb/ i × Vg

)

= f.

In the case of amaneuvering aircraft, we canmost easily applyNewton’s

second law by expressing the forces and velocities in the body frame as

m

(

dVb
g

dtb
+ ωb

b/ i × Vb
g

)

= fb, (3.6)

1 Mass is denoted with a sans serif font m to distinguish it from m, which will be

introduced as the sum of moments about the body-fixed jb axis.

Kinematics and Dynamics 33

whereVb
g = (u, v, w)⊤ and ωb

b/ i = (p, q, r)⊤. The vector fb represents the

sum of the externally applied forces and is defined in terms of its body-

frame components as fb
△
= (fx, fy, fz)

⊤.

The expression
dVb

g

dtb
is the rate of change of the velocity expressed in

the body frame, as viewed by an observer on the moving body. Since u,

v, and w are the instantaneous projections of Vb
g onto the ib, jb, and kb

axes, it follows that

dVb
g

dtb
=





.
u
.
v
.
w



 .

Expanding the cross product in equation (3.6) and rearranging terms,

we get





.
u
.
v
.
w



 =





rv − qw

pw − r u

qu − pv



+
1

m





fx
fy

fz



 . (3.7)

3.3.2 Rotational Motion

For rotational motion, Newton’s second law states that

dh

dti
= m,

where h is the angular momentum in vector form and m is the sum

of all externally applied moments. This expression is true provided

that moments are summed about the center of mass of the MAV. The

derivative of angular momentum taken in the inertial frame can be

expanded using equation (2.17) as

dh

dti
=

dh

dtb
+ ωb/ i × h = m.

As with translational motion, it is most convenient to express this

equation in the body frame, giving

dhb

dtb
+ ωb

b/ i × hb = mb. (3.8)

For a rigid body, angular momentum is defined as the product

of the inertia matrix J and the angular velocity vector: hb △
= Jωb

b/ i

34 Chapter 3

where J is given by

J =







∫

(y2 + z2) dm −
∫

xy dm −
∫

xz dm

−
∫

xy dm
∫

(x2 + z2) dm −
∫

yz dm

−
∫

xz dm −
∫

yz dm
∫

(x2 + y
2) dm







△=





J x −J xy −J xz
−J xy J y −J yz

−J xz −J yz J z



 . (3.9)

The diagonal terms of J are called the moments of inertia, while the off-

diagonal terms are called the products of inertia. The moments of inertia

are measures of the aircraft’s tendency to oppose acceleration about a

specific axis of rotation. For example, J x can be conceptually thought

of as taking the product of the mass of each element composing the

aircraft (dm) and the square of the distance of the mass element from

the body x axis (y2 + z2) and adding them up. The larger J x is in

value, the more the aircraft opposes angular acceleration about the

x axis. This line of thinking, of course, applies to the moments of

inertia J y and J z as well. In practice, the inertia matrix is not calculated

using equation (3.9). Instead, it is numerically calculated from mass

properties using CAD models or it is measured experimentally using

equipment such as a bifilar pendulum [17, 18].

Because the integrals in equation (3.9) are calculated with respect to

the ib, jb, and kb axes fixed in the (rigid) body, J is constant when viewed

from the body frame, hence dJ
dtb

= 0. Taking derivatives and substituting

into equation (3.8), we get

J
dωb

b/ i

dtb
+ ωb

b/ i ×
(

Jωb
b/ i

)

= mb. (3.10)

The expression
dωb

b/ i

dtb
is the rate of change of the angular velocity ex-

pressed in the body frame, as viewed by an observer on the moving

body. Since p, q, and r are the instantaneous projections of ωb
b/ i onto

the ib, jb, and kb axes, it follows that

.
ω
b
b/ i =

dωb
b/ i

dtb
=





.
p
.
q
.
r



 .

Rearranging equation (3.10), we get

.
ω
b
b/ i = J−1

[

−ωb
b/ i ×

(

Jωb
b/ i

)

+ mb
]

. (3.11)

Kinematics and Dynamics 35

Aircraft are often symmetric about the plane spanned by ib and kb. In

that case J xy = J yz = 0, which implies that

J =





J x 0 −J xz
0 J y 0

−J xz 0 J z



 .

Under this symmetry assumption, the inverse of J is given by

J−1 =
adj(J)

det(J)

=







J y J z 0 J y J xz

0 J x J z − J 2
xz 0

J xz J y 0 J x J y







J x J y J z − J 2
xz J y

=







J z
Ŵ

0 J xz
Ŵ

0 1
J y

0
J xz
Ŵ

0 J x
Ŵ






,

where Ŵ
△= J x J z − J 2

xz.

Defining the components of the externally applied moment about

the ib, jb, and kb axes asmb △= (l, m, n)⊤, we can write equation (3.11) in

component form as







.
p
.
q
.
r






=







J z
Ŵ

0 J xz
Ŵ

0 1
J y

0
J xz
Ŵ

0 J x
Ŵ



















0 r −q

−r 0 p

q −p 0













J x 0 −J xz

0 J y 0

−J xz 0 J z













p

q

r






+







l

m

n













=







J z
Ŵ

0 J xz
Ŵ

0 1
J y

0
J xz
Ŵ

0 J x
Ŵ























J xzpq + (J y − J z)qr

J xz(r
2 − p2) + (J z − J x)pr

(J x − J y)pq − J xzqr









+







l

m

n















=









Ŵ1 pq − Ŵ2qr + Ŵ3l + Ŵ4n

Ŵ5 pr − Ŵ6(p
2 − r 2) + 1

J y

m

Ŵ7 pq − Ŵ1qr + Ŵ4l + Ŵ8n









, (3.12)

36 Chapter 3

where

Ŵ1 =
J xz(J x − J y + J z)

Ŵ

Ŵ2 =
J z(J z − J y) + J 2

xz

Ŵ

Ŵ3 =
J z

Ŵ

Ŵ4 =
J xz

Ŵ
(3.13)

Ŵ5 =
J z − J x

J y

Ŵ6 =
J xz

J y

Ŵ7 =
(J x − J y)J x + J 2

xz

Ŵ

Ŵ8 =
J x

Ŵ
.

The six-degree-of-freedom, 12-state model for the MAV kinematics

and dynamics are given by equations (3.1), (3.3), (3.7), and (3.12), and

are summarized as follows:





.
pn.
pe.
pd



 =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ









u

v

w



 (3.14)





.
u
.
v
.
w



 =





rv − qw

pw − r u

qu − pv



+
1

m





fx
fy

fz



 , (3.15)







.
φ
.
θ.
ψ






=





1 sin φ tan θ cos φ tan θ

0 cos φ −sin φ

0 sin φ

cos θ

cos φ

cos θ









p

q

r



 (3.16)





.
p
.
q
.
r



 =





Ŵ1 pq − Ŵ2qr

Ŵ5 pr − Ŵ6(p
2 − r 2)

Ŵ7 pq − Ŵ1qr



+







Ŵ3l + Ŵ4n
1
J y

m

Ŵ4l + Ŵ8n






. (3.17)

Equations (3.14)–(3.17) represent the dynamics of the MAV. They are

not complete in that the externally applied forces and moments

are not yet defined. Models for forces and moments due to gravity,

Kinematics and Dynamics 37

aerodynamics, and propulsion will be derived in chapter 4. In

appendix B, an alternative formulation to these equations that uses

quaternions to represent theMAV attitude is given.

3.4 Chapter Summary
In this chapter, we have derived a six-degree-of-freedom, 12-state dy-

namic model for a MAV from first principles. This model will be the

basis for analysis, simulation, and control design that will be discussed

in forthcoming chapters.

Notes and References

The material in this chapter is standard, and similar discussions can be

found in textbooks on mechanics [14, 15, 19], space dynamics [20, 21],

flight dynamics [1, 2, 5, 7, 12, 22] and robotics [10, 23].

Equations (3.14) and (3.15) are expressed in terms of inertially ref-

erenced velocities u, v, and w. Alternatively, they can be expressed in

terms of velocities referenced to the air-mass surrounding the aircraft

ur , vr , and wr as





.
pn.
pe.
pd



 = Rv
b(φ, θ, ψ)





ur
vr

wr



+





wn

we

wd



 (3.18)





.
ur
.
vr
.
wr



 =





rvr − qwr

pwr − r ur
qur − pvr



+
1

m





fx
fy

fz



−Rb
v(φ, θ, ψ)





.
wn
.
we
.
wd



 , (3.19)

where

Rv
b(φ, θ, ψ) = (Rb

v)
⊤(φ, θ, ψ) =





cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ



 .

The choice of which equations to use to express the aircraft kinematics

is a matter of personal preference. In equations (3.14) and (3.15), the

velocity states u, v, and w represent the aircraft motion with respect to

the ground (inertial frame). In equations (3.18) and (3.19), the velocity

states ur , vr , and wr represent the aircraft motion with respect to the air

mass surrounding the aircraft. To correctly represent the motion of the

aircraft in the inertial frame using ur , vr , and wr as states, the effect of

wind speed and wind accelerationmust be taken into account.

38 Chapter 3

3.5 Design Project
3.1. Read appendix D on building s-functions in Simulink, and

also theMatlab documentation on s-functions.

3.2. Implement theMAV equations of motion given in

equations (3.14) through (3.17) using a Simulink s-function.

Assume that the inputs to the block are the forces and

moments applied to theMAV in the body frame. Block

parameters should include themass, the moments and

products of inertia, and the initial conditions for each state.

Use the parameters given in appendix E. Simulink templates

are provided on the website.

3.3. Connect the equations of motion to the animation block

developed in the previous chapter. Verify that the equations

of motion are correct by individually setting the forces and

moments along each axis to a nonzero value and convincing

yourself that the motion is appropriate.

3.4. Since J xz is non-zero, there is gyroscopic coupling between

roll and yaw. To test your simulation, set J xz to zero and place

nonzero moments on l and n and verify that there is no

coupling between the roll and yaw axes. Verify that when J xz
is not zero, there is coupling between the roll and yaw axes.

4
Forces and Moments

The objective of this chapter is to describe the forces and moments

that act on a MAV. Following [5], we will assume that the forces and

moments are primarily due to three sources, namely, gravity, aerody-

namics, and propulsion. Letting fg be the force due to gravity, (fa, ma)

be the forces and moments due to aerodynamics, and (fp, mp) be the

forces andmoments due to propulsion, we have

f = fg + fa + fp

m = ma + mp,

where f is the total force acting on the airframe and m is the total

moment acting on the airframe.

In this chapter, we derive expressions for each of the forces and

moments. Gravitational forces are discussed in section 4.1, aero-

dynamic forces and torques are described in section 4.2, and the forces

and torques due to propulsion are described in section 4.3. Atmospheric

disturbances, described in section 4.4, are modeled as changes in the

wind speed and enter the equations of motion through the aero-

dynamic forces and torques.

4.1 Gravitational Forces
The effect of the earth’s gravitational field on aMAV can be modeled as

a force proportional to the mass acting at the center of mass. This force

acts in the ki direction and is proportional to the mass of the MAV by

the gravitational constant g. In the vehicle frame Fv, the gravity force

acting on the center of mass is given by

fvg =





0

0

mg



 .

When applying Newton’s second law in chapter 3, we summed forces

along the axes in the body frame. Therefore, we must transform the

40 Chapter 4

Figure 4.1 Pressure distribution around an airfoil.

gravitational force into its body-frame components to give

fbg = Rb
v





0

0

mg





=







−mg sin θ

mg cos θ sin φ

mg cos θ cos φ






.

Since the gravity force acts through the center ofmass of theMAV, there

are nomoments produced by gravity.

4.2 Aerodynamic Forces and Moments
As a MAV passes through the air, a pressure distribution is generated

around the MAV body, as depicted in figure 4.1. The strength and

distribution of the pressure acting on the MAV is a function of the

airspeed, the air density, and the shape and attitude of the MAV.

Accordingly, the dynamic pressure is given by 1
2
ρV2

a , where ρ is the air

density and Va is the speed of the MAV through the surrounding air

mass.

Instead of attempting to characterize the pressure distribution

around the wing, the common approach is to capture the effect of the

pressure with a combination of forces and a moment. For example, if

we consider the longitudinal (ib-kb) plane, the effect of the pressure

acting on the MAV body can be modeled using a lift force, a drag

force, and a moment. As shown in figure 4.2, the lift and drag forces

are applied at the quarter-chord point, also known as the aerodynamic

center.

Forces and Moments 41

Figure 4.2 Effect of pressure distribution can be modeled using a lift force, a drag

force, and a moment.

The lift, drag, andmoment are commonly expressed as

Flift =
1

2
ρV2

a SCL

Fdrag =
1

2
ρV2

a SCD (4.1)

m =
1

2
ρV2

a ScCm,

where CL , CD, and Cm are nondimensional aerodynamic coefficients,

S is the planform area of the MAV wing, and c is the mean chord

of the MAV wing. For airfoils generally, the lift, drag, and pitching

moment coefficients are significantly influenced by the airfoil shape,

Reynolds number, Mach number, and the angle of attack. For the

range of airspeeds flown by small and miniature aircraft, the Reynolds

number and Mach number effects are approximately constant. We will

consider the effects of the angles α and β; the angular rates p, q, and r ;

and the deflection of control surfaces on the aerodynamic coefficients.

It is common to decompose the aerodynamic forces and moments

into two groups: longitudinal and lateral. The longitudinal forces and

moments act in the ib-kb plane, also called the pitchplane. They include

the forces in the ib and kb directions (caused by lift and drag) and the

moment about the jb axis. The lateral forces and moments include the

force in the jb direction and themoments about the ib and kb axes.

4.2.1 Control Surfaces

Before giving detailed equations that describe the aerodynamic forces

and moments due to the lifting surfaces, we need to define the control

surfaces that are used to maneuver the aircraft. The control surfaces

42 Chapter 4

Figure 4.3 Control surfaces for a standard aircraft configuration. The ailerons are

used to control the roll angle φ. The elevators are used to control the pitch angle

θ . The rudder directly effects the yaw angle ψ .

are used to modify the aerodynamic forces and moments. For standard

aircraft configurations, the control surfaces include the elevator, the

aileron, and the rudder. Other surfaces, including spoilers, flaps, and

canards, will not be discussed in this book but are modeled similarly.

Figure 4.3 shows the standard configuration, where the aileron

deflection is denoted by δa, the elevator deflection is denoted by δe,

and the rudder deflection is denoted by δr . The positive direction of

a control surface deflection can be determined by applying the right-

hand rule to the hinge axis of the control surface. For example, the

hinge axis of the elevator is aligned with the body jb axis. Applying the

right-hand rule about the jb axis implies that a positive deflection for

the elevator is trailing edge down. Similarly, positive deflection for the

rudder is trailing edge left. Finally, positive aileron deflection is trailing

edge down on each aileron. The aileron deflection δa can be thought of

as a composite deflection defined by

δa =
1

2
(δa-left − δa-right).

Therefore a positive δa is produced when the left aileron is trailing edge

down and the right aileron is trailing edge up.

For small aircraft, there are two other standard configurations. The

first is the v-tail configuration as shown in figure 4.4. The control

surfaces for a v-tail are called ruddervators. The angular deflection of

the right ruddervator is denoted as δr r , and the angular deflection of the

left ruddervator is denoted as δr l . Driving the ruddervators differentially

has the same effect as a rudder, producing a torque about kb. Driving

the ruddervators together has the same effect as an elevator, producing

Forces and Moments 43

Figure 4.4 Ruddervators are used to control a v-tail aircraft. The ruddervators

replace the rudder and the elevator. Driving the ruddervators together has the

same effect as an elevator, and driving them differentially has the same effect as a

rudder.

torque about jb. Mathematically, we can convert between ruddervators

and rudder-elevator signals as

(

δe

δr

)

=

(

1 1

−1 1

) (

δr r

δr l

)

.

Using this relation, the mathematical model for forces and torques for

v-tail aircraft can be expressed in terms of standard rudder-elevator

notation.

The other standard configuration for small aircraft is the flying wing

depicted in figure 4.5. The control surfaces for a flying wing are called

elevons. The angular deflection of the right elevon is denoted as δer , and

the angular deflection of the left elevon is denoted as δel . Driving the

elevons differentially has the same effect as ailerons, producing a torque

about ib, while driving the elevons together has the same effect as an

elevator, causing a torque about jb. Mathematically, we can convert

between elevons and aileron-elevator signals with

(

δe

δa

)

=

(

1 1

−1 1

) (

δer

δel

)

.

Therefore, the mathematical model for forces and torques for flying-

wing aircraft can be expressed in terms of standard aileron-elevator

notation.

4.2.2 Longitudinal Aerodynamics

The longitudinal aerodynamic forces and moments cause motion in

the body ib-kb plane, also known as the pitch plane. They are the

aerodynamic forces and moment with which we are perhaps most

44 Chapter 4

Figure 4.5 Elevons are used to control a flying-wing aircraft. The elevons replace

the aileron and the elevator. Driving the elevons together has the same effect as

an elevator, and driving them differentially has the same effect as ailerons.

familiar: lift, drag, and pitching moment. By definition, the lift and

drag forces are aligned with the axes of the stability frame, as shown

in figure 4.2. When represented as a vector, the pitching moment

also aligns with the js axis of the stability frame. The lift and drag

forces and the pitching moment are heavily influenced by the angle

of attack. The pitch rate q and the elevator deflection δe also influence

the longitudinal forces and moment. Based on this, we can rewrite the

equations for lift, drag, and pitchingmoment to express this functional

dependence on α, q and δe as

Flift =
1

2
ρV2

a SCL(α, q, δe)

Fdrag =
1

2
ρV2

a SCD(α, q, δe)

m =
1

2
ρV2

a ScCm(α, q, δe).

In general, these force and moment equations are nonlinear. For small

angles of attack, however, the flow over the wing will remain laminar

and attached. Under these conditions, the lift, drag, and pitching

moment can bemodeled with acceptable accuracy using linear approx-

imations. Working with the lift equation as an example, a first-order

Forces and Moments 45

Taylor series approximation of the lift force can be written as

Flift =
1

2
ρV2

a S

[

CL0
+

∂CL

∂α
α +

∂CL

∂q
q +

∂CL

∂δe
δe

]

. (4.2)

The coefficient CL0
is the value of the CL when α = q = δe = 0. It

is common to nondimensionalize the partial derivatives of this linear

approximation. Since CL and the angles α and δe (expressed in radians)

are dimensionless, the only partial requiring nondimensionalization is

δCL/δq. Since the units of q are rad/s, a standard factor to use is c/(2Va).

We can then rewrite equation (4.2) as

Flift =
1

2
ρV2

a S

[

CL0
+ CLα

α + CLq

c

2Va
q + CLδe

δe

]

, (4.3)

where the coefficients CL0
, CLα

△
= ∂CL

∂α
, CLq

△
= ∂CL

∂
qc
2Va

, and CLδe

△
= ∂CL

∂δe

are dimensionless quantities. CLα
and CLq

are commonly referred to as

stability derivatives,whileCLδe
is an example of a control derivative. The

label “derivative” comes from the fact that the coefficients originated

as partial derivatives in the Taylor series approximation. In a similar

manner, we express linear approximations for the aerodynamic drag

force and pitchingmoment as

Fdrag =
1

2
ρV2

a S

[

CD0
+ CDα

α + CDq

c

2Va
q + CDδe

δe

]

(4.4)

m=
1

2
ρV2

a Sc

[

Cm0
+ Cmα

α + Cmq

c

2Va
q + Cmδe

δe

]

. (4.5)

Equations (4.3), (4.4), and (4.5) are commonly used as the basis for the

longitudinal aerodynamic model. Under typical, low-angle-of-attack

flight conditions, they are a sufficiently accurate representation of the

forces and moments produced. The flow over the aircraft body is lam-

inar and attached and the flow field over the aircraft is termed quasi-

steady, meaning it only changes slowly with respect to time. The shape

of the flow field is predictable and changes in response to changes in

the angle of attack, pitch rate, and elevator deflection. The quasi-steady

behavior of the flow field results in longitudinal aerodynamic forces

and torques that are predictable and fairly straightforward to model, as

shown above.

In contrast to the quasi-steady aerodynamics typically experi-

enced by aircraft, unsteady aerodynamics are challenging to model

and predict. Unsteady aerodynamics are characterized by nonlinear,

46 Chapter 4

Figure 4.6 The upper drawing depicts

a wing under normal flow conditions.

The flow is laminar and follows the

surface of the wing. The lower drawing

shows a wing under stall conditions

due to a high angle of attack. In this

case, the flow separates from the top

surface of the wing, leading to

turbulent flow and a significant drop

in the lift force produced by the wing.

three-dimensional, time-varying, separated flows that significantly af-

fect the forces and moments experienced by the aircraft. Two unsteady

flow scenarios of possible interest to MAV designers are high-angle-of-

attack, high-angular-rate aircraft maneuvers, such as those performed

by fighter aircraft, and flapping-wing flight. In fact, the efficiency and

maneuverability demonstrated by insects and birds is in part because of

their ability to exploit unsteady aerodynamic flow effects.

Perhaps the most important unsteady flow phenomena for MAV

designers and users to understand is stall, which occurs when the angle

of attack increases to the point that the flow separates from the wing,

resulting in a drastic loss of lift. Under stall conditions, equations (4.3),

(4.4), and (4.5) produce dangerously optimistic estimates of the aerody-

namic forces on the aircraft. This wing stall phenomenon is depicted in

figure 4.6. At low or moderate angles of attack, the flow over the wing

is laminar and stays attached to the wing as it flows over it. It is this

attached flow over the wing that produces the desired lift. When the

angle of attack exceeds the critical stall angle, the flowbegins to separate

from the top surface of the wing causing turbulent flow and an abrupt

drop in the lift produced by the wing, which can lead to catastrophic

results for the aircraft. The key weakness of the linear aerodynamic

model of equations (4.3) to (4.5) is that it fails to predict this abrupt

drop in lift force with increasing angle of attack. Instead, it erroneously

predicts that the lift force continues to increase as the angle of attack

increases to physically unrealistic flight conditions.Given that theMAV

dynamic model presented here could be used to design control laws

for real aircraft and to and simulate their performance, it is important

that the effects of wing stall be incorporated into the longitudinal

aerodynamic model.

To incorporate wing stall into our longitudinal aerodynamic model,

we modify equations (4.3) and (4.4) so that the lift and drag forces are

nonlinear in angle of attack. Thiswill allowus tomore accuratelymodel

lift and drag over wider ranges of α. Lift and drag can be modeled more

Forces and Moments 47

Figure 4.7 The lift coefficient as a

function of α (solid) can be a

approximated by blending a linear

function of alpha (dot-dashed),

with the lift coefficient of a flat

plate (dashed).

generally as

Flift =
1

2
ρV2

a S

[

CL(α) + CLq

c

2Va
q + CLδe

δe

]

(4.6)

Fdrag =
1

2
ρV2

a S

[

CD(α) + CDq

c

2Va
q + CDδe

δe

]

, (4.7)

whereCL andCD are now expressed nonlinear functions of α. For angles

of attack that are beyond the onset of stall conditions, the wing acts

roughly like a flat plate, whose lift coefficient can bemodeled as [22]

CL,flat plate = 2 sign(α) sin2 α cos α. (4.8)

To obtain an accurate model of lift versus angle of attack for a

specific wing design over a large range of angles of attack requires either

wind tunnel testing or a detailed computational study. While for many

simulation purposes it may not be necessary to have a high-fidelity

lift model specific to the aircraft under consideration, it is desirable to

have a lift model that incorporates the effects of stall. A lift model that

incorporates the common linear lift behavior and the effects of stall is

given by

CL(α) = (1 − σ (α)) [CL0
+ CLα

α] + σ (α)
[

2 sign(α) sin2 α cos α

]

, (4.9)

where

σ (α) =
1 + e−M(α−α0) + eM(α+α0)

(1 + e−M(α−α0))(1 + eM(α+α0))
, (4.10)

and M and α0 are positive constants. The sigmoid function in equa-

tion (4.10) is a blending function with cutoff at ±α0 and transition

rate M. Figure 4.7 shows the lift coefficient in equation (4.9) as a

48 Chapter 4

Figure 4.8 The drag coefficient as a function of angle of attack. Linear and

quadratic models are represented.

blended function of the linear term CL0
+ CLα

α and the flat plate term

in equation (4.8). For small aircraft, the linear lift coefficient can be

reasonably approximated as

CLα
=

πAR

1 +
√

1 + (AR/2)2
,

where AR
△
= b2/S is the wing aspect ratio, b is the wingspan, and S is the

wing area.

The drag coefficient CD is also a nonlinear function of the angle

of attack. There are two contributions to the drag coefficient, namely

induced drag and parasitic drag [22]. The parasitic drag, generated by

the shear stress of air moving over the wing and other effects, is roughly

constant and is denoted byCDp
.1 For small angles of attack, the induced

drag is proportional to the square of the lift force. Combining the

parasitic drag and the induced drag, we have

CD(α) = CDp
+

(CL0
+ CLα

α)2

πeAR
. (4.11)

The parameter e is the Oswald efficiency factor, which ranges between

0.8 and 1.0 [12].

Figure 4.8 shows typical plots of drag coefficient versus angle of attack

for quadratic and linear models. The quadratic model correctly models

1 The parasitic drag is commonly denoted in the aerodynamics literature as CD0 .

To avoid confusion with the constant term of equation (4.4), we will call it CDp . See

[12, pp. 179–180] for a detailed explanation.

Forces and Moments 49

the drag force as an even function with respect to α. The drag force

is always opposite the forward velocity of the aircraft, independent of

the sign of the angle of attack. The linear model incorrectly predicts

that the drag force becomes negative (pushing the aircraft forward)

when the angle of attack becomes sufficiently negative. The figure

clarifies the difference between the parasitic drag, CDp
, also known as

the zero-lift drag coefficient, and CD0
, the drag coefficient predicted

by the linear model at zero angle of attack. The parameters α∗ and

C∗
D are the angle of attack and the corresponding drag coefficient at

a nominal operating condition α = α∗ about which CD is linearized.

While the quadratic model provides a more accurate representation of

the influence of the angle of attack over a wider range of α, the linear

model is sometimes used because of its simplicity and its fidelity under

typical flight conditions.

The lift and drag forces expressed in equations (4.6) and (4.7) are

expressed in the stability frame. To express lift and drag in the body

frame requires a rotation by the angle of attack:

(

fx
fz

)

=
(

cos α −sin α

sin α cos α

) (

−Fdrag

−Flift

)

=
1

2
ρV2

a S























[−CD(α) cos α + CL(α) sin α]

+ [−CDq
cos α + CLq

sin α] c
2Va

q

+ [−CDδe
cos α + CLδe

sin α]δe
− − −

[−CD(α) sin α − CL(α) cos α]

+ [−CDq
sin α − CLq

cos α] c
2Va

q

+ [−CDδe
sin α − CLδe

cos α]δe























.

The functions CL(α) and CD(α) used in the force model above can be

nonlinear functions expressed in equations (4.9) and (4.11), which are

valid over a wide range of angles of attack. Alternatively, if simpler

models are desired, the linear coefficient models given by

CL(α) = CL0
+ CLα

α (4.12)

CD(α) = CD0
+ CDα

α (4.13)

can be used.

Thepitchingmoment of the aircraft is generally anonlinear function

of angle of attack and must be determined by wind tunnel or flight

experiments for the specific aircraft of interest. For the purposes of

50 Chapter 4

simulation, we will use the linear model

Cm(α) = Cm0
+ Cmα

α,

where Cmα
< 0 implies that the airframe is inherently pitch stable.

4.2.3 Lateral Aerodynamics

The lateral aerodynamic force andmoments cause translationalmotion

in the lateral direction along the jb axis as well as rotational motions in

roll and yaw that will result in directional changes in the flight path of

theMAV. The lateral aerodynamics are most significantly influenced by

the sideslip angle β. They are also influenced by the roll rate p, the yaw

rate r , the deflection of the aileron δa, and the deflection of the rudder

δr . Denoting the lateral force as fy and the roll and yaw moments as l

and n, respectively, we have

fy =
1

2
ρV2

a SCY(β, p, r, δa, δr)

l =
1

2
ρV2

a SbCl(β, p, r, δa, δr)

n =
1

2
ρV2

a SbCn(β, p, r, δa, δr),

where CY, Cl , and Cn are nondimensional aerodynamic coefficients,

and b is the wingspan of the aircraft. As with the longitudinal aero-

dynamic forces and moments, the coefficients CY, Cl , and Cn are non-

linear in their constitutive parameters, in this case β, p, r , δa, and δr .

These nonlinear relationships, however, are difficult to characterize.

Further, linear aerodynamic models yield acceptable accuracy in most

applications and provide valuable insights into the dynamic stability

of the aircraft. We will follow the approach used in section 4.2.2 to

produce the linear longitudinal aerodynamic models: first-order Taylor

series approximation and nondimensionalization of the aerodynamic

coefficients. Using this approach, linear relationships for lateral force,

roll moment, and yawmoment are given by

fy =
1

2
ρV2

a S

[

CY0 + CYβ
β + CYp

b

2Va
p + CYr

b

2Va
r + CYδa

δa + CYδr
δr

]

(4.14)

l =
1

2
ρV2

a Sb

[

Cl0 + Clβ β + Clp

b

2Va
p + Clr

b

2Va
r + Clδa δa + Clδr δr

]

(4.15)

Forces and Moments 51

n =
1

2
ρV2

a Sb

[

Cn0 + Cnβ
β + Cnp

b

2Va
p + Cnr

b

2Va
r + Cnδa

δa + Cnδr
δr

]

.

(4.16)

These forces andmoments are alignedwith the body axes of the aircraft

and do not require a rotational transformation to be implemented in

the equations of motion. The coefficient CY0 is the value of the lateral

force coefficient CY when β = p = r = δa = δa = 0. For aircraft

that are symmetrical about the ib-kb plane, CY0 is typically zero. The

coefficients Cl0 and Cn0 are defined similarly and are also typically zero

for symmetric aircraft.

4.2.4 Aerodynamic Coefficients

The aerodynamic coefficients Cmα
, Clβ , Cnβ

, Cmq
, Clp , and Cnr are referred

to as stability derivatives because their values determine the static and

dynamic stability of theMAV. Static stability deals with the direction of

aerodynamic moments as the MAV is perturbed away from its nominal

flight condition. If themoments tend to restore theMAV to its nominal

flight condition, the MAV is said to be statically stable. Most aircraft

are designed to be statically stable. The coefficients Cmα
, Clβ , and Cnβ

determine the static stability of the MAV. They represent the change in

themoment coefficients with respect to changes in the direction of the

relative airspeed, as represented by α and β.

Cmα
is referred to as the longitudinal static stability derivative. For the

MAV to be statically stable, Cmα
must be less than zero. In this case, an

increase in α due to an updraft would cause the MAV to nose down in

order to maintain the nominal angle of attack.

Clβ is called the roll static stability derivative and is typically associ-

ated with dihedral in the wings. For static stability in roll, Clβ must be

negative. A negative value for Clβ will result in rolling moments that

roll the MAV away from the direction of sideslip, thereby driving the

sideslip angle β to zero.

Cnβ
is referred to as the yaw static stability derivative and is sometimes

called the weathercock stability derivative. If an aircraft is statically

stable in yaw, it will naturally point into the wind like a weathervane

(or weathercock). The value of Cnβ
is heavily influenced by the design

of the tail of the aircraft. The larger the tail and the further the tail is

aft of the center of mass of the aircraft, the larger Cnβ
will be. For the

MAV to be stable in yaw, Cnβ
must be positive. This simply implies that

for a positive sideslip angle, a positive yawing moment will be induced.

This yawingmomentwill yaw theMAV into the direction of the relative

airspeed, driving the sideslip angle to zero.

52 Chapter 4

Dynamic stability deals with the dynamic behavior of the airframe

in response to disturbances. If a disturbance is applied to the MAV, the

MAV is said to be dynamically stable if the response of the MAV damps

out over time. If we use a second-order mass-spring-damper analogy

to analyze the MAV, the stability derivatives Cmα
, Clβ , and Cnβ

behave

like torsional springs, while the derivatives Cmq
, Clp , and Cnr behave like

torsional dampers. The moments of inertia of the MAV body provide

the mass. As we will see in chapter 5, when we linearize the dynamic

equations of motion for the MAV, the signs of the stability derivatives

must be consistent in order to ensure that the characteristic roots of the

MAV dynamics lie in the left half of the complex plane.

Cmq
is referred to as the pitch damping derivative, Clp is called the

roll damping derivative, andCnr is referred to as the yaw damping deriv-

ative. Each of these damping derivatives is usually negative, meaning

that a moment is produced that opposes the direction of motion, thus

damping themotion.

The aerodynamic coefficients Cmδe
, Clδa , and Cnδr

are associated with

the deflection of control surfaces and are referred to as the primary con-

trol derivatives. They are primary because themoments produced are the

intended result of the specific control surface deflection. For example,

the intended result of an elevator deflection δe is a pitching momentm.

Clδr and Cnδa
are called cross-control derivatives. They define the off-axis

moments that occur when the control surfaces are deflected. Control

derivatives can be thought of as gains. The larger the value of the

control derivative, the larger the magnitude of the moment produced

for a given deflection of the control surface.

The sign convention described in section 4.2.1 implies that a positive

elevator deflection results in a nose-down pitching moment (negative

about jb), positive aileron deflection causes a right-wing-down rolling

moment (positive about ib), and positive rudder deflection causes a

nose-left yawing moment (negative about kb). We will define the signs

of the primary control derivatives so that positive deflections cause

positive moments. For this to be the case, Cmδe
will be negative, Clδa will

be positive, and Cnδr
will be negative.

4.3 Propulsion Forces and Moments

4.3.1 Propeller Thrust

A simplemodel for the thrust generated by a propeller can be developed

by applying Bernoulli’s principle to calculate the pressure ahead of

and behind the propeller and then applying the pressure difference

to the propeller area. This approach will yield a model that is correct

for a perfectly efficient propeller. While overly optimistic in its thrust

Forces and Moments 53

predictions, this model will provide a reasonable starting point for a

MAV simulation.

Using Bernoulli’s equation, the total pressure upstream of the pro-

peller can be written as

Pupstream = P0 +
1

2
ρV2

a ,

where P0 is the static pressure and ρ is the air density. The pressure

downstream of the propeller can be expressed as

Pdownstream = P0 +
1

2
ρV2

exit,

where Vexit is the speed of the air as it leaves the propeller. Ignoring

the transients in the motor, there is a linear relationship between the

pulse-width-modulation command δt and the angular velocity of the

propeller. The propeller in turn creates an exit air speed of

Vexit = kmotorδt.

If Sprop is the area swept out by the propeller, then the thrust produced

by themotor is given by

Fxp = SpropCprop(Pdownstream − Pupstream)

=
1

2
ρSpropCprop[(kmotorδt)

2 − V2
a].

Therefore,

fp =
1

2
ρSpropCprop





(kmotorδt)
2 − V2

a

0

0



 .

Most MAVs are designed so that the thrust acts directly along the ib

body-axis of the aircraft. Therefore, the thrust does not produce any

moments about the center of mass of theMAV.

4.3.2 Propeller Torque

As theMAVpropeller spins, it applies force to the air that passes through

the propeller, increasing the momentum of the air while generating a

thrust force on the MAV. Equal and opposite forces are applied by the

air on the propeller. The net effect of these forces is a torque about the

propeller axis of rotation applied to the MAV. The torque applied by

the motor to the propeller (and then to the air) results in an equal and

54 Chapter 4

opposite torque applied by the propeller to the motor that is fixed to

the MAV body. This torque is opposite to the direction of the propeller

rotation andproportional to the square of the propeller angular velocity

as expressed by

Tp = −kTp
(k�δt)

2,

where � = k�δt is the propeller speed and kTp
is a constant deter-

mined by experiment. The moments due to the propulsion system are

therefore

mp =





−kTp
(k�δt)

2

0

0



 .

The effects of this propeller torque are usually relatively minor. If

unaccounted for, the propeller torque will cause a slow rolling motion

in the direction opposite the propeller rotation. It is easily corrected

by applying a small aileron deflection, which generates a rolling

moment to counteract the propeller torque.

4.4 Atmospheric Disturbances
In this section, we will discuss atmospheric disturbances, such as wind,

and describe how these disturbances enter into the dynamics of the

aircraft. In chapter 2, we defined Vg as the velocity of the airframe

relative to the ground, Va as the velocity of the airframe relative to the

surrounding air mass, and Vw as the velocity of the air mass relative

to the ground, or in other words, the wind velocity. As shown in

equation (2.6), the relationship between ground velocity, air velocity,

and wind velocity is given by

Vg = Va + Vw. (4.17)

For simulation purposes, we will assume that the total wind vector

can be represented as

Vw = Vws
+ Vwg

,

where Vws
is a constant vector that represents a steady ambient

wind, and Vwg
is a stochastic process that represents wind gusts and

other atmospheric disturbances. The ambient (steady) wind is typically

expressed in the inertial frame as

Vi
ws

=





wns

wes

wds



,

Forces and Moments 55

where wns is the speed of the steady wind in the north direction, wes is

the speed of the steadywind in the east direction, andwds is the speed of

the steadywind in the downdirection. The stochastic (gust) component

of the wind is typically expressed in the aircraft body frame because the

atmospheric effects experienced by the aircraft in the direction of its

forwardmotion occur at a higher frequency than do those in the lateral

and down directions. The gust portion of the wind can be written in

terms of its body-frame components as

Vb
wg

=





uwg

vwg

wwg



.

Experimental results indicate that a good model for the non-steady

gust portion of the wind model is obtained by passing white noise

through a linear time-invariant filter given by the von Karmen tur-

bulence spectrum in [22]. Unfortunately, the von Karmen spectrum

does not result in a rational transfer function. A suitable approxi-

mation of the von Karmen model is given by the Dryden transfer

functions

Hu(s) = σu

√

2Va

Lu

1

s + Va

Lu

Hv(s) = σv

√

3Va

Lv

(

s + Va√
3Lv

)

(

s + Va

Lv

)2

Hw(s) = σw

√

3Va

Lw

(

s + Va√
3Lw

)

(

s + Va

Lw

)2
,

where σu, σv, and σw are the intensities of the turbulence along the

vehicle frame axes; and Lu, Lv, and Lw are spatial wavelengths; and Va

is the airspeed of the vehicle. The Dryden models are typically imple-

mented assuming a constant nominal airspeed Va0 . The parameters for

theDryden gustmodel are defined inMIL-F-8785C. Suitable parameters

for low and medium altitudes and light and moderate turbulence were

presented in [24] and are shown in table 4.1.

Figure 4.9 shows how the steady wind and atmospheric disturbance

components enter into the equations of motion. White noise is passed

through the Dryden filters to produce the gust components expressed

in the vehicle frame. The steady components of the wind are rotated

56 Chapter 4

Table 4.1

Dryden gust model parameters [24]

altitude Lu = Lv Lw σu = σv σw

gust description (m) (m) (m) (m/s) (m/s)

low altitude, light

turbulence

50 200 50 1.06 0.7

low altitude, moderate

turbulence

50 200 50 2.12 1.4

medium altitude, light

turbulence

600 533 533 1.5 1.5

medium altitude,

moderate turbulence

600 533 533 3.0 3.0

Figure 4.9 The wind is modeled as a constant wind field plus turbulence. The

turbulence is generated by filtering white noise with a Dryden model.

from the inertial frame into the body frame and added to the gust com-

ponents to produce the total wind in the body frame. The combination

of steady and gust terms can be expressedmathematically as

Vb
w =





uw

vw

ww



 = Rb
v(φ, θ, ψ)





wns

wes

wds



+





uwg

vwg

wwg



,

where Rb
v is the rotation matrix from the vehicle to the body frame

given in equation (2.5). From the components of the wind veloc-

ity Vb
w and the ground velocity Vb

g , we can calculate the body-frame

Forces and Moments 57

components of the airspeed vector as

Vb
a =





ur
vr

wr



 =





u − uw

v − vw

w − ww



.

From the body-frame components of the airspeed vector, we can calcu-

late the airspeed magnitude, the angle of attack, and the sideslip angle

according to equation (2.8) as

Va =
√

u2r + v2
r + w2

r

α = tan−1

(

wr

ur

)

β = sin−1

(

vr
√

u2r + v2
r + w2

r

)

.

These expressions for Va, α, and β are used to calculate the aerodynamic

forces andmoments acting on the vehicle. The key point to understand

is that wind and atmospheric disturbances affect the airspeed, the

angle of attack, and the sideslip angle. It is through these parameters

that wind and atmospheric effects enter the calculation of the aerody-

namic forces and moments and thereby influence the motion of the

aircraft.

4.5 Chapter Summary
The total forces on theMAV can be summarized as follows:





fx
fy

fz



 =







−mg sin θ

mg cos θ sin φ

mg cos θ cos φ







+
1

2
ρV2

a S









CX(α) + CXq
(α) c

2Va
q + CXδe

(α)δe

CY0 + CYβ
β + CYp

b
2Va

p + CYr
b

2Va
r + CYδa

δa + CYδr
δr

CZ(α) + CZq
(α) c

2Va
q + CZδe

(α)δe









+
1

2
ρSpropCprop





(kmotorδt)
2 − V2

a

0

0



 , (4.18)

58 Chapter 4

where

CX(α)
△= −CD(α) cos α + CL(α)sin α

CXq
(α)

△= −CDq
cos α + CLq

sin α

CXδe
(α)

△= −CDδe
cos α + CLδe

sin α (4.19)

CZ(α)
△= −CD(α) sin α − CL(α)cos α

CZq
(α)

△= −CDq
sin α − CLq

cos α

CZδe
(α)

△= −CDδe
sin α − CLδe

cos α,

and where CL(α) is given by equation (4.9) and CD(α) is given by

equation (4.11). The subscripts X and Z denote that the forces act in

the X and Z directions in the body frame, which correspond to the

directions of the ib and the kb vectors.

The total torques on theMAV can be summarized as follows:





l

m

n



 =
1

2
ρV2

a S











b
[

Cl0 + Clβ β + Clp
b

2Va
p + Clr

b
2Va

r + Clδa δa + Clδr δr

]

c
[

Cm0
+ Cmα

α + Cmq

c
2Va

q + Cmδe
δe

]

b
[

Cn0 + Cnβ
β + Cnp

b
2Va

p + Cnr
b

2Va
r + Cnδa

δa + Cnδr
δr

]











+





−kTp
(k�δt)

2

0

0



 . (4.20)

Notes and References

The material in this chapter can be found in most textbooks on flight

dynamics, including [12, 22, 1, 2, 5, 7, 25]. Our discussion on lift, drag,

and moment coefficients is drawn primarily from [22]. Decomposing

the wind vector into a constant and a random term follows [22]. Our

discussion of aircraft aerodynamics and dynamics focused on effects of

primary significance. A more thorough coverage of flight mechanics,

including topics such as ground effect and gyroscopic effects, can be

found in [25].

4.6 Design Project
4.1. Download the simulation files from the website. Modify the

block forces_moments.m that implements the gravity,

aerodynamic, and propulsion forces and torques described

in this chapter. Use the parameters given in appendix E.

Forces and Moments 59

4.2. Modify the gust block to output wind gusts along the body

axes. Modify forces_moments.m so that the outputs are

the forces andmoments resolved in the body frame, the

airspeed Va, the angle of attack α, the sideslip angle β, and

the wind vectors resolved in the inertial frame (wn, we, wd)
⊤.

4.3. Verify your simulation by setting the control surface

deflections to different values. Observe the response of the

MAV. Does it behave as you think it should?

5
Linear Design Models

As chapters 3 and 4 have shown, the equations of motion for a MAV

are a fairly complicated set of 12 nonlinear, coupled, first-order, ordi-

nary differential equations, which we will present in their entirety in

section 5.1. Because of their complexity, designing controllers based

on them is difficult and requires more straightforward approaches. In

this chapter, we will linearize and decouple the equations of motion to

produce reduced-order transfer function and state-space models more

suitable for control system design. Low-level autopilot control loops

for unmanned aircraft will be designed based on these linear design

models, which capture the approximate dynamic behavior of the sys-

tem under specific conditions. The objective of this chapter is to derive

the linear design models that will be used in chapter 6 to design the

autopilot.

The dynamics for fixed-wing aircraft can be approximately decom-

posed into longitudinal motion, which includes airspeed, pitch angle,

and altitude, and into lateral motion, which includes roll and head-

ing angles. While there is coupling between longitudinal and lateral

motion, for most airframes the dynamic coupling is sufficiently small

that its unwanted effects can be mitigated by control algorithms de-

signed for disturbance rejection. In this chapter we will follow the stan-

dard convention and decompose the dynamics into lateral and longitu-

dinal motion. Many of the linear models presented in this chapter are

derived with respect to an equilibrium condition. In flight dynamics,

force and moment equilibrium is called trim, which is discussed in

section 5.3. Transfer functions for both the lateral and longitudinal

dynamics are derived in section 5.4. State-space models are derived in

section 5.5.

5.1 Summary of Nonlinear Equations of Motion
A variety of models for the aerodynamic forces and moments appear

in the literature ranging from linear, uncoupled models to highly

nonlinear models with significant cross coupling. In this section, we

summarize the six-degree-of-freedom, 12-state equations of motion

with the quasi-linear aerodynamic and propulsion models developed

in chapter 4. We characterize them as quasi-linear because the lift and

Linear Design Models 61

drag terms are nonlinear in the angle of attack, and the propeller thrust

is nonlinear in the throttle command. For completeness, we will also

present the linear models for lift and drag that are commonly used.

Incorporating the aerodynamic and propulsion models described in

chapter 4 into equations (3.14)–(3.17), we get the following equations

of motion:

.
pn = (cos θ cos ψ)u + (sin φ sin θ cos ψ − cos φ sin ψ)v

+ (cos φ sin θ cos ψ + sin φ sin ψ)w (5.1)

.
pe = (cos θ sin ψ)u + (sin φ sin θ sin ψ + cos φ cos ψ)v

+ (cos φ sin θ sin ψ − sin φ cos ψ)w (5.2)

.
h = u sin θ − v sin φ cos θ − w cos φ cos θ (5.3)

.
u = rv − qw − g sin θ

+
ρV2

a S

2m

[

CX(α) + CXq
(α)

cq

2Va
+ CXδe

(α)δe

]

+
ρSpropCprop

2m

[

(kmotorδt)
2 − V2

a

]

(5.4)

.
v = pw − r u + g cos θ sin φ +

ρV2
a S

2m

×
[

CY0 + CYβ
β + CYp

bp

2Va
+ CYr

br

2Va
+ CYδa

δa + CYδr
δr

]

(5.5)

.
w = qu − pv + g cos θ cos φ

+
ρV2

a S

2m

[

CZ(α) + CZq
(α)

cq

2Va
+ CZδe

(α)δe

]

(5.6)

.
φ = p + q sin φ tan θ + r cos φ tan θ (5.7)

.
θ = q cos φ − r sin φ (5.8)

.
ψ = q sin φ sec θ + r cos φ sec θ (5.9)

.
p = Ŵ1 pq − Ŵ2qr +

1

2
ρV2

a Sb

×
[

Cp0 + Cpβ
β + Cpp

bp

2Va
+ Cpr

br

2Va
+ Cpδa

δa + Cpδr
δr

]

(5.10)

62 Chapter 5

.
q = Ŵ5 pr − Ŵ6(p

2 − r 2) +
ρV2

a Sc

2J y

×
[

Cm0
+ Cmα

α + Cmq

cq

2Va
+ Cmδe

δe

]

(5.11)

.
r = Ŵ7 pq − Ŵ1qr +

1

2
ρV2

a Sb

×
[

Cr0 + Crβ β + Cr p

bp

2Va
+ Crr

br

2Va
+ Crδa δa + Crδr δr

]

, (5.12)

where h = −pd is the altitude and

Cp0 = Ŵ3Cl0 + Ŵ4Cn0

Cpβ
= Ŵ3Clβ + Ŵ4Cnβ

Cpp
= Ŵ3Clp + Ŵ4Cnp

Cpr = Ŵ3Clr + Ŵ4Cnr

Cpδa
= Ŵ3Clδa + Ŵ4Cnδa

Cpδr
= Ŵ3Clδr + Ŵ4Cnδr

Cr0 = Ŵ4Cl0 + Ŵ8Cn0

Crβ = Ŵ4Clβ + Ŵ8Cnβ

Cr p = Ŵ4Clp + Ŵ8Cnp

Crr = Ŵ4Clr + Ŵ8Cnr

Crδa = Ŵ4Clδa + Ŵ8Cnδa

Crδr = Ŵ4Clδr + Ŵ8Cnδr
.

The inertia parameters specified by Ŵ1, Ŵ2, . . . , Ŵ8 are defined in equa-

tion (3.13). As shown in chapter 4, the aerodynamic force coefficients

in the X and Z directions are nonlinear functions of the angle of attack.

For completeness, we restate them here as

CX(α)
△= −CD(α) cos α + CL(α) sin α

CXq
(α)

△= −CDq
cos α + CLq

sin α

CXδe
(α)

△= −CDδe
cos α + CLδe

sin α

CZ(α)
△= −CD(α) sin α − CL(α) cos α

CZq
(α)

△= −CDq
sin α − CLq

cos α

CZδe
(α)

△= −CDδe
sin α − CLδe

cos α.

Linear Design Models 63

If we incorporate the effects of stall into the lift coefficient, we can

model it as

CL(α) = (1 − σ (α))[CL0
+ CLα

α] + σ (α)[2 sign(α) sin2 α cos α],

where

σ (α) =
1 + e−M(α−α0) + eM(α+α0)

(1 + e−M(α−α0))(1 + eM(α+α0))
,

and M and α0 are positive constants.

Further, it is common to model drag as a nonlinear quadratic func-

tion of the lift as

CD(α) = CDp
+

(CL0
+ CLα

α)2

πeAR
,

where e is the Oswald efficiency factor and AR is the aspect ratio of the

wing.

If we are interested in modeling MAV flight under low-angle-

of-attack conditions, simpler, linear models for the lift and drag

coefficients can be used, such as

CL(α) = CL0
+ CLα

α

CD(α) = CD0
+ CDα

α.

The equations provided in this section completely describe the dy-

namic behavior of a MAV in response to inputs from the throttle and

the aerodynamic control surfaces (ailerons, elevator, and rudder). These

equations are the basis for much of what we do in the remainder of the

book and are the core of the MAV simulation environment developed

as part of the project exercises at the end of each chapter.

An alternative form of these equations, utilizing quaternions to

represent the MAV attitude, is given in appendix B. The quaternion-

based equations are free of the gimbal-lock singularity and are more

computationally efficient than the Euler-angle-based equations of

motion. For this reason, the quaternion form of the equations of

motion are often used as the basis for high-fidelity simulations. The

quaternion representation of attitude is difficult to interpret physically.

For this reason, the Euler-angle representation of attitude is preferred

for the reduced-order, linear models that will be developed in this

chapter. Furthermore, the gimbal-lock singularity is far removed from

the flight conditions thatwill be considered subsequently, and thuswill

not cause issues with themodels to be developed.

64 Chapter 5

Figure 5.1 Free-body diagrams indicating forces on a MAV in a climbing

coordinated turn.

5.2 Coordinated Turn
Referring to equation (5.9), we can see that heading rate is related to

the pitch rate, yaw rate, pitch, and roll states of the aircraft. Each of

these states is governed by an ordinary differential equation. Physically,

we know that heading rate is related to the roll or bank angle of the

aircraft, and we seek a simplified relationship to help us develop linear

transfer function relationships in coming sections of this chapter. The

coordinated-turn conditionprovides this relationship. The coordinated

turn is a sought-after flight condition in manned flight for reasons

of passenger comfort. During a coordinated turn, there is no lateral

acceleration in the body frame of the aircraft. The aircraft “carves”

the turn rather than skidding laterally. From an analysis perspective,

the assumption of a coordinated turn allows us to develop a simplified

expression that relates course (or heading) rate and bank angle, as

shown by Phillips [25]. During a coordinated turn, the bank angle φ

is set so that there is no net side force acting on the MAV. As shown

in the free-body diagram of figure 5.1, the centrifugal force acting on

the MAV is equal and opposite to the horizontal component of the lift

force acting in the radial direction. Summing forces in the horizontal

direction gives

Flift sin φ cos(χ − ψ) = m
v2

R

= mvω

= m(Vg cos γ)
.
χ, (5.13)

Linear Design Models 65

where Flift is the lift force, γ is the flight path angle, Vg is the ground

speed, and χ is the course angle.

The centrifugal force is calculated using the angular rate
.
χ about the

inertial frame ki axis and the horizontal component of the airspeed,

Va cos γ . Similarly, the vertical component of the lift force is equal and

opposite to the projection of the gravitational force onto the jb-kb plane

as shown in figure 5.1. Summing vertical force components gives

Flift cos φ = mg cos γ. (5.14)

Dividing equation (5.13) by equation (5.14) and solving for
.
χ gives

.
χ =

g

Vg
tan φ cos(χ − ψ), (5.15)

which is the equation for a coordinated turn. Given that the turning

radius is given by R = Vg cos γ /
.
χ , we get

R =
V2
g cos γ

g tan φ cos(χ − ψ)
. (5.16)

In the absence of wind or sideslip, we have that Va = Vg and ψ = χ ,

which leads to the following expressions for the coordinated turn

.
χ =

g

Vg
tan φ =

.
ψ =

g

Va
tan φ.

These expressions for the coordinated turnwill be used at several points

in the text as ameans for deriving simplified expressions for the turn dy-

namics of aMAV. Further discussion on coordinated turns can be found

in [25, 26, 27, 130], and we will have more to say about coordinated

turns in section 9.2, where we will show that

.
ψ =

g

Va
tan φ

also holds true in the presence of wind.

5.3 Trim Conditions
Given a nonlinear system described by the differential equations

.
x = f (x, u),

where f : Rn × Rm → R
n, x is the state of the system, and u is the input,

the system is said to be in equilibrium at the state x∗ and input u∗ if

f (x∗, u∗) = 0.

66 Chapter 5

When a MAV is in constant-altitude, wings-level steady flight, a

subset of its states are in equilibrium. In particular, the altitude h=− pd;

the body frame velocities u, v, w; the Euler angles φ, θ , ψ ; and the

angular rates p, q, and r are all constant. In the aerodynamics litera-

ture, an aircraft in equilibrium is said to be in trim. In general, trim

conditions may include states that are not constant. For example, in

steady-climb, wings-level flight,
.
h is constant and h grows linearly. Also,

in a constant turn
.

ψ is constant and ψ has linear growth. Therefore, in

general, the conditions for trim are given by

.
x∗ = f (x∗, u∗).

In the process of performing trim calculations for the aircraft, wewill

treat wind as an unknown disturbance. Since its effect on the MAV is

unknown, we will find trim assuming that the wind speed is zero: i.e.,

Va = Vg , ψ = χ , and γ = γa.

The objective is to compute trim states and inputs when the aircraft

simultaneously satisfies the following three conditions:

• It is traveling at a constant speed V∗
a ,

• It is climbing at a constant flight path angle of γ ∗,

• It is in a constant orbit of radius R∗.

The three parameters V∗
a , γ

∗, and R∗, are inputs to the trim calculations.

We will assume that R∗ ≥ Rmin, where Rmin is the minimum turning

radius of the aircraft. Themost common scenario where trim values are

needed are in wings-level, constant-altitude flight. In that case we have

γ ∗ = 0 and R∗ = ∞. Another common scenario is a constant altitude

orbit with radius R∗. In that case γ ∗ = 0.

For fixed-wing aircraft, the states are given by

x
△= (pn, pe, pd, u, v, w, φ, θ, ψ, p, q, r)⊤ (5.17)

and the inputs are given by

u
△= (δe, δt, δa, δr)

⊤, (5.18)

and f (x, u) is specified by the right-hand side of equations (5.1)–(5.12).

Note however, that the right-hand side of equations (5.1)–(5.12) are

independent of pn, pe, pd. Therefore, trimmed flight is independent of

position. In addition, since only
.
pn and

.
pe are dependent onψ , trimmed

flight is also independent of the heading ψ .

In a constant-climb orbit, the speed of the aircraft is not changing,

which implies that
.
u∗ = .

v
∗ = .

w
∗ = 0. Similarly, since the roll and pitch

angles will be constant, we have that
.
φ∗ =

.
θ∗ = .

p∗ =
.
q∗ = 0. The turn

Linear Design Models 67

rate is constant and is given by

.
ψ∗ =

V∗
a

R∗ cos γ ∗, (5.19)

which implies that
.
r ∗ = 0. Finally, the climb rate is constant, and is

given by

.
h∗ = V∗

a sin γ ∗. (5.20)

Therefore, given the parameters V∗
a , γ ∗, and R∗, it is possible to

specify
.
x∗
, as

.
x∗ =













































































.
p∗
n

.
p∗
e

.
h∗

.
u∗

.
v

∗

.
w

∗

.
φ∗

.
θ∗

.
ψ∗

.
p∗

.
q∗

.
r ∗













































































=











































































[don’t care]

[don’t care]

V∗
a sin γ ∗

0

0

0

0

0

V∗
a

R∗ cos γ ∗

0

0

0











































































. (5.21)

The problem of finding x∗ (with the exception of p∗
n, p

∗
e , h

∗ and ψ∗)

and u∗ such that
.
x∗ = f (x∗, u∗), reduces to solving a nonlinear algebraic

system of equations. There are numerous numerical techniques for

solving this system of equations. Appendix F describes twomethods for

solving this system of equations. The first is to use the Simulink trim

command. If Simulink is not available, however, then appendix F also

describes the process required to write a dedicated trim routine.

68 Chapter 5

5.4 Transfer Function Models
Transfer function models for the lateral dynamics are derived in

section 5.4.1. These describe themotion of the aircraft in the horizontal

plane. Transfer function models for the longitudinal dynamics that

describe the motion of the aircraft in the vertical plane are derived in

section 5.4.1.

5.4.1 Lateral Transfer Functions

For the lateral dynamics, the variables of interest are the roll angle φ, the

roll rate p, the heading angleψ , and the yaw rate r . The control surfaces

used to influence the lateral dynamics are the ailerons δa, and the rudder

δr . The ailerons are primarily used to influence the roll rate p, while the

rudder is primarily used to control the yaw ψ of the aircraft.

Roll Angle

Our first task is to derive a transfer function from the the ailerons δa to

the roll angle φ. From equation (5.7), we have

.
φ = p + q sin φ tan θ + r cos φ tan θ.

Since in most flight conditions, θ will be small, the primary influence

on
.
φ is the roll rate p. Defining

dφ1

△= q sin φ tan θ + rcos φ tan θ

and considering dφ1
as a disturbance gives

.
φ = p + dφ1

. (5.22)

Differentiating equation (5.22) and using equation (5.10) we get

φ̈ = .
p +

.
dφ1

= Ŵ1 pq − Ŵ2qr

+
1

2
ρV2

a Sb

[

Cp0 + Cpβ
β + Cpp

bp

2Va
+ Cpr

br

2Va
+ Cpδa

δa + Cpδr
δr

]

+
.
dφ1

= Ŵ1 pq − Ŵ2qr +
1

2
ρV2

a Sb

×
[

Cp0 + Cpβ
β + Cpp

b

2Va
(
.
φ − dφ1

) + Cpr

br

2Va
+ Cpδa

δa + Cpδr
δr

]

+
.
dφ1

Linear Design Models 69

Figure 5.2 Block diagram for roll

dynamics. The inputs are the ailerons δa

and the disturbance dφ2
.

=
(

1

2
ρV2

a SbCpp

b

2Va

)

.
φ +
(

1

2
ρV2

a SbCpδa

)

δa

+
{

Ŵ1 pq − Ŵ2qr +
1

2
ρV2

a Sb

[

Cp0 + Cpβ
β − Cpp

b

2Va
(dφ1

) + Cpr

br

2Va

+ Cpδr
δr

]

+
.
dφ1

}

= −aφ1

.
φ + aφ2

δa + dφ2
,

where

aφ1

△= −
1

2
ρV2

a SbCpp

b

2Va
(5.23)

aφ2

△=
1

2
ρV2

a SbCpδa
(5.24)

dφ2

△= Ŵ1 pq − Ŵ2qr +
1

2
ρV2

a Sb

×
[

Cp0 + Cpβ
β − Cpp

b

2Va
(dφ1

) + Cpr

br

2Va
+ Cpδr

δr

]

+
.
dφ1

, (5.25)

where dφ2
is considered a disturbance on the system.

In the Laplace domain, we have

φ(s) =
(

aφ2

s(s + aφ1
)

) (

δa(s) +
1

aφ2

dφ2
(s)

)

. (5.26)

A block diagram is shown in figure 5.2, where the inputs to the block

diagram are the ailerons δa and the disturbance dφ2
.

Course and Heading

Wecan also derive a transfer function from the roll angle φ to the course

angle χ . In a coordinated turn with zero wind, we have that

.
χ =

g

Vg
tan φ.

70 Chapter 5

Figure 5.3 Block diagram for lateral dynamics. The roll rate p is shown explicitly

because it can be obtained directly from the rate gyros and will be used as a

feedback signal in chapter 6.

This equation can be rewritten as

.
χ =

g

Vg
φ +

g

Vg
(tan φ − φ)

=
g

Vg
φ +

g

Vg
dχ ,

where

dχ = tan φ − φ

is a disturbance. In the Laplace domain, we have

χ(s) =
g/Vg

s
(φ(s) + dχ (s)). (5.27)

This leads to the block diagram for the lateral dynamics controlled by

the aileron shown in figure 5.3. To implement this transfer function, we

need a value for the ground speed Vg . Since we have assumed zero wind,

and we can further assume that the aircraft will track its commanded

airspeed, we can use the commanded airspeed as the value for Vg . In

chapter 6, we will design control laws to control the flight path of

the aircraft relative to the ground. This, combined with the fact that

course measurements are readily available from GPS, has lead us to

express the transfer function in equation (5.27) in terms of the course

angle χ . This transfer function could alternatively be expressed as

ψ(s) =
g/Va

s
(φ(s) + dχ (s)).

Sideslip

A second component of the lateral dynamics is the yaw behavior in

response to rudder inputs. In the absence of wind, v = Va sin β. For

Linear Design Models 71

Figure 5.4 Block diagram for the

rudder-side slip dynamics.

a constant airspeed, this results in
.
v = (Vacos β)

.
β. Therefore, from

equation (5.5), we have

(Va cos β)
.
β = pw − r u + g cos θ sin φ +

ρV2
a S

2m

×
[

CY0 + CYβ
β + CYp

bp

2Va
+ CYr

br

2Va
+ CYδa

δa + CYδr
δr

]

.

With the reasonable assumption that β is small, this leads to cos β ≈ 1

and

.
β = −aβ1

β + aβ2
δr + dβ ,

where

aβ1
= −

ρVaS

2m
CYβ

aβ2
=

ρVaS

2m
CYδr

dβ =
1

Va
(pw − r u + g cos θ sin φ)

+
ρVaS

2m

[

CY0 + CYp

bp

2Va
+ CYr

br

2Va
+ CYδa

δa

]

.

In the Laplace domain, we have

β(s) =
aβ2

s + aβ1

(δr (s) + dβ(s)). (5.28)

This transfer function is depicted in block diagram form in figure 5.4.

Longitudinal Transfer Functions

In this section we will derive transfer function models for the longi-

tudinal dynamics. The variables of interest are the pitch angle θ , the

pitch rate q, the altitude h = −pd, and the airspeed Va. The control

72 Chapter 5

signals used to influence the longitudinal dynamics are the elevator δe

and the throttle δt. The elevator will be used to directly influence the

pitch angle θ . As we will show below, the pitch angle can be used to

manipulate both the altitude h and the airspeed Va. The airspeed can

be used tomanipulate the altitude, and the throttle is used to influence

the airspeed. The transfer functions derived in this section will be used

in chapter 6 to design an altitude control strategy.

Pitch Angle

We begin by deriving a simplified relationship between the elevator δe

and the pitch angle θ . From equation (5.8), we have

.
θ = q cos φ − r sin φ

= q + q(cos φ − 1) − r sin φ

△= q + dθ1 ,

where dθ1

△= q(cos φ − 1) − r sin φ and where dθ1 is small for small roll

angles φ. Differentiating, we get

θ̈ =
.
q +

.
dθ1 .

Using equation (5.11) and the relationship θ = α + γa, where γa = γ is

the flight path angle, we get

θ̈ = Ŵ6(r
2 − p2) + Ŵ5 pr +

ρV2
a cS

2J y

[

Cm0
+ Cmα

α + Cmq

cq

2Va
+ Cmδe

δe

]

+
.
dθ1

= Ŵ6(r
2 − p2) + Ŵ5 pr +

ρV2
a cS

2J y

×
[

Cm0
+ Cmα

(θ − γ) + Cmq

c

2Va
(
.
θ − dθ1) + Cmδe

δe

]

+
.
dθ1

=
(

ρV2
a cS

2J y

Cmq

c

2Va

)

.
θ +
(

ρV2
a cS

2J y

Cmα

)

θ +
(

ρV2
a cS

2J y

Cmδe

)

δe

+
{

Ŵ6(r
2 − p2) + Ŵ5 pr +

ρV2
a cS

J y

[

Cm0
− Cmα

γ − Cmq

c

2Va
dθ1

]

+
.
dθ1

}

= −aθ1

.
θ − aθ2θ + aθ3δe + dθ2 ,

Linear Design Models 73

Figure 5.5 Block diagram for the transfer function from the elevator to the pitch

angle. The pitch rate q is shown explicitly because it is available from the rate

gyros and will be used as a feedback signal in chapter 6.

where

aθ1

△= −
ρV2

a cS

2J y

Cmq

c

2Va

aθ2

△= −
ρV2

a cS

2J y

Cmα

aθ3

△=
ρV2

a cS

2J y

Cmδe

dθ2

△= Ŵ6(r
2 − p2) + Ŵ5 pr +

ρV2
a cS

2J y

[

Cm0
− Cmα

γ − Cmq

c

2Va
dθ1

]

+
.
dθ1 .

We have derived a linear model for the evolution of the pitch angle.

Taking the Laplace transform, we have

θ(s) =
(

aθ3

s2 + aθ1s + aθ2

) (

δe(s) +
1

aθ3

dθ2(s)

)

. (5.29)

Note that in straight and level flight, r = p = φ = γ = 0. In addition,

airframes are usually designed so that Cm0
=0, which implies that dθ2 =

0. Using the fact that
.
θ = q + dθ1 , we get the block diagram shown in

figure 5.5. The model shown in figure 5.5 is useful because the pitch

rate q is directly available from the rate gyros for feedback and therefore

needs to be accessible in themodel.

Altitude

For a constant airspeed, the pitch angle directly influences the climb

rate of the aircraft. Therefore, we can develop a transfer function from

74 Chapter 5

Figure 5.6 Block diagram for longitudinal dynamics.

pitch angle to altitude. From equation (5.3), we have

.
h = u sin θ − v sin φ cos θ − w cos φ cos θ

= Vaθ + (u sin θ − Vaθ) − v sin φ cos θ − w cos φ cos θ

= Vaθ + dh, (5.30)

where

dh
△= (u sin θ − Vaθ) − v sin φ cos θ − w cos φ cos θ.

Note that in straight and level flight, where v ≈ 0, w ≈ 0, u ≈ Va, φ ≈ 0

and θ is small, we have dh ≈ 0.

If we assume that Va is constant and that θ is the input, then in the

Laplace domain equation (5.30) becomes

h(s) =
Va

s

(

θ +
1

Va
dh

)

, (5.31)

and the resulting block diagram for the longitudinal dynamics from

the elevator to the altitude is shown in figure 5.6. Alternatively, if the

pitch angle is held constant, then increasing the airspeed will result

in increased lift over the wings, resulting in a change in altitude. To

derive the transfer function from airspeed to altitude, hold θ constant

in equation (5.30) and consider Va as the input to obtain

h(s) =
θ

s

(

Va +
1

θ
dh

)

. (5.32)

The altitude controllers discussed in chapter 6 will regulate altitude

using both pitch angle and airspeed. Similarly, the airspeed will be reg-

ulated using both the throttle setting and the pitch angle. For example,

when the pitch angle is constant, increasing the throttle will increase

the thrust, which increases the airspeed of the vehicle. On the other

hand, if the throttle is held constant, then pitching the nose down will

Linear Design Models 75

decrease the lift causing the aircraft to accelerate downward under the

influence of gravity, thereby increasing its airspeed.

Airspeed

To complete the longitudinal models, we derive the transfer functions

from throttle and pitch angle to airspeed. Toward that objective, note

that if wind speed is zero, then Va =
√
u2 + v2 + w2, which implies that

.
Va =

u
.
u + v

.
v + w

.
w

Va
.

Using equation (2.7), we get

.
Va = .

u cos α cos β + .
v sin β + .

w sin α cos β

= .
u cos α + .

w sin α + dV1
, (5.33)

where

dV1
= − .

u(1 − cos β) cos α − .
w(1 − cos β) sin α + .

v sin β.

Note that when β = 0, we have dV1 = 0. Substituting equations (5.4)

and (5.6) in equation (5.33), we obtain

.
Va = cos α

{

rv − qw + r − g sin θ +
ρV2

a S

2m

[

− CD(α) cos α

+ CL(α) sin α + (−CDq
cos α + CLq

sin α)
cq

2Va

+ (−CDδe
cos α + CLδe

sin α)δe

]

+
ρSpropCprop

2m

[

(kδt)
2 − V2

a

]

}

+ sin α

{

qur − pvr + g cos θ cos φ +
ρV2

a S

2m

×
[

−CD(α) sin α − CL(α) cos α + (−CDq
sin α − CLq

cos α)
cq

2Va

+ (−CDδe
sin α − CLδe

cos α)δe

] }

+ dV1
.

76 Chapter 5

Using equations (2.7) and the linear approximationCD(α) ≈ CD0
+CDα

α,

and simplifying, we get

.
Va = r Va cos α sin β − pVa sin α sin β

− g cos α sin θ + g sin α cos θ cos φ

+
ρV2

a S

2m

[

−CD(α) − CDα
α − CDq

cq

2Va
− CDδe

δe

]

+
ρSpropCprop

2m

[

(kδt)
2 − V2

a

]

cos α + dV1

= (r Va cos α − pVa sin α) sin β

− g sin(θ − α) − g sin α cos θ(1 − cos φ)

+
ρV2

a S

2m

[

−CD0
− CDα

α − CDq

cq

2Va
− CDδe

δe

]

+
ρSpropCprop

2m

[

(kδt)
2 − V2

a

]

cos α + dV1

= −g sin γ +
ρV2

a S

2m

[

−CD0
− CDα

α − CDq

cq

2Va
− CDδe

δe

]

+
ρSpropCprop

2m

[

(kδt)
2 − V2

a

]

+ dV2
, (5.34)

where

dV2
= (r Va cos α − pVa sin α) sin β − g sin α cos θ(1 − cos φ)

+
ρSpropCprop

2m
[(kδt)

2 − V2
a](cos α − 1) + dV1

.

Again note that in level flight dV2
≈ 0.

When considering airspeed Va, there are two inputs of interest: the

throttle setting δt and the pitch angle θ . Since equation (5.34) is non-

linear in Va and δt, we must first linearize before we can find the desired

transfer functions. Following the approach outlined in section 5.5.1, we

can linearize equation (5.34) by letting V̄a
△= Va − V∗

a be the deviation of

Va from trim, θ̄
△= θ − θ∗ be the deviation of θ from trim, and δ̄t

△= δt − δ∗
t

be the deviation of the throttle from trim. Equation (5.34) can then

Linear Design Models 77

Figure 5.7 Block diagram for airspeed dynamics linearized about trim conditions.

The inputs are either the deviation of the pitch angle from trim, or the deviation

of the throttle from trim.

be linearized around the wings-level, constant-altitude (γ ∗ = 0) trim

condition to give

.
V̄a = −g cos(θ∗ − α∗)θ̄ +

{

ρV∗
a S

m

[

−CD0
− CDα

α∗ − CDδe
δ∗
e

]

−
ρSprop

m
CpropV

∗
a

}

V̄a +
[

ρSprop

m
Cpropk

2δ∗
t

]

δ̄t + dV

= −aV1
V̄a + aV2

δ̄t − aV3
θ̄ + dV, (5.35)

where

aV1
=

ρV∗
a S

m

[

CD0
+ CDα

α∗ + CDδe
δ∗
e

]

+
ρSprop

m
CpropV

∗
a

aV2
=

ρSprop

m
Cpropk

2δ∗
t

aV3
= g cos(θ∗ − χ∗),

and dV includes dV2
as well as the linearization error. In the Laplace

domain we have

V̄a(s) =
1

s + aV1

(aV2
δ̄t(s) − aV3

θ̄(s) + dV(s)). (5.36)

The associated block diagram is shown in figure 5.7.

5.5 Linear State-space Models
In this section we will derive linear state-space models for both

longitudinal and lateral motion by linearizing equations (5.1)–(5.12)

about trim conditions. Section 5.5.1 discusses general linearization

78 Chapter 5

techniques. Section 5.5.2 derives the state-space equations for the lat-

eral dynamics, and section 5.5.3 derives the state-space equations for

the longitudinal dynamics. Finally, section 5.6 describes the reduced-

order modes including the short-period mode, the phugoid mode, the

dutch-roll mode, and the spiral-divergence mode.

5.5.1 Linearization

Given the general nonlinear system of equations

.
x = f (x, u),

where x ∈ Rn is the state and u ∈ Rm is the control vector, and suppose

that, using the techniques discussed in section 5.3, a trim input u∗ and

state x∗ can be found such that

.
x∗ = f (x∗, u∗) = 0.

Letting x̄
△= x − x∗, we get

.
x̄ = .

x − .
x∗

= f (x, u) − f (x∗, u∗)

= f (x + x∗ − x∗, u + u∗ − u∗) − f (x∗, u∗)

= f (x∗ + x̄, u∗ + ū) − f (x∗, u∗).

Taking the Taylor series expansion of the first term about the trim state,

we get

.
x̄ = f (x∗, u∗) +

∂ f (x∗, u∗)

∂x
x̄ +

∂ f (x∗, u∗)

∂u
ū + H.O.T. − f (x∗, u∗)

≈
∂ f (x∗, u∗)

∂x
x̄ +

∂ f (x∗, u∗)

∂u
ū. (5.37)

Therefore, the linearized dynamics are determined by finding ∂ f
∂x

and ∂ f
∂u
,

evaluated at the trim conditions.

5.5.2 Lateral State-space Equations

For the lateral state-space equations, the state is given by

.
xlat

△= (v, p, r, φ, ψ)⊤,

Linear Design Models 79

and the input vector is defined as

ulat
△= (δa, δr)

⊤.

Expressing equations (5.5), (5.10), (5.12), (5.7), and (5.9) in terms of xlat
and ulat, we get

.
v = pw − r u + g cos θ sin φ +

ρ
√
u2 + v2 + w2S

2m

b

2

[

CYp
p + CYr r

]

+
ρ(u2 + v2 + w2)S

2m

[

CY0 + CYβ
tan−1

(

v√
u2 + w2

)

+ CYδa
δa + CYδr

δr

]

(5.38)

.
p = Ŵ1 pq − Ŵ2qr +

ρ
√
u2 + v2 + w2S

2

b2

2
[Cpp

p + Cpr r]

+
1

2
ρ(u2 + v2 + w2)Sb

[

Cp0 + Cpβ
tan−1

(

v
√
u2 + w2

)

+ Cpδa
δa + Cpδr

δr

]

(5.39)

.
r = Ŵ7 pq − Ŵ1qr +

ρ
√
u2 + v2 + w2S

2

b2

2

[

Cr p p + Crr r
]

+
1

2
ρ(u2 + v2 + w2)Sb

[

Cr0 + Crβ tan−1

(

v
√
u2 + w2

)

+ Crδa δa + Crδr δr

]

(5.40)

.
φ = p + q sin φ tan θ + r cos φ tan θ (5.41)

.
ψ = q sin φ sec θ + r cos φ sec θ, (5.42)

where we have utilized the zero-wind expressions

β = tan−1

(

v√
u2 + w2

)

Va =
√

u2 + v2 + w2.

80 Chapter 5

The Jacobians of equations (5.38)–(5.42) are given by

∂ flat

∂xlat
=























∂
.
v

∂v
∂
.
v

∂p
∂
.
v

∂r
∂
.
v

∂φ
∂
.
v

∂ψ

∂
.
p

∂v

∂
.
p

∂p
∂
.
p

∂r
∂
.
p

∂φ

∂
.
p

∂ψ

∂
.
r

∂v
∂
.
r

∂p
∂
.
r

∂r
∂
.
r

∂φ
∂
.
r

∂ψ

∂
.
φ

∂v

∂
.
φ

∂p
∂
.
φ

∂r
∂
.
φ

∂φ

∂
.
φ

∂ψ

∂
.
ψ

∂v

∂
.
ψ

∂p
∂
.
ψ

∂r
∂
.
ψ

∂φ

∂
.
ψ

∂ψ























∂ flat

∂ulat
=

























∂
.
v

∂δa

∂
.
v

∂δr

∂
.
p

∂δa

∂
.
p

∂δr

∂
.
r

∂δa

∂
.
r

∂δr

∂
.
φ

∂δa

∂
.
φ

∂δr

∂
.
ψ

∂δa

∂
.
ψ

∂δr

























.

Toward that end, note that

∂

∂v
tan−1

(

v√
u2 + w2

)

=
√
u2 + w2

u2 + v2 + w2
=

√
u2 + w2

V2
a

.

Working out the derivatives, we get that the linearized state-space

equations are























.
v̄
.
p̄
.
r̄
.
φ̄
.

ψ̄























=





















Yv Yp Yr g cos θ∗ cos φ∗ 0

Lv L p Lr 0 0

Nv Np Nr 0 0

0 1 cos φ∗ tan θ∗ q∗ cos φ∗ tan θ∗ − r ∗ sin φ∗ tan θ∗ 0

0 0 cos φ∗ sec θ∗ p∗ cos φ∗ sec θ∗ − r ∗ sin φ∗ sec θ∗ 0





















×





















v̄

p̄

r̄

φ̄

ψ̄





















+























Yδa Yδr

Lδa Lδr

Nδa Nδr

0 0

0 0























(

δ̄a

δ̄r

)

, (5.43)

where the coefficients are given in table 5.1.

Linear Design Models 81

Table 5.1

Lateral State-space Model Coefficients

Lateral Formula

Yv
ρSbv∗

4mV∗
a
[CYp

p∗ + CYr r
∗] + ρSv∗

m

[

CY0 + CYβ
β∗ + CYδa

δ∗
a + CYδr

δ∗
r

]

+ ρSCYβ

2m

√
u∗2 + w∗2

Yp w∗ + ρV∗
a Sb
4m

CYp

Yr −u∗ + ρV∗
a Sb
4m

CYr

Yδa
ρV∗2

a S
2m

CYδa

Yδr
ρV∗2

a S
2m

CYδr

Lv
ρSb2v∗

4V∗
a

[Cpp
p∗ + Cpr r

∗] + ρSbv∗[Cp0 + Cpβ
β∗ + Cpδa

δ∗
a + Cpδr

δ∗
r]

+ ρSbCpβ

2

√
u∗2 + w∗2

L p Ŵ1q
∗ + ρV∗

a Sb
2

4
Cpp

Lr −Ŵ2q
∗ + ρV∗

a Sb
2

4
Cpr

Lδa
ρV∗2

a Sb
2

Cpδa

Lδr
ρV∗2

a Sb
2

Cpδr

Nv
ρSb2v∗

4V∗
a

[

Cr p p
∗ + Crr r

∗
]

+ ρSbv∗[Cr0 + Crβ β
∗ + Crδa δ

∗
a + Crδr δ

∗
r]

+ ρSbCrβ

2

√
u∗2 + w∗2

Np Ŵ7q
∗ + ρV∗

a Sb
2

4
Cr p

Nr −Ŵ1q
∗ + ρV∗

a Sb
2

4
Crr

Nδa
ρV∗2

a Sb
2

Crδa

Nδr
ρV∗2

a Sb
2

Crδr

The lateral equations are often given in terms of β̄ instead of v̄.

From equation (2.7), we have

v = Va sin β.

82 Chapter 5

Linearizing around β = β∗, we get

v̄ = V∗
a cos β∗β̄,

which implies that

.
β̄ =

1

V∗
a cos β∗

.
v̄.

Therefore, we can write the state-space equations in terms of β̄ instead

of v̄ as





























.
β̄

.
p̄

.
r̄

.
φ̄

.
ψ̄





























=















































Yv
Yp

V∗
a cos β∗

Yr
V∗
a cos β∗

g cos θ∗ cos φ∗

V∗
a cos β∗ 0

LvV
∗
a cos β∗ L p Lr 0 0

NvV
∗
a cos β∗ Np Nr 0 0

0 1 cos φ∗ tan θ∗ q∗ cos φ∗ tan θ∗ 0

−r ∗ sin φ∗ tan θ∗

0 0 cos φ∗ sec θ∗ p∗ cos φ∗ sec θ∗ 0

−r ∗ sin φ∗ sec θ∗







































































β̄

p̄

r̄

φ̄

ψ̄

























+























Yδa

V∗
a cos β∗

Yδr

V∗
a cos β∗

Lδa Lδr

Nδa Nδr

0 0

0 0























(

δ̄a

δ̄r

)

. (5.44)

5.5.3 Longitudinal State-space Equations

For the longitudinal state-space equations, the state is given by

.
xlon

△= (u, w, q, θ, h)⊤,

and the input vector is defined as

ulon
△= (δe, δt)

⊤.

Linear Design Models 83

Expressing equations (5.4), (5.6), (5.11), (5.8), and (5.3) in terms of xlon
and ulon, we get

.
u = rv − qw − g sin θ +

ρV2
a S

2m

[

CX0
+ CXα

α + CXq

cq

2Va
+ CXδe

δe

]

+
ρSprop

2m
Cprop[(kδt)

2 − V2
a]

.
w = qu − pv + g cos θ cos φ +

ρV2
a S

2m

[

CZ0
+ CZα

α + CZq

cq

2Va
+ CZδe

δe

]

.
q =

J xz

J y

(r 2 − p2) +
J z − J x

J y

pr +
1

2J y

ρV2
a cS

×
[

Cm0
+ Cmα

α + Cmq

cq

2Va
+ Cmδe

δe

]

.
θ = q cos φ − r sin φ

.
h = u sin θ − v sin φ cos θ − w cos φ cos θ.

Assuming that the lateral states are zero (i.e., φ = p = r = β = v = 0)

and the windspeed is zero, substituting

α = tan−1
(w

u

)

Va =
√

u2 + w2

from equation (2.7) gives

.
u = −qw − g sin θ +

ρ(u2 + w2)S

2m

×
[

CX0
+ CXα

tan−1
(w

u

)

+ CXδe
δe

]

+
ρ
√
u2 + w2S

4m
CXq

cq

+
ρSprop

2m
Cprop[(kδt)

2 − (u2 + w2)] (5.45)

84 Chapter 5

.
w = qu + g cos θ +

ρ(u2 + w2)S

2m

×
[

CZ0
+ CZα

tan−1
(w

u

)

+ CZδe
δe

]

+
ρ
√
u2 + w2S

4m
CZq

cq (5.46)

.
q =

1

2J y

ρ(u2 + w2)cS
[

Cm0
+ Cmα

tan−1
(w

u

)

+ Cmδe
δe

]

+
1

4J y

ρ
√

u2 + w2SCmq
c2q (5.47)

.
θ = q (5.48)

.
h = u sin θ − w cos θ. (5.49)

The Jacobians of equations (5.45)–(5.49) are given by

∂ flon

∂xlon
=





























∂
.
u

∂u
∂
.
u

∂w
∂
.
u

∂q
∂
.
u

∂θ
∂
.
u

∂h

∂
.
w

∂u
∂
.
w

∂w
∂
.
w

∂q
∂
.
w

∂θ
∂
.
w

∂h

∂
.
q

∂u
∂
.
q

∂w
∂
.
q

∂q
∂
.
q

∂θ
∂
.
q

∂h

∂
.
θ

∂u
∂
.
θ

∂w
∂
.
θ

∂q
∂
.
θ

∂θ
∂
.
θ

∂h

∂
.
h

∂u
∂
.
h

∂w
∂
.
h

∂q
∂
.
h

∂θ
∂
.
h

∂h





























∂ flon

∂ulon
=





























∂
.
u

∂δe

∂
.
u

∂δt

∂
.
w

∂δe

∂
.
w

∂δt

∂
.
q

∂δe

∂
.
q

∂δt

∂
.
θ

∂δe

∂
.
θ

∂δt

∂
.
h

∂δe

∂
.
h

∂δt





























.

Note that

∂

∂u
tan−1

(w

u

)

=
1

1 + w2

u2

(

−w

u2

)

=
−w

u2 + w2
=

−w

V2
a

Linear Design Models 85

∂

∂w
tan−1

(w

u

)

=
1

1 + w2

u2

(

1

u

)

=
u

u2 + w2
=

u

V2
a

,

where we have used equation (2.8) and the fact that v = 0. Calculating

the derivatives, we get the linearized state-space equations

























.
ū

.
w̄

.
q̄

.
θ̄

.
h̄

























=























Xu Xw Xq −g cos θ∗ 0

Zu Zw Zq −g sin θ∗ 0

Mu Mw Mq 0 0

0 0 1 0 0

sin θ∗ − cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0













































ū

w̄

q̄

θ̄

h̄























+























Xδe Xδt

Zδe 0

Mδe 0

0 0

0 0























(

δ̄e

δ̄t

)

, (5.50)

where the coefficients are given in table 5.2.

The longitudinal equations are often given in terms of ᾱ instead of w̄.

From equation (2.7), we have

w = Va sin α cos β = Va sin α,

where we have set β = 0. Linearizing around α = α∗, we get

w̄ = V∗
a cos α∗ᾱ,

which implies that

.
ᾱ =

1

V∗
a cos α∗

.
w̄.

86 Chapter 5

Table 5.2

Longitudinal State-space Model Coefficients

Longitudinal Formula

Xu
u∗ρS
m

[

CX0
+ CXα

α∗ + CXδe
δ∗
e

]

− ρSw∗CXα

2m

+ ρScCXq u
∗q∗

4mV∗
a

− ρSpropCpropu
∗

m

Xw −q∗ + w∗ρS
m

[

CX0
+ CXα

α∗ + CXδe
δ∗
e

]

+ ρScCXq w∗q∗

4mV∗
a

+ ρSCXα u
∗

2m
− ρSpropCpropw

∗

m

Xq −w∗ + ρV∗
a SCXq c

4m

Xδe

ρV∗2
a SCXδe

2m

Xδt

ρSpr opCpr opk
2δ∗

t

m

Zu q∗ + u∗ρS
m

[

CZ0
+ CZα

α∗ + CZδe
δ∗
e

]

− ρSCZα w∗

2m

+ u∗ρSCZq cq
∗

4mV∗
a

Zw
w∗ρS
m

[

CZ0
+ CZα

α∗ + CZδe
δ∗
e

]

+ ρSCZα u
∗

2m

+ ρw∗ScCZq q
∗

4mV∗
a

Zq u∗ + ρV∗
a SCZq c

4m

Zδe

ρV∗2
a SCZδe

2m

Mu
u∗ρSc
J y

[

Cm0
+ Cmα

α∗ + Cmδe
δ∗
e

]

− ρScCmα w∗

2J y

+ ρSc2Cmq q
∗u∗

4J yV∗
a

Mw
w∗ρSc

J y

[

Cm0
+ Cmα

α∗ + Cmδe
δ∗
e

]

+ ρScCmα u
∗

2J y

+ ρSc2Cmq q
∗w∗

4J yV∗
a

Mq
ρV∗

a Sc
2Cmq

4J y

Mδe

ρV∗2
a ScCmδe

2J y

Linear Design Models 87

We can, therefore, write the the state-space equations in terms of ᾱ

instead of w̄ as



























.
ū

.
ᾱ

.
q̄

.
θ̄

.
h̄



























=























Xu XwV
∗
a cos α∗ Xq −g cos θ∗ 0

Zu

V∗
a cos α∗ Zw

Zq

V∗
a cos α∗

−g sin θ∗

V∗
a cos α∗ 0

Mu MwV
∗
a cos α∗ Mq 0 0

0 0 1 0 0

sin θ∗ −V∗
a cos θ∗ cos α∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0























×

























ū

ᾱ

q̄

θ̄

h̄

























+























Xδe Xδt

Zδe

V∗
a cos α∗ 0

Mδe 0

0 0

0 0























(

δ̄e

δ̄t

)

. (5.51)

5.6 Reduced-order Modes
The traditional literature on aircraft dynamics and control define sev-

eral open-loop aircraft dynamic modes. These include the short-period

mode, the phugoid mode, the rolling mode, the spiral-divergence

mode, and the dutch-roll mode. In this section we will briefly describe

each of these modes and show how to approximate the eigenvalues

associated with these modes.

Short-period Mode

If we assume a constant altitude and a constant thrust input, then we

can simplify the longitudinal state-space model in equation (5.51) to





















.
ū

.
ᾱ

.
q̄

.
θ̄





















=

















Xu XwV
∗
a cos α∗ Xq −g cos θ∗

Zu

V∗
a cos α∗ Zw

Zq

V∗
a cos α∗

−g sin θ∗

V∗
a cos α∗

Mu MwV
∗
a cos α Mq 0

0 0 1 0



































ū

ᾱ

q̄

θ̄



















+

















Xδe
Zδe

V∗
a cos α∗

Mδe

0

0

















δ̄e.

(5.52)

If we compute the eigenvalues of the statematrix, wewill find that there

is one fast, damped mode and one slow, lightly damped mode. The fast

88 Chapter 5

mode is called the short periodmode. The slow, lightly damped mode is

called the phugoidmode.

For the short-period mode, we will assume that u is constant (i.e.,

ū =
.
ū = 0). It follows that the state-space equations in equation (5.52)

can be written as

.
ᾱ = Zwᾱ +

Zq

V∗
a cos α∗

.
θ̄ −

g sin θ∗

V∗
a cos α∗ θ̄ +

Zδe

V∗
a cos α∗ δ̄e

¨̄θ = MwV
∗
a cos α∗ᾱ + Mq

.
θ̄ ,

where we have substituted q̄ =
.
θ̄ . Taking the Laplace transform of these

equations gives





s − Zw − Zqs
V∗
a cos α∗ + g sin θ∗

V∗
a cos α∗

−MwV
∗
a cos α∗ s2 − Mqs





(

ᾱ(s)

θ̄(s)

)

=





Zδe

V∗
a cos α∗

0



 δ̄e(s),

which implies that

(

ᾱ(s)

θ̄(s)

)

=





s2 − Mqs
Zqs

V∗
a cos α∗ − g sin θ∗

V∗
a cos α∗

MwV
∗
a cos α∗ s − Zw





(s2 − Mqs)(s − Zw) + MwV∗
a cos α∗

(

− Zqs
V∗
a cos α∗ + g sin θ∗

V∗
a cos α∗

)

×
(

Zδe

V∗
a cos α∗

0

)

δ̄e(s).

Assuming that we have linearized around level flight (i.e., θ∗ = 0), the

characteristic equation becomes

s
(

s2 +
(

−Zw − Mq

)

s + MqZw − MwZq

)

= 0.

Therefore, the short-period poles are approximately equal to

λshort =
Zw + Mq

2
±

√

(

Zw + Mq

2

)2

− MqZw + MwZq .

Linear Design Models 89

Phugoid Mode

Assuming that α is constant (i.e., ᾱ =
.
ᾱ = 0), then α = α∗ and

equation (5.52) becomes

















.
ū

0

.
q̄

.
θ̄

















=























Xu XwV
∗
a sin α∗ Xq −g cos θ∗

Zu

V∗
a cos α∗ Zw

Zq

V∗
a cos α∗

−g sin θ∗

V∗
a cos α∗

Mu MwV
∗
a cos α∗ Mq 0

0 0 1 0

− sin θ∗ −V∗
a cos θ∗ cos α∗ 0 u∗ cos θ∗ + w∗ sin θ∗























×

















ū

0

q̄

θ̄

















+























Xδe

Zδe

V∗
a cos α∗

Mδe

0

0























δ̄e.

Taking the Laplace transform of the first two equations gives

(

s − Xu −Xqs + g cos θ∗

−Zu −Zqs + g sin θ∗

) (

ū(s)

θ̄(s)

)

=
(

Xδe

Zδe

)

δ̄e.

Again assuming that θ∗ = 0, we get that the characteristic equation is

given by

s2 +
(

ZuXq − XuZq

Zq

)

s −
gZu

Zq
= 0.

The poles of the phugoid mode are approximately given by

λphugoid = −
ZuXq − XuZq

2Zq
±

√

(

ZuXq − XuZq

2Zq

)2

+
gZu

Zq
.

90 Chapter 5

Roll Mode

If we ignore the heading dynamics and assume a constant pitch angle

(i.e., θ̄ = 0), then equation (5.44) becomes



















.
β̄

.
p̄

.
r̄

.
φ̄



















=

















Yv
Yp

V∗
a cos β∗

Yr
V∗
a cos β∗

g cos θ∗ cos φ∗

V∗
a cos β∗

LvV
∗
a cos β∗ L p Lr 0

NvV
∗
a cos β∗ Np Nr 0

0 1 0 0

































β̄

p̄

r̄

φ̄

















+

















Yδa

V∗
a cos β∗

Yδr

V∗
a cos β∗

Lδa Lδr

Nδa Nδr

0 0

















(

δ̄a

δ̄r

)

. (5.53)

The dynamics for p̄ are obtained from equation (5.53) as

.
p̄ = LvV

∗
a cos β∗β̄ + L p p̄ + Lr r̄ + Lδa δ̄a + Lδr δ̄r .

The rolling mode is obtained by assuming that β̄ = r̄ = δ̄r = 0:

.
p̄ = +L p p̄ + Lδa δ̄a.

The transfer function is therefore

p̄(s) =
Lδa

s − L p
δ̄a(s).

An approximation of the eigenvalue for the rolling mode is therefore

given by

λrolling = L p.

Spiral-divergence Mode

For the spiral-divergence mode we assume that
.
p̄ = p̄ = 0, and that the

rudder command is negligible. Therefore, from the second and third

equations in equation (5.53), we get

0 = LvV
∗
a cos β∗β̄ + Lr r̄ + Lδa δ̄a (5.54)

.
r̄ = NvV

∗
a cos β∗β̄ + Nr r̄ + Nδa δ̄a. (5.55)

Linear Design Models 91

Solving equation (5.54) for β̄ and substituting into equation (5.55), we

obtain

.
r̄ =
(

Nr Lv − NvLr

Lv

)

r̄ +
(

NδaLv − NvLδa

Lv

)

δ̄a.

In the frequency domain, we have

r̄ (s) =

(

Nδa Lv−NvLδa

Lv

)

s −
(

Nr Lv−NvLr

Lv

) δ̄a(s).

From this, the pole of the spiral mode is approximately

λspiral =
Nr Lv − NvLr

Lv

,

which is typically in the right half of the complex plane and is, there-

fore, an unstable mode.

Dutch-roll Mode

For the dutch-roll mode, we neglect the rolling motions and focus on

the equations for sideslip and yaw. From equation (5.53), we have

(.
β̄
.
r̄

)

=
(

Yv
Yr

V∗
a cos β∗

NvV
∗
a cos β∗ Nr

)

(

β̄

r̄

)

+





Yδr

V∗
a cos β∗

Nδr



 δ̄r .

The characteristic equation is given by

det

(

s I −
(

Yv
Yr

V∗
a cos β∗

NvV
∗
a cos β∗ Nr

))

= s2+(−Yv−Nr)s+(YvNr−NvYr) = 0.

Therefore, the poles of the dutch-roll mode are approximated by

λdutch roll =
Yv + Nr

2
±

√

(

Yv + Nr

2

)2

− (YvNr − NvYr).

5.7 Chapter Summary
The objective of this chapter is to develop design models that can

be used to develop low-level autopilot models for a fixed-wing minia-

ture air vehicle. In particular we focus on linear models about trim

conditions. In section 5.1 we summarized the nonlinear equations of

motion developed in chapters 3 and 4. In section 5.2 we introduced the

notion of a coordinated turn, which was used later in the chapter to

92 Chapter 5

model the relationship between roll angle and course rate. In section5.3

we introduced the notion of trim states and inputs. In section 5.4

we linearized the nonlinear model and developed transfer functions

that model the dominant relationships. The motion of the aircraft was

decomposed into lateral and longitudinal dynamics. The transfer func-

tions for the lateral dynamics are given by equations (5.26) and (5.27),

which express the relationship between the aileron deflection and the

roll angle, and the relationship between the roll angle and the course

angle, respectively. For aircraft that have a rudder and the ability to

measure the side slip angle, equation (5.28) expresses the relationship

between the rudder deflection and the side slip angle. The transfer

functions for the longitudinal dynamics are given by equations (5.29),

(5.31), (5.32), and (5.36), which model the relationship between the

elevator deflection and the pitch angle, the pitch angle and the altitude,

the airspeed and the altitude, and the throttle and pitch angle to the

airspeed, respectively. In section 5.5 we developed state-space models

linearized about the trim condition. The state-space model for the

lateral dynamics is given in equation (5.43). The state-space model for

the longitudinal dynamics is given in equation (5.50). In section 5.6

we discussed the modes associated with the linear models developed in

this chapter, as they are defined in the traditional aeronautics literature.

For the lateral dynamics, the modes are the roll mode, the dutch-roll

mode, and the spiral-divergence mode. For the longitudinal dynamics,

the modes are the short-periodmode and the phugoid mode.

Notes and References

The models that we have developed in this chapter are standard. An

excellent discussion of trim including algorithms for computing trim

is contained in [7]. The transfer function models are discussed in detail

in [4]. The state-spacemodels are derived in [1, 2, 5, 6, 7, 12], which also

discuss the reduced-order modes derived in section 5.6. The derivation

of the coordinated turn in equation (5.13) follows [130].

5.8 Design Project
5.1. Read appendix F and familiarize yourself with the Simulink

trim and linmod commands.

5.2. Copy and rename your current Simulink diagram to

mavsim_trim.mdl andmodify the file so that it has the

proper input-output structure, as shown in figure F.1.

5.3. Create a Matlab script that computes the trim values for the

Simulink simulation developed in chapters 2 through 4. The

Linear Design Models 93

input to theMatlab script should be the desired airspeed Va,

the desired path angle ±γ , and the desired turn radius ±R,

where +R indicates a right-hand turn and −R indicates a

left-hand turn.

5.4. Use theMatlab script to compute the trimmed state and

controls for wings-level flight with Va = 10m/s and

γ = 0 rad. Set the initial states in your original Simulink

simulation to the trim state, and the inputs to the trim

controls. If the trim algorithm is correct, the MAV states will

remain constant during the simulation. Run the trim

algorithm for various values of γ . The only variable that

should change is the altitude h. Convince yourself that the

climb rate is correct.

5.5. Use theMatlab script to compute the trimmed state and

controls for constant turns with Va = 10m/s and R = 50m.

Set the initial states in your original Simulink simulation to

the trim state, and the inputs to the trim controls. If the trim

algorithm is correct, the UAV states will remain constant

during the simulation except for the heading ψ .

5.6. Create a Matlab script that uses the trim values computed in

the previous problem to create the transfer functions listed

in section 5.4.

5.7. Create a Matlab script that uses the trim values and the

linmod command to linearize the Simulinkmodel about

the trim condition to produce the state-space models given

in equations (5.50) and (5.43).

5.8. Compute eigenvalues of A_lon and notice that one of the

eigenvalues will be zero and that there are two complex

conjugate pairs. Using the formula

(s + λ)(s + λ∗) = s2 + 2ℜλs + |λ|2 = s2 + 2ζωns + ω2
n,

extract ωn and ζ from the two complex conjugate pairs of

poles. The pair with the larger ωn correspond to the

short-periodmode, and the pair with the smaller ωn

correspond to the phugoid mode. The phugoid and

short-periodmodes can be excited by starting the simulation

in a wings-level, constant-altitude trim condition, and

placing an impulse on the elevator. The file

94 Chapter 5

Figure 5.8 Step and Impulse response for a second order system with transfer

function equal to T (s) = ω2
n/(s

2 + 2ζωns + ω2
n).

mavsim_chap5.mdl on the website shows how to

implement an impulse and doublet. Using figure 5.8

convince yourself that the eigenvalues of A_lon adequately

predict the short period and phugoid modes.

5.9. Compute eigenvalues of A_lat and notice that there is an

eigenvalue at zero, a real eigenvalue in the right half plane, a

real eigenvalue in the left half plane, and a complex

conjugate pair. The real eigenvalue in the right half plane is

the spiral-divergence mode, the real eigenvalue in the left

half plane is the roll mode, and the complex eigenvalues are

the dutch-roll mode. The lateral modes can be excited by

starting the simulation in a wings-level, constant-altitude

trim condition, and placing a unit doublet on the aileron or

on the rudder. Using figure 5.8 convince yourself that the

eigenvalues of A_lat adequately predict the roll,

spiral-divergence, and dutch-roll modes.

6
Autopilot Design Using Successive

Loop Closure

In general terms, an autopilot is a system used to guide an aircraft

without the assistance of a pilot. For manned aircraft, the autopilot can

be as simple as a single-axis wing-leveling autopilot, or as complicated

as a full flight control system that controls position (altitude, latitude,

longitude) and attitude (roll, pitch, yaw) during the various phases of

flight (e.g., take-off, ascent, level flight, descent, approach, landing).

For MAVs, the autopilot is in complete control of the aircraft during all

phases of flight.While some control functionsmay reside in the ground

control station, the autopilot portion of theMAV control system resides

on board theMAV.

This chapter presents an autopilot design suitable for the sensors

and computational resources available on boardMAVs.Wewill utilize a

method called successive loop closure to design lateral and longitudinal

autopilots. The successive loop closure approach is discussed generally

in section 6.1. Because the lifting surfaces of aircraft have limited range,

we discuss actuator saturation and the limit it imposes on performance

in section 6.2. Lateral and longitudinal autopilot designs are presented

in sections 6.3 and 6.4. The chapter concludes with a discussion of

discrete-time implementation of proportion-integral-derivative (PID)

feedback control laws in section 6.5.

6.1 Successive Loop Closure
The primary goal in autopilot design is to control the inertial position

(pn, pe, h) and attitude (φ, θ , χ) of theMAV. Formost flightmaneuvers of

interest, autopilots designed on the assumption of decoupled dynamics

yield good performance. In the discussion that follows, we will assume

that the longitudinal dynamics (forward speed, pitching, climbing/de-

scending motions) are decoupled from the lateral dynamics (rolling,

yawing motions). This simplifies the development of the autopilot

significantly and allows us to utilize a technique commonly used for

autopilot design called successive loop closure.

The basic idea behind successive loop closure is to close several simple

feedback loops in succession around the open-loop plant dynamics

96 Chapter 6

Figure 6.1 Open-loop transfer

function modeled as a cascade of

three transfer functions.

Figure 6.2 Three-stage successive loop closure design.

Figure 6.3 Successive loop closure design with inner loop modeled as a unity

gain.

rather than designing a single (presumably more complicated) con-

trol system. To illustrate how this approach can be applied, consider

the open-loop system shown in figure 6.1. The open-loop dynamics

are given by the product of three transfer functions in series: P (s)=
P1(s)P2(s)P3(s). Each of the transfer functions has an output (y1, y2,

y3) that can be measured and used for feedback. Typically, each of the

transfer functions, P1(s), P2(s), P3(s), is of relatively low order—usually

first or second order. In this case, we are interested in controlling the

output y3. Instead of closing a single feedback loop with y3, we will

instead close feedback loops around y1, y2, and y3 in succession, as

shown in figure 6.2. We will design the compensators C1(s), C2(s), and

C3(s) in succession. A necessary condition in the design process is that

the inner loop has the highest bandwidth, with each successive loop

bandwidth a factor of 5 to 10 times smaller in frequency.

Examining the inner loop shown in figure 6.2, the goal is to design

a closed-loop system from r1 to y1 having a bandwidth ωBW1. The key

assumptionwemake is that for frequencies well below ωBW1, the closed-

loop transfer function y1(s)/r1(s) can be modeled as a gain of 1. This

is depicted schematically in figure 6.3. With the inner-loop transfer

function modeled as a gain of 1, design of the second loop is simpli-

fied because it includes only the plant transfer function P2(s) and the

compensator C2(s). The critical step in closing the loops successively

Autopilot Design 97

Figure 6.4 Successive-loop-closure

design with two inner loops modeled

as a unity gain.

is to design the bandwidth of the next loop so that it is a factor of

S smaller than the preceding loop, where S is typically in the range

of 5 to 10. In this case, we require ωBW2< 1
S
ωBW1 thus ensuring that the

unity gain assumption on the inner loop is not violated over the range

of frequencies that the middle loop operates.

With the two inner loops operating as designed, y2(s)/r2(s)≈ 1 and

the transfer function from r2(s) to y2(s) can be replaced with a gain of

1 for the design of the outermost loop, as shown in figure 6.4. Again,

there is a bandwidth constraint on the design of the outer loop: ωBW3 <
1
S2

ωBW2. Because each of the plant models P1(s), P2(s), and P3(s) is first

or second order, conventional PID or lead-lag compensators can be

employed effectively. Transfer-function-based design methods such as

root-locus or loop-shaping approaches are commonly used.

The following sections discuss the design of a lateral autopilot and

a longitudinal autopilot. Transfer functions modeling the lateral and

longitudinal dynamics were developed in section 5.4 and will be used

to design the autopilots in this chapter.

6.2 Saturation Constraints and Performance
The successive-loop-closure design process implies that performance

of the system is limited by the performance of the inner-most loop.

The performance of the inner-most loop is often limited by saturation

constraints. For example, in the design of the lateral autopilot, the fact

that the ailerons have physical limits on their angular deflection implies

that the roll rate of the aircraft is limited. The goal is to design the

bandwidth of the inner loop to be as large as possible, without violating

the saturation constraints, and then design the outer loops to ensure

bandwidth separation of the successive loops. In this section, we briefly

describe how knowledge of the plant and controller transfer functions

and the actuator saturation constraints can be used to develop perfor-

mance specifications for the inner-most loops. We will use a second-

order system to illustrate the process.

Given the second-order system shown infigure 6.5withproportional

feedback on the output error and derivative feedback on the output, the

closed-loop transfer function is

y

yc
=

b0kp

s2 + (a1 + b0kd)s + (a0 + b0kp)
. (6.1)

98 Chapter 6

Figure 6.5 Control system example.

We can see that the closed-loop poles of the system are defined by the

selection of the control gains kp and kd. Note also that the actuator

effort u can be expressed as u = kpe − kd
.
y. When

.
y is zero or small,

the size of the actuator effort u is primarily governed by the size of

the control error e and the control gain kp. If the system is stable, the

largest control effort in response to a step input will occur immediately

after the step, where umax = kpe
max. Rearranging this expression, we

find that the proportional control gain can be determined from the

maximum anticipated output error and the saturation limits of the

actuator as

kp =
umax

emax
, (6.2)

where umax is the maximum control effort the system can provide,

and emax is the step error that results from a step input of nominal

size.

The canonical second-order transfer function with no zeros is given

by the standard form

y

yc
=

ω2
n

s2 + 2ζωns + ω2
n

, (6.3)

where y
c is the commanded value, ζ is the damping ratio, and ωn is the

natural frequency. If 0 ≤ ζ < 1, then the system is said to be under

damped, and the poles are complex and given by

poles = −ζωn ± jωn

√

1 − ζ 2. (6.4)

By comparing the coefficients of the denominator polynomials of the

transfer function of the closed-loop system in equation (6.1) and the

canonical second-order system transfer function in equation (6.3), and

taking into account the saturation limits of the actuator, we can derive

an expression for the achievable bandwidth of the closed-loop system.

Autopilot Design 99

Figure 6.6 Autopilot for lateral control using successive loop closure.

Equating the coefficients of the s0 terms gives

ωn =
√

a0 + b0kp

=

√

a0 + b0
umax

emax
,

which is an upper limit on the bandwidth of the closed-loop system,

ensuring that saturation of the actuator is avoided. We will utilize this

approach in sections 6.3.1 and 6.4.1 to determine the bandwidth of the

roll and pitch loops.

6.3 Lateral-directional Autopilot
Figure 6.6 shows the block diagram for a lateral autopilot using suc-

cessive loop closure. There are five gains associated with the lateral

autopilot. The derivative gain kdφ
provides roll rate damping for the

innermost loop. The roll attitude is regulated with the proportional

and integral gains kpφ
and kiφ . The course angle is regulated with the

proportional and integral gains kpχ
and kiχ . The idea with successive

loop closure is that the gains are successively chosenbeginningwith the

inner loop and working outward. In particular, kdφ
and kpφ

are usually

selected first, kiφ second, and finally kpχ
and kiχ .

6.3.1 Roll Attitude Loop Design

The inner loop of the lateral autopilot is used to control roll angle and

roll rate, as shown in figure 6.7. If the transfer function coefficients aφ1

and aφ2
are known, then there is a systematic method for selecting the

control gains kdφ
and kpφ

based on the desired response of closed-loop

dynamics. Fromfigure 6.7, the transfer function from φc to φ is given by

Hφ/φc (s) =
kpφ

aφ2

s2 + (aφ1
+ aφ2

kdφ
)s + kpφ

aφ2

.

100 Chapter 6

Figure 6.7 Roll attitude hold control loops.

Note that the DC gain is equal to one. If the desired response is given by

the canonical second-order transfer function

φ(s)

φc(s)
=

ω2
nφ

s2 + 2ζ
φ
ωnφ

s + ω2
nφ

,

then equating denominator polynomial coefficients, we get

ω2
nφ

= kpφ
aφ2

(6.5)

2ζ
φ
ωnφ

= aφ1
+ aφ2

kdφ
. (6.6)

According to equation (6.2), the proportional gain is selected so that

the ailerons saturate when the roll error is emax
φ , where emax

φ is a design

parameter. Therefore from equation (6.2) we get

kpφ
=

δmax
a

emax
φ

sign(aφ2
). (6.7)

The natural frequency of the roll loop is therefore given by

ωnφ
=

√

|aφ2
|
δmax
a

emax
φ

. (6.8)

Solving equation (6.6) for kdφ
gives

kdφ
=

2ζφωnφ
− aφ1

aφ2

, (6.9)

where the damping ratio ζφ is a design parameter.

Integrator on Roll

Note that the open-loop transfer function in figure 6.7 is a type one sys-

tem,which implies that zero steady-state tracking error in roll should be

Autopilot Design 101

Figure 6.8 Roll attitude hold

loop with input disturbance.

Figure 6.9 Integrator for roll

attitude hold.

achievable without an integrator. From figure 5.2, however, we see that

there is a disturbance that enters at the summing junction before δa.

This disturbance represents the terms in the dynamics that were ne-

glected in the process of creating the linear, reduced-order model

of the roll dynamics. It can also represent physical perturbations to

the system, such as those from gusts or turbulence. Figure 6.8 shows

the roll loop with the disturbance. Solving for φ(s) in figure 6.8,

we get

φ =

(

1

s2 + (aφ1
+ aφ2

kdφ
)s + aφ2

kpφ

)

dφ2

+

(

aφ2
kdφ

s2 + (aφ1
+ aφ2

kdφ
)s + aφ2

kpφ

)

φc.

Note that if dφ2
is a constant disturbance (i.e., dφ2

= A/s) then from

the final value theorem, the steady-state error due to dφ2
is A

aφ2
kpφ

. In a

constant orbit, p, q, and r will be constants, so dφ2
will also be constant,

as can be seen from equation (5.25). Therefore, it is desirable to remove

the steady-state error using an integrator. Figure 6.9 shows the roll at-

titude hold loop with an integrator added to reject the disturbance dφ2
.

102 Chapter 6

Figure 6.10 Roll loop root locus as a

function of the integral gain kiφ .

Solving for φ(s) in figure 6.9, we get

φ =

(

s

s3 + (aφ1
+ aφ2

kdφ
)s2 + aφ2

kpφ
s + aφ2

kiφ

)

dφ2

+





aφ2
kpφ

(

s +
kiφ
kpφ

)

s3 + (aφ1
+ aφ2

kdφ
)s2 + aφ2

kpφ
s + aφ2

kiφ



 φc.

Note that in this case, the final-value theorem predicts zero steady-state

error for a constant dφ2
. If dφ2

is a ramp (i.e., dφ2
= A/s2), then the steady-

state error is given by A
aφ2

kiφ
. If aφ1

and aφ2
are known, then kiφ can be

effectively selected using root locus techniques. The closed-loop poles

of the system are given by

s3 + (aφ1
+ aφ2

kdφ
)s2 + aφ2

kpφ
s + aφ2

kiφ = 0,

which can be placed in Evans form as

1 + kiφ

(

aφ2

s
(

s2 + (aφ1
+ aφ2

kdφ
)s + aφ2

kpφ

)

)

= 0.

Figure 6.10 shows the root locus of the characteristic equation plotted

as a function of kiφ . For small values of gain, the system remains stable.

The output of the roll attitude hold loop is

δa = kpφ
(φc − φ) +

kiφ
s
(φc − φ) − kdφ

p.

6.3.2 Course Hold

The next step in the successive-loop-closure design of the lateral autopi-

lot is to design the course-hold outer loop. If the inner loop from φc to φ

Autopilot Design 103

Figure 6.11 Course hold outer feedback loop.

has been adequately tuned, then Hφ/φc ≈ 1 over the range of frequencies

from 0 to ωnφ
. Under this condition, the block diagram of figure 6.6

can be simplified to the block diagram in figure 6.11 for the purposes

of designing the outer loop.

The objective of the course hold design is to select kpχ
and kiχ in

figure 6.6 so that the course χ asymptotically tracks steps in the com-

manded course χ c. From the simplified block diagram, the transfer

functions from the inputs χ c and dχ to the output χ are given by

χ =
g/Vgs

s2 + kpχ
g/Vgs + kiχ g/Vg

dχ +
kpχ

g/Vgs + kiχ g/Vg

s2 + kpχ
g/Vgs + kiχ g/Vg

χ c. (6.10)

Note that if dχ and χ c are constants, then the final value theorem

implies that χ → χ c. The transfer function from χ c to χ has the form

Hχ =
2ζ

χ
ωnχ

s + ω2
nχ

s2 + 2ζ
χ
ωnχ

s + ω2
nχ

. (6.11)

As with the inner feedback loops, we can choose the natural frequency

and damping of the outer loop and from those values calculate the

feedback gains kpχ
and kiχ . Figure 6.12 shows the frequency response and

the step response for Hχ . Note that because of the numerator zero, the

standard intuition for the selection of ζ does not hold for this transfer

function. Larger ζ results in larger bandwidth and smaller overshoot.

Comparing coefficients in equations (6.10) and (6.11), we find

ω2
nχ

= g/Vgkiχ

2ζ
χ
ωnχ

= g/Vgkpχ
.

Solving these expressions for kpχ
and kiχ , we get

kpχ
= 2ζ

χ
ωnχ

Vg/g (6.12)

kiχ = ω2
nχ
Vg/g. (6.13)

104 Chapter 6

Figure 6.12 Frequency and step response for a second-order system with a

transfer function zero for ζ = 0.5, 0.7, 1, 2, 3, 5.

To ensure proper function of this successive-loop-closure design, it

is essential that there be sufficient bandwidth separation between the

inner and outer feedback loops. Adequate separation can be achieved

by letting

ωnχ
=

1

Wχ

ωnφ
,

where the separation Wχ is a design parameter that is usually chosen

to be greater than five. Generally, more bandwidth separation is better.

More bandwidth separation requires either slower response in the χ

loop (lower ωnχ
), or faster response in the φ loop (higher ωnφ

). Faster

response usually comes at the cost of requiring more actuator control

authority, which may not be possible given the physical constraints of

the actuators.

The output of the course hold loop is

φc = kpχ
(χ c − χ) +

kiχ
s
(χ c − χ).

6.3.3 Sideslip Hold

If the aircraft is equipped with a rudder, the rudder can be used to

maintain zero sideslip angle, β(t) = 0. The sideslip hold loop is shown

in figure 6.13, and the transfer function from βc to β is given by

Hβ/βc (s) =
aβ2

kpβ
s + aβ2

kiβ
s2 + (aβ1

+ aβ2
kpβ

)s + aβ2
kiβ

.

Note that the DC gain is equal to one. If the desired closed poles are

the roots of

s2 + 2ζβωnβ
s + ω2

nβ
= 0,

Autopilot Design 105

Figure 6.13 Sideslip hold control loop.

then equating coefficients gives

ω2
nβ

= aβ2
kiβ (6.14)

2ζ
β
ωnβ

= aβ1
+ aβ2

kpβ
. (6.15)

Suppose that the maximum error in sideslip is given by emax
β and that

themaximum allowable rudder deflection is given by δmax
r . Then by the

approach of section 6.2, we obtain

kpβ
=

δmax
r

emax
β

sign(aβ2
). (6.16)

By choosing a value for ζβ to give the desired damping, we can solve

equations (6.14) and (6.15) to give

kiβ =
1

aβ2

(

aβ1
+ aβ2

kpβ

2ζβ

)2

. (6.17)

The output of the sideslip hold loop is

δr = −kpβ
β −

kiβ
s

β.

6.4 Longitudinal Autopilot
The longitudinal autopilot is more complicated than the lateral au-

topilot because airspeed plays a significant role in the longitudinal

dynamics. Our objective in designing the longitudinal autopilot will be

to regulate airspeed and altitude using the throttle and the elevator as

actuators. The method used to regulate altitude and airspeed depends

on the altitude error. The flight regimes are shown in figure 6.14.

In the take-off zone, full throttle is commanded and the pitch at-

titude is regulated to a fixed pitch angle θ c using the elevator. The

objective in the climb zone is to maximize the climb rate given the

current atmospheric conditions. To maximize the climb rate, full

106 Chapter 6

Figure 6.14 Flight regimes for the longitudinal autopilot.

throttle is commanded and the airspeed is regulated using the pitch

angle. If the airspeed increases above its nominal value, then the

aircraft is caused to pitch up, which results in an increase in climb

rate and a decrease in airspeed. Similarly, if the airspeed drops below

the nominal value, the aircraft is pitched down, thereby increasing the

airspeed but also decreasing the climb rate. Regulating the airspeed

using pitch attitude effectively avoids stall conditions. Note, however,

that we do not regulate airspeed with pitch attitude immediately after

take-off. After take-off the aircraft is attempting to increase its air-

speed and doing so by pitching down would drive the aircraft into

the ground.

The descend zone is similar to the climb zone except that the throttle

is commanded to zero. Again, stall conditions are avoided by regulating

airspeed using the pitch angle, thus maximizing the descent rate at a

given airspeed. In the altitude hold zone, the airspeed is regulated by

adjusting the throttle, and the altitude is regulated by commanding the

pitch attitude.

To implement the longitudinal autopilot shown in figure 6.14,

we need the following feedback loops: (1) pitch attitude hold us-

ing elevator, (2) airspeed hold using throttle, (3) airspeed hold using

pitch attitude, and (4) altitude hold using pitch attitude. The de-

sign of ach of these loops will be discussed in the next four subsec-

tions. Finally, the complete longitudinal autopilot will be presented in

section 6.4.5.

6.4.1 Pitch Attitude Hold

The pitch attitude hold loop is similar to the roll attitude hold loop,

and we will follow a similar line of reasoning in its development. From

Autopilot Design 107

Figure 6.15 Pitch attitude hold feedback loops.

figure 6.15, the transfer function from θ c to θ is given by

Hθ/θ c (s) =
kpθ

aθ3

s2 + (aθ1 + kdθ
aθ3)s + (aθ2 + kpθ

aθ3)
. (6.18)

Note that in this case, the DC gain is not equal to one.

If the desired response is givenby the canonical second-order transfer

function

KθDC
ω2
nθ

s2 + 2ζθωnθ
s + ω2

nθ

,

then, equating denominator coefficients, we get

ω2
nθ

= aθ2 + kpθ
aθ3 (6.19)

2ζ
θ
ωnθ

= aθ1 + kdθ
aθ3 . (6.20)

If we set the proportional gain to avoid saturation when the maximum

input error is experienced, we get

kpθ
=

δmax
e

emax
θ

sign(aθ3),

where the sign of aθ3 is taken since aθ3 is based onCmδe
, which is typically

negative. To ensure stability, kpθ
and aθ3 need to be of the same sign.

From equation (6.19), the bandwidth limit of the pitch loop can be

calculated as

ωnθ
=

√

aθ2 +
δmax
e

emax
θ

|aθ3 |, (6.21)

and solving equation (6.20) for kdθ
, we get

kdθ
=

2ζ
θ
ωnθ

− aθ1

aθ3

. (6.22)

In summary, knowing the actuator saturation limit δmax
e and the max-

imum anticipated pitch error, emax
θ can be selected to determine the

proportional gain kpθ
and the bandwidth of the pitch loop. Selecting

the desired damping ratio ζθ fixes the derivative gain value kdθ
.

108 Chapter 6

Figure 6.16 Successive loop feedback structure for altitude-hold autopilot.

The DC gain of this inner-loop transfer function approaches one as

the kpθ
→ ∞. The DC gain is given by

KθDC
=

kpθ
aθ3

(aθ2 + kpθ
aθ3)

, (6.23)

which for typical gain values is significantly less than one. The design

of the outer loops will use this DC gain to represent the gain of the

inner loop over its full bandwidth. An integral feedback term could be

employed to ensure unityDC gain on the inner loop. The addition of an

integral term, however, can severely limit the bandwidth of the inner

loop. For this reason, we have chosen not to use integral control on the

pitch loop. Note however, that in the design project, the actual pitch

angle will not converge to the commanded pitch angle. This fact will be

taken into account in the development of the outer loops. The output

of the pitch attitude-hold loop is

δe = kpθ
(θ c − θ) − kdθ

q.

6.4.2 Altitude Hold Using Commanded Pitch

The altitude-hold autopilot utilizes a successive-loop-closure strategy

with the pitch-attitude-hold autopilot as an inner loop, as shown in

figure 6.16. Assuming that the pitch loop functions as designed and that

θ ≈ KθDC
θ c, the altitude-hold loop using the commanded pitch can be

approximated by the block diagram shown in figure 6.17.

In the Laplace domain, we have

h(s) =





KθDC
Vakph

(

s +
kih
kph

)

s2 + KθDC
Vakphs + KθDC

Vakih



 hc(s)

+

(

s

s2 + KθDC
Vakphs + KθDC

Vakih

)

dh(s),

Autopilot Design 109

Figure 6.17 The altitude-hold loop using the commanded pitch angle.

where again we see that the DC gain is equal to one, and constant

disturbances are rejected. The closed-loop transfer function is again in-

dependent of aircraft parameters and is dependent only on the known

airspeed. The gains kph and kih should be chosen such that the band-

width of the altitude-from-pitch loop is less than the bandwidth of the

pitch-attitude-hold loop. Similar to the course loop, let

ωnh =
1

Wh
ωnθ

,

where the bandwidth separationWh is a design parameter that is usually

between five and fifteen. If the desired response of the altitude-hold

loop is given by the canonical second-order transfer function

ω2
nh

s2 + 2ζ
h
ωnhs + ω2

nh

,

then, equating denominator coefficients, we get

ω2
nh

= KθDC
Vakih

2ζ
h
ωnh = KθDC

Vakph .

Solving these expressions for kih and kph , we get

kih =
ω2
nh

KθDC
Va

(6.24)

kph =
2ζ

h
ωnh

KθDC
Va

. (6.25)

Therefore, selecting the desired damping ratio ζh and the bandwidth

separationWh fixes the value for kph and kih .

110 Chapter 6

Figure 6.18 PI controller to regulate airspeed using the pitch angle.

The output of the altitude-hold-with-pitch loop is

θ c = kph(h
c − h) +

kih
s
(hc − h).

6.4.3 Airspeed Hold Using Commanded Pitch

The dynamic model for airspeed using pitch angle is shown in

figure 5.7. Disturbance rejection again requires a PI controller. The

resulting block diagram is shown in figure 6.18.

In the Laplace domain, we have

V̄a(s) =









−KθDC
gkpV2

(

s +
kiV2
kpV2

)

s2 + (aV1
− KθDC

gkpV2)s − KθDC
gkiV2









V̄c
a (s)

+

(

s

s2 + (aV1
− KθDC

gkpV2)s − KθDC
gkiV2

)

dV(s). (6.26)

Note that the DC gain is equal to one and that step disturbances are

rejected. To hold a constant airspeed, the pitch angle must approach a

non-zero angle of attack. The integrator will wind up to command the

appropriate angle of attack.

The gains kpV2 and kiV2 should be chosen so that the bandwidth of

the airspeed-from-pitch loop is less than the bandwidth of the pitch-

attitude-hold loop. Let

ωnV2
=

1

WV2

ωnθ
,

where the bandwidth separationWV2
is a design parameter. Following a

similar procedure to what we have done previously, we can determine

values for the feedback gains bymatching the denominator coefficients

in equation (6.26) with those of a canonical second-order transfer

function. Denoting the desired natural frequency and damping ratio

Autopilot Design 111

we seek to achieve with feedback as ω2
nV2

and ζ
V2
, respectively, matching

coefficients gives

ω2
nV2

= −KθDC
gkiV2

2ζ
V2

ωnV2
= aV1

− KθDC
gkpV2 .

Solving for the control gains gives

kiV2 = −
ω2
nV2

KθDC
g

(6.27)

kpV2 =
aV1

− 2ζ
V2

ωnV2

KθDC
g

. (6.28)

Thus, selecting the damping ratio ζ
V2
and the bandwidth separationWV2

fixes the control gains kiV2 and kpV2 . The output of the airspeed holdwith

pitch loop is

θ c = kpV2 (V
c
a − Va) +

kiV2
s

(Vc
a − Va).

6.4.4 Airspeed Hold Using Throttle

The dynamicmodel for airspeed using the throttle as an input is shown

in figure 5.7. The associated closed-loop system is shown in figure 6.19.

If we use proportional control, then

V̄a(s) =

(

aV2
kpV

s + (aV1
+ aV2

kpV)

)

V̄c
a (s) +

(

1

s + (aV1
+ aV2

kpV)

)

dV(s).

Note that the DC gain is not equal to one and that step disturbances

are not rejected. If, on the other hand, we use proportional-integral

control, then

V̄a =

(

aV2
(kpVs + kiV)

s2 + (aV1
+ aV2

kpV)s + aV2
kiV

)

V̄c
a

+

(

1

s2 + (aV1
+ aV2

kpV)s + aV2
kiV

)

dV.

It is clear that using a PI controller results in a DC gain of one, with step

disturbance rejection. If aV1
and aV2

are known, then the gains kpV and kiV
can be determined using the same technique we have used previously.

Equating the closed-loop transfer function denominator coefficients

112 Chapter 6

Figure 6.19 Airspeed hold using throttle.

with those of a canonical second-order transfer function, we get

ω2
nV

= aV2
kiV

2ζ
V
ωnV = aV1

+ aV2
kpV .

Inverting these expressions gives the control gains

kiV =
ω2
nV

aV2

(6.29)

kpV =
2ζ

V
ωnV − aV1

aV2

. (6.30)

The design parameters for this loop are the damping coefficient ζ
V
and

the natural frequency ωnV .

Note that since V̄c
a = Vc

a − V∗
a and V̄a = Va − V∗

a , the error signal in

figure 6.19 is

e = V̄c
a − V̄a = Vc

a − Va.

Therefore, the control loop shown in figure 6.19 can be implemented

without knowledge of the trim velocity V∗
a . If the throttle trim value δ∗

t

is known, then the throttle command is

δt = δ∗
t + δ̄t.

However, if δ∗
t is not precisely known, then the error in δ∗

t canbe thought

of as a step disturbance, and the integrator will wind up to reject the

disturbances.

Autopilot Design 113

Figure 6.20 Altitude-control state machine.

The output of the airspeed hold with throttle loop is

δt = δ∗
t + kpV (V

c
a − Va) +

kiV
s
(Vc

a − Va).

6.4.5 Altitude-control State Machine

The longitudinal autopilot deals with the control of the longitudinal

motions in the body ib-kb plane: pitch angle, altitude, and airspeed. Up

to this point, we have described four different longitudinal autopilot

modes: (1) pitch attitude hold, (2) altitude hold using commanded

pitch, (3) airspeed hold using commanded pitch, and (4) airspeed hold

using throttle. These longitudinal control modes can be combined to

create the altitude control state machine shown in figure 6.20. In the

climb zone, the throttle is set to its maximum value (δt = 1) and

114 Chapter 6

the airspeed hold from commanded pitch mode is used to control

the airspeed, thus ensuring that the aircraft avoids stall conditions. In

simple terms, this causes the MAV to climb at its maximum possible

climb rate until it is close to the altitude set point. Similarly, in the

descend zone, the throttle is set to its minimum value (δt =0) and the

airspeed hold from commanded pitch mode is again used to control

airspeed. In this way, the MAV descends at a steady rate until it reaches

the altitude hold zone. In the altitude hold zone, the airspeed-from-

throttle mode is used to regulate the airspeed around Vc
a , and the

altitude-from-pitchmode is used to regulate the altitude around hc. The

pitch attitude control loop is active in all four zones.

6.5 Digital Implementation of PID Loops
The longitudinal and lateral control strategies presented in this chapter

consist of several proportional-integral-derivative (PID) control loops.

In this section we briefly describe how PID loops can be implemented

in discrete time. A general PID control signal is given by

u(t) = kpe(t) + ki

∫ t

−∞

e(τ)dτ + kd
de

dt
(t),

where e(t) = y
c(t) − y(t) is the error between the commanded output

y
c(t) and the current output y(t). In the Laplace domain, we have

U (s) = kpE (s) + ki
E (s)

s
+ kdsE (s).

Since a pure differentiator is not causal, the standard approach is to use

a band-limited differentiator so that

U (s) = kpE (s) + ki
E (s)

s
+ kd

s

τs + 1
E (s).

To convert to discrete time, we use the Tustin or trapezoidal rule,

where the Laplace variable s is replaced with the z-transform approxi-

mation

s �→
2

Ts

(

1 − z−1

1 + z−1

)

,

where Ts is the sample period [28]. Letting I (s)
△
= E (s)/s, an integrator

in the z domain becomes

I (z) =
Ts

2

(

1 + z−1

1 − z−1

)

E (z).

Autopilot Design 115

Transforming to the time domain, we have

I [n] = I [n− 1] +
Ts

2
(E [n] + E [n− 1]) . (6.31)

A formula for discrete implementation of a differentiator can be

derived in a similar manner. Letting D(s)
△
= (s/(τs + 1))E (s), the

differentiator in the z domain is

D(z) =

2
Ts

(

1−z−1

1+z−1

)

2τ
Ts

(

1−z−1

1+z−1

)

+ 1
E (z)

=

(

2
2τ+Ts

)

(1 − z−1)

1 −

(

2τ−Ts
2τ+Ts

)

z−1
E (z).

Transforming to the time domain, we have

D[n] =

(

2τ − Ts

2τ + Ts

)

D[n− 1] +

(

2

2τ + Ts

)

(E [n] − E [n− 1]) . (6.32)

Matlab code that implements a general PID loop is shown below.

1 function u = pidloop(y_c, y, flag, kp, ki, kd, limit, Ts, tau)

2 persistent integrator;

3 persistent differentiator;

4 persistent error_d1;

5 if flag==1, % reset (initialize) persistent variables

6 % when flag==1

7 integrator = 0;

8 differentiator = 0;

9 error_d1 = 0; % _d1 means delayed by one time step

10 end

11 error = y_c − y; % compute the current error

12 integrator = integrator + (Ts/2)*(error + error_d1);

13 % update integrator

14 differentiator = (2*tau−Ts)/(2*tau+Ts)*differentiator...

15 + 2/(2*tau+Ts)*(error − error_d1);

16 % update differentiator

17 error_d1 = error; % update the error for next time through

18 % the loop

19 u = sat(... % implement PID control

20 kp * error +... % proportional term

21 ki * integrator +... % integral term

22 kd * differentiator,... % derivative term

23 limit... % ensure abs(u)<=limit

24);

25 % implement integrator anti−windup

26 if ki~=0

27 u_unsat = kp*error + ki*integrator + kd*differentiator;

116 Chapter 6

28 integrator = integrator + Ts/ki * (u − u_unsat);

29 end

30

31 function out = sat(in, limit)

32 if in > limit, out = limit;

33 elseif in < −limit; out = −limit;

34 else out = in;

35 end

The inputs on line 1 are the commanded output yc; the current

output y; a flag used to reset the integrator; the PID gains kp, ki , and kd;

the limit of the saturation command; the sample time Ts; and the time

constant τ of the differentiator. Line 11 implements equation (6.31),

and lines 12–13 implement equation (6.32).

A potential problem with a straight-forward implementation of PID

controllers is integrator wind up. When the error yc − y is large and

a large error persists for an extended period of time, the value of the

integrator, as computed in line 11, can become large, or “wind up.” A

large integrator will cause u, as computed in line 15–20, to saturate,

which will cause the system to push with maximum effort in the

direction needed to correct the error. Since the value of the integrator

will continue to wind up until the error signal changes sign, the control

signal may not come out of saturation until well after the error has

changed sign, which can cause a large overshoot and may potentially

destabilize the system.

Since integrator wind up can destabilize the autopilot loops, it is

important that each loop have an anti-wind-up scheme. A number

of different anti-wind-up schemes are possible. A particularly simple

scheme, which is shown in Lines 22–25, is to subtract from the inte-

grator exactly the amount needed to keep u at the saturation bound. In

particular, let

u−
unsat = kpe + kdD + ki I

−

denote the unsaturated control value before updating the integrator,

where I− is the value of the integrator before applying the anti-wind-

up scheme and let

u+
unsat = kpe + kdD + ki I

+

denote the unsaturated control value after updating the integrator,

where

I+ = I− + 	I,

Autopilot Design 117

and	I is the update. The objective is to find	I so that u+
unsat = u, where

u is value of the control after the saturation command is applied.Noting

that

u+
unsat = u−

unsat + ki	I,

we can solve for 	I to obtain

	I =
1

ki
(u − u−

unsat).

The multiplication by Ts in line 24 is to account for the sampled-data

implementation.

6.6 Chapter Summary
In this chapter, we utilized the technique of successive loop closure

to develop lateral and longitudinal autopilots for a MAV. The lateral

autopilot includes roll-attitude hold as an inner loop and course-angle

hold as an outer loop. The longitudinal autopilot is more complicated

and depends on the altitude zone. A pitch-attitude-hold loop is used

as an inner loop in every zone. In the take-off zone, the MAV is given

full throttle, and the MAV is regulated to maintain a fixed take-off

pitch angle. In the climb zone, the MAV is given full throttle, and

the airspeed is regulated with an airspeed-hold-with-pitch autopilot

loop. The descend zone is similar to the climb zone except the MAV

is given minimum throttle. In the altitude hold zone, the altitude is

regulated with an altitude-using-pitch autopilot loop, and the airspeed

is regulated with an airspeed-using-throttle autopilot loop.

6.6.1 Summary of Design Process for Lateral Autopilot

Input: The transfer function coefficients aφ1
and aφ2

, the nominal

airspeed Va, and the aileron limit δmax
a .

Tuning Parameters: The roll angle limit φmax, the damping

coefficients ζφ and ζχ , the roll integrator gain kiφ , and the

bandwidth separationWχ > 1, where ωnφ
= Wχωnχ

.

Compute Natural Frequencies: Compute the natural frequency of

the inner loop ωnφ
using equation (6.8), and the natural

frequency of the outer loop using ωnχ
= ωnφ

/Wχ .

Compute Gains: Compute the gains kpφ
, kdφ

, kpχ
, and kiχ using

equations (6.7), (6.9), (6.12), and (6.13).

118 Chapter 6

6.6.2 Summary of Design Process for Longitudinal Autopilot

Input: The transfer function coefficients aθ1 , aθ2 , aθ3 , aV1
, and aV2

; the

nominal airspeed Va; and the elevator limit δmax
e .

Tuning Parameters: The pitch angle limit emax
θ ; the damping

coefficients ζθ , ζh, ζV, and ζV2
; the natural frequency ωnV ; and

the bandwidth separation for the altitude loopWh and the

airspeed-using-pitch loopWV2
.

Compute Natural Frequencies: Compute the natural frequency of

the pitch loop ωnθ
using equation (6.21). Compute the natural

frequency of the altitude loop using ωnh = ωnθ
/Wh, and of the

airspeed-using-pitch loop using ωnV2
= ωnθ

/WV2
.

Compute Gains: Compute the gains kpθ
and kdθ

using equation (6.22).

Compute the DC gain of the pitch loop using equation (6.23).

Compute kph and kih using equations (6.25) and (6.24).

Compute the gains kpV2 and KiV2
using equations (6.28)

and (6.27). Compute the gains kpV and kiV using

equations (6.30) and (6.29).

Notes and References

Portions of the design process that we outline in this chapter appear

in [29]. Similar techniques using root locus are given in [1, 2, 5, 6]. A

standard reference for digital implementation of PID controllers is [28].

Simple anti-wind-up schemes are discussed in [28, 30].

6.7 Design Project
In this assignment you will use simplified design models to tune the

gains of the PID loops for the lateral and longitudinal autopilot. To

do this, you will need to create some auxiliary Simulink models that

implement the design models. The final step will be to implement the

control loops on the full simulation model. Simulink models that will

help you in this process are included on the book website.

6.1. Create a Matlab script that computes the gains for the roll

attitude hold loop. Assume that the maximum aileron

deflection is δmax
a = 45 degrees, the saturation limit is

achieved for a step size of φmax = 15 degrees, and the

nominal airspeed is Va = 10m/s. Use the Simulink file

roll_loop.mdl on the website to tune the values of ζφ and

kiφ to get acceptable performance.

Autopilot Design 119

6.2. Augment your Matlab script to compute the gains for the

course hold loop. The Simulink file course_loop.mdl

implements the course hold loop with the roll hold as an

inner loop. Tune the bandwidth separation and the damping

ratio ζχ to get acceptable performance for step inputs in

course angle of 25 degrees.

6.3. Augment your Matlab script to compute the gains for

sideslip hold. Use the Simulinkmodel sideslip_loop.mdl

on the website to tune the value of ζβ .

6.4. Augment your Matlab script to compute the gains for the

pitch attitude hold loop. Assume that the maximum

elevator deflection is δmax
e = 45 degrees, and that the

saturation limit is achieved for a step size of

emax
θ = 10 degrees. Use the Simulink file pitch_loop.mdl

on the website to tune the value of ζθ .

6.5. Augment your Matlab script to compute the gains for

altitude hold using pitch as an input. Use the Simulink

model altitude_from_pitch_loop.mdl on the website

to tune the value of ζh and the bandwidth separation.

6.6. Augment your Matlab script to compute the gains for

airspeed hold using pitch as an input. Use the Simulink

model airspeed_from_pitch_loop.mdl on the website

to tune the value of ζ and the bandwidth separation.

6.7. Augment your Matlab script to compute the gains for

airspeed hold using throttle as an input. Use the Simulink

model airspeed_from_throttle_loop.mdl on the

website to tune the value of ζ and ωn.

6.8. The final step of the design is to implement the

lateral-directional and longitudinal autopilot on the

simulationmodel. Modify your simulationmodel so that

the aircraft is in its own subsystem. To ensure that the

autopilot code can be easily transferred to embedded code

written in, for example, C/C++, write the autopilot function

using aMatlab script. An example of how to organize your

simulation is given in the Simulinkmodel

mavsim_chap6.mdl on the website. A gutted version of the

autopilot code is also given on the web site. To implement

the longitudinal autopilot, you will need to implement a

state machine using, for example, the switch statement.

7
Sensors for MAVs

Critical to the creation and realization of small unmanned air vehicles

has been the development of small, lightweight solid-state sensors.

Based on microelectromechanical systems (MEMS) technology, small

but accurate sensors such as accelerometers, angular rate sensors, and

pressure sensors have enabled the development of increasingly smaller

andmore capable autonomous aircraft. Coupledwith the development

of small global positioning systems (GPS), computationally capable

microcontrollers, andmore powerful batteries, the capabilities ofMAVs

have gone from being purely radio controlled (RC) by pilots on the

ground to highly autonomous systems in less than 20 years. The objec-

tive of this chapter is to describe the onboard sensors typically used on

MAVs and to quantifywhat theymeasure.Wewill focus on sensors used

for guidance, navigation, and control of the aircraft. Payload sensors,

such as cameras, and their use will be described in chapter 13.

The following sensors are often found onMAVs:

• Accelerometers

• Rate gyros

• Pressure sensors

• Magnetometers

• GPS

The following sections will discuss each of these sensors, describe their

sensing characteristics, and propose models that describe their behav-

ior for analysis and simulation purposes.

7.1 Accelerometers
Acceleration transducers (accelerometers) typically employ a proof

mass held in place by a compliant suspension as shown in figure 7.1.

When the case of the accelerometer experiences an acceleration, the

proof mass moves relative to the case through a distance proportional

to the acceleration. The acceleration experienced by the proof mass is

converted to a displacement by the springs in the suspension. A simple

Sensors for MAVs 121

Figure 7.1 Conceptual depiction of

MEMS accelerometer.

force balance analysis of the proof mass yields the relationship

mẍ + kx = ky(t),

where x is the inertial position of the proof mass and y(t) is the inertial

position of the housing—the acceleration of which we want to sense.

Given that the deflection of the suspension is δ = y(t) − x, this relation

can be expressed as

ẍ =
k

m
δ.

Thus, the acceleration of the proof mass is proportional to the deflec-

tion of the suspension. At frequencies below the resonant frequency,

the acceleration of the proof mass is the same as the acceleration of the

housing. This can be seen by examining the transfer function from the

housing position input to the proof mass position output

X(s)

Y(s)
=

1
m
k
s2 + 1

,

or equivalently, the transfer function from the housing acceleration

input to the proof mass acceleration output

AX(s)

AY(s)
=

1
m
k
s2 + 1

.

At frequencies corresponding to ω <
√
k/m, the transfer function

AX(s)/AY(s) ≈ 1 and the displacement of the proof mass is an accurate

indicator of the acceleration of the body to which the accelerometer is

attached.

The accelerometer in figure 7.1 is shown with a capacitive trans-

ducer to convert the proof mass displacement into a voltage output

as is common in many MEMS devices. Other approaches to convert

122 Chapter 7

the displacement to a usable signal include piezoelectric, reluctive,

and strain-based designs. As with other analog devices, accelerometer

measurements are subject to signal bias and random uncertainty. The

output of an accelerometer can bemodeled as

ϒaccel = kaccelA+ βaccel + η′
accel,

where ϒaccel is in volts, kaccel is a gain, A is the acceleration in meters

per second squared, βaccel is a bias term, and η′
accel is zero-meanGaussian

noise. The gain kaccel may be found on the data sheet of the sensor.

Due to variations in manufacturing, however, it is imprecisely known.

A one-time lab calibration is usually done to accurately determine

the calibration constant, or gain, of the sensor. The bias term βaccel is

dependent on temperature and should be calibrated prior to each flight.

In aircraft applications, three accelerometers are commonly used.

The accelerometers are mounted near the center of mass, with the

sensitive axis of one accelerometer aligned with each of the body axes.

Accelerometers measure the specific force in the body frame of the

vehicle. Another interpretation is that they measure the difference

between the acceleration of the aircraft and the gravitational acceler-

ation. To understand this phenomena, imagine that the device shown

in figure 7.1 were to be turned ninety degrees and set on a table. The

forces acting on the casing will be gravity pulling down, and an equal

and opposite normal force pushing up to keep the casing on the table.

Therefore, the total acceleration on the casing will be zero. However,

since the normal force of the table does not act on the proof mass, it

will deflect under the force of gravity and the sensor will measure an

acceleration equal to one g. Therefore the measured acceleration is the

total acceleration of the casingminus gravity. Mathematically we have





ax
ay

az



 =
dv

dtb
+ ωb/ i × v −Rb

v





0

0

g



 ,

which can be expressed in component form as

ax = .
u + qw − rv + g sin θ

ay = .
v + r u − pw − g cos θ sin φ

az = .
w + pv − qu − g cos θ cos φ.

It can be seen that each accelerometer measures elements of linear

acceleration, Coriolis acceleration, and gravitational acceleration.

Sensors for MAVs 123

The voltage output of an accelerometer is converted into a number

corresponding to the voltage inside the autopilot microcontroller by

an analog-to-digital converter at a sample rate Ts. Through calibration,

this voltage can be converted to a numerical representation of the

acceleration inmeters per second squared. Assuming that the biases can

be removed through the calibration process, the accelerometer signals

inside the autopilot can bemodeled as

yaccel,x =
.
u + qw − rv + g sin θ + ηaccel,x

yaccel,y =
.
v + r u − pw − g cos θ sin φ + ηaccel,y (7.1)

yaccel,z =
.
w + pv − qu − g cos θ cos φ + ηaccel,z,

where ηaccel,x, ηaccel,y , and ηaccel,z are zero-mean Gaussian processes with

variance σ 2
accel,x, σ 2

accel,y , and σ 2
accel,z respectively. Because of the calibra-

tion, the units of yaccel,x, yaccel,y , and yaccel,z are inm/s2.

Depending on the organization of the simulation software, the terms
.
u,

.
v, and

.
w (state derivatives), may be inconvenient to calculate for

inclusion in equation (7.1). As an alternative, we can substitute from

equations (5.4), (5.5), and (5.6) to obtain

yaccel,x =
ρV2

a S

2m

[

CX(α) + CXq
(α)

c̄q

2Va
+ CXδe

(α)δe

]

+
ρSpropCprop

2m
[(kmotorδt)

2 − V2
a] + ηaccel,x

yaccel,y =
ρV2

a S

2m

[

CY0 + CYβ
β + CYp

bp

2Va
+ CYr

br

2Va

+ CYδa
δa + CYδr

δr

]

+ ηaccel,y (7.2)

yaccel,z =
ρV2

a S

2m

[

CZ(α) + CZq
(α)

c̄q

2Va
+ CZδe

(α)δe

]

+ ηaccel,z.

However, since the forces are already calculated as part of the dynamics,

the best way to organize the simulation files is to use the forces to

compute the output of the accelerometers. The resulting equations are

yaccel,x =
fx

m
+ g sin θ + ηaccel,x

yaccel,y =
fy

m
− g cos θ sin φ + ηaccel,y (7.3)

yaccel,z =
fz

m
− g cos θ cos φ + ηaccel,z,

124 Chapter 7

where fx, fy, and fz are given in equation (4.18). With the exception of

the noise terms, the terms on the right hand sides of equation (7.3) rep-

resent the specific force experienced by the aircraft. The acceleration of

the aircraft is commonly expressed in units of g, the gravitational con-

stant. To express the acceleration measurements in g’s, equation (7.3)

can be divided by g. The choice of units is up to the preference of the

engineer, however, maintaining consistent units reduces the potential

for mistakes in implementation.

7.2 Rate Gyros
MEMS rate gyros typically operate based on the principle of the Coriolis

acceleration. In the early 19th century, French scientist G.G. de Coriolis

discovered that a point translating on a rotating rigid body experiences

an acceleration, now calledCoriolis acceleration, that is proportional to

the velocity of the point and the rate of rotation of the body

aC = 2� × v, (7.4)

where � is the angular velocity of the body in an inertial reference

frame, and v is the velocity of the point in the reference frame of the

body. In this case, � and v are both vector quantities and × represents

the vector cross product.

MEMS rate gyros commonly consist of a vibrating proof mass as

depicted in figure 7.2. In this figure, the cantilever and proof mass are

actuated at their resonant frequency to cause oscillation in the vertical

plane. The cantilever is actuated so that the velocity of the proof mass

due to these oscillations is a constant amplitude sinusoid

v = Aωn sin(ωnt),

where A is the amplitude of the oscillation and ωn is the natural

frequency of the oscillation. If the sensitive axis of the rate gyro is

configured to be the longitudinal axis of the undeflected cantilever,

then rotation about this axis will result in a Coriolis acceleration

in the horizontal plane described by equation (7.4) and shown in

figure 7.2. Similar to the accelerometer, the Coriolis acceleration of the

proof mass results in a lateral deflection of the cantilever. This lateral

deflectionof the cantilever canbedetected in severalways: by capacitive

coupling, through a piezoelectrically generated charge, or through a

change in piezoresistance of the cantilever. Whatever the transduction

method, a voltage proportional to the lateral Coriolis acceleration is

produced.

Sensors for MAVs 125

Figure 7.2 Conceptual depiction of proof

mass rate gyro. ω is the angular velocity

of the sensor package to be measured. v

is the actuated vibration velocity of the

cantilever. aC is the Coriolis acceleration

that results as the sensor package

undergoes an angular velocity.

With the sensing axis orthogonal to the direction of vibration, the

ideal output voltage of the rate gyro is proportional to the amplitude of

Coriolis acceleration, and is given by

Vgyro = kC|aC|

= 2kC|� × v|.

Since�, the angular rate of rotation about the sensitive axis of the gyro,

and v are orthogonal

|� × v| = �|v|,

and

Vgyro = 2kC�|Aωn sin(ωnt)|

= 2kCAωn�

= KC�,

where KC is a calibration constant and � represents the magnitude and

direction (sign) of the angular velocity about the sensitive axis.

The output of a rate gyro can bemodeled as

ϒgyro = kgyro� + βgyro + η′
gyro,

where ϒgyro corresponds to the measured rate of rotation in volts, kgyro
is a gain converting the rate in radians per second to volts, � is the

angular rate in radians per second, βgyro is a bias term, and η′
gyro is zero-

meanGaussian noise. An approximate value for the gain kgyro should be

given on the spec sheet of the sensor. To ensure accuratemeasurements,

the value of this gain should be determined through experimental

calibration. The bias term βgyro is strongly dependent on temperature

and should be calibrated prior to each flight. For low-cost MEMS gyros,

drift in this bias term can be significant and care must be taken to zero

the gyro bias periodically during flight. This is done by flying a straight

126 Chapter 7

and level path (� = 0) and resetting the gyro bias so that ϒgyro averages

zero over a period of 100 or so samples.

For simulation purposes, we are interested inmodeling the calibrated

gyro signals inside the autopilot. The rate gyro signals are converted

from analog voltages coming out of the sensor to numerical repre-

sentations of angular rates (in units of rad/s) inside the autopilot. We

assume that the gyros have been calibrated so that in the nominal case

1 rad/s of angular rate experienced by the sensor results in a numerical

measurement inside the autopilot of 1 rad/s (i.e., the gain from the

physical rate to its numerical representation inside the autopilot is

one) and that the biases have been estimated and subtracted from the

measurements. It is common to measure the angular rates about each

of the body axes using three gyros by aligning the sensitive axis of a

gyro along each of the ib, jb, and kb axes of the MAV. These rate gyro

measurements of angular body rates p, q, and r can bemodeled as

ygyro,x = p + ηgyro,x

ygyro,y = q + ηgyro,y (7.5)

ygyro,z = r + ηgyro,z,

where ygyro,x, ygyro,y , and ygyro,z are angular rate measurements with

units of rad/s. The variables ηgyro,x, ηgyro,y, and ηgyro,z represent zero-

mean Gaussian processes with variances σ 2
gyro,x, σ 2

gyro,y , and σ 2
gyro,z, re-

spectively. MEMS gyros are analog devices that are sampled by the

autopilot microcontroller. We will assume that the sample rate is given

by Ts.

7.3 Pressure Sensors
Pressure, a quantity commonly associated with fluids, is defined as

the force per unit area acting on a surface. Pressure acts in a direction

normal to the surface of the body to which it is applied. We will use

measurements of pressure to provide indications of the altitude of the

aircraft and the airspeed of the aircraft. To measure altitude, we will

use an absolute pressure sensor. To measure airspeed, we will use a

differential pressure sensor.

7.3.1 Altitude Measurement

Measurements of altitude can be inferred from measurements of at-

mospheric pressure. The basic equation of hydrostatics, given by

P2 − P1 = ρg(z2 − z1), (7.6)

Sensors for MAVs 127

states that for a static fluid, the pressure at a point of interest changes

with the depth of the point below the surface of the fluid. This relation-

ship assumes that the density of the fluid is constant between the points

of interest. Although the air in the atmosphere is compressible and its

density changes significantly over altitudes from sea level to altitudes

commonly flown by modern aircraft, the hydrostatic relationship of

equation (7.6) can be useful over small altitude changes where the air

density remains essentially constant.

We are typically interested in the altitude or height of the aircraft

above a ground station and the corresponding change in pressure be-

tween the ground and the altitude of interest. From equation (7.6), the

change in pressure due to a change in altitude is given by

P − Pground = −ρg(h− hground) (7.7)

= −ρghAGL,

where h is the absolute altitude of the aircraft, hground is the absolute

altitude of the ground, hAGL = h−hground, and h and hground aremeasured

with respect to sea level and P is the corresponding absolute pressure

measurement. The change in sign between equations (7.6) and (7.7)

comes from the fact that depth, z, is measured positive down while

altitude h is measured positive up. A decrease in altitude above the

ground results in an increase inmeasured pressure. In implementation,

Pground is the atmospheric pressure measured at ground level prior to

take off and ρ is the air density at the flight location.

Equation (7.7) assumes that the air density is constant over the alti-

tude range of interest. In truth, it varies with both weather conditions

and altitude. Assuming that weather conditions are invariant over the

flight duration, wemust consider the effects of changing air density due

to changes in pressure and temperature that occur with altitude.

Below altitudes of 11,000 m above sea level, the pressure of the

atmosphere can be calculated using the barometric formula [31]. This

formula takes into account the change in density and pressure due to

decreasing temperature with altitude and is given by

P = P0

[

T0

T0 + L0hASL

]
gM
RL0

, (7.8)

where P0 = 101, 325 N/m2 is the standard pressure at sea level,

T0 = 288.15 K is the standard temperature at sea level, L0 =

− 0.0065 K/m is the lapse rate or the rate of temperature decrease in

the lower atmosphere, g = 9.80665 m/s2 is the gravitational constant,

R = 8.31432 N-m/(mol-K) is the universal gas constant for air, and

128 Chapter 7

Figure 7.3 Comparison of atmospheric pressure calculations using

constant-density and variable-density models.

M = 0.0289644 kg/mol is the standard molar mass of atmospheric air.

The altitude hASL is referenced to sea level.

The relative significance of the constant-density assumption can be

seen by comparing pressures calculated using equations (7.7) and (7.8)

as shown in figure 7.3. It can be seen that over the full range of altitudes

forwhich the barometric formula is valid (0 to 11,000mabove sea level),

the pressure versus altitude relationship is not linear and that the linear

approximation of equation (7.7) is not valid. The plot on the right of

figure 7.3, however, shows that over narrower altitude ranges, such as

those common to small unmanned aircraft, a linear approximation can

be usedwith reasonable accuracy. For this particular plot, equation (7.7)

was employed with hground = 0 and air density calculated at sea level.

One key to accurately calculating altitude from pressure using equa-

tion (7.7) is to have an accurate measure of air density at the flight

location. This can be determined from the ideal gas formula, withmea-

surements of the local temperature and barometric pressure at flight

time according to

ρ =
MP

RT
,

using values for the universal gas constant and molar mass of air speci-

fied above. Notice that in this formula, temperature is expressed in units

of Kelvin. The conversion from Fahrenheit to Kelvin is given by

T [K] =
5

9
(T [F] − 32) + 273.15.

The atmospheric pressure is expressed in N/m2. Typical weather data

reports pressure in inches of mercury (Hg). The conversion factor is

1 N/m2 = 3385 inches of Hg.

Sensors for MAVs 129

Figure 7.4 Schematic of an absolute pressure

sensor.

In practice, we will utilize the measurement of absolute pressure

to give an indication of altitude above ground level of the aircraft.

Figure 7.4 shows an example of an absolute pressure sensor in schematic

form. The pressure sensor consists of two volumes separated by a di-

aphragm. The volume on the right is closed and at a constant reference

pressure. The volume at the left is open to the ambient air. Changes

in the pressure of the ambient air cause the diaphragm to deflect.

These deflections aremeasured andproduce a signal proportional to the

sensed pressure.

Following equation (7.7), the output of the absolute pressure sensor

of interest is given by

yabs pres = (Pground − P) + βabs pres + ηabs pres

= ρghAGL + βabs pres + ηabs pres (7.9)

where hAGL is the altitude above ground level, βabspres is a temperature-

related bias drift, and ηabspres is zero-mean Gaussian noise with variance

σ 2
abspres. Pground is the pressure measured at ground level prior to take-

off and held in the memory of the autopilot microcontroller. P is the

absolute pressure measured by the sensor during flight. The difference

between these two measurements is proportional to the altitude of the

aircraft above ground level.

7.3.2 Airspeed Sensor

Airspeed can bemeasured using a pitot-static probe in conjunctionwith

a differential pressure transducer as depicted schematically in figure 7.5.

The pitot-static tube has two ports: one that is exposed to the total

pressure and another that is exposed to the static pressure. The total

pressure is also known as the stagnation pressure or pitot pressure. It

is the pressure at the tip of the probe, which is open to the oncoming

flow. The flow is stagnant or stopped at the tip. As a result, pressure

is built up so that the pressure at the tip is higher than that of the

surrounding fluid. The static pressure is simply the ambient pressure

130 Chapter 7

Figure 7.5 Schematic of pitot-static tube and differential pressure sensor. Not to

scale.

of the surrounding fluid (or atmosphere). The difference in pressures

on each side of the diaphragm in the differential pressure sensor cause

the diaphragm todeflect causing a strain in the diaphragmproportional

to the pressure difference. This strain is measured, producing a voltage

output representing the differential pressure.

Bernoulli’s equation states that total pressure is the sum of the static

pressure and dynamic pressure. In equation form, we can write this as

Pt = Ps +
ρV2

a

2
,

where ρ is the air density andVa is the airspeed of theMAV. Rearranging,

we have

ρV2
a

2
= Pt − Ps,

which is the quantity that the differential pressure sensor measures.

With proper calibration to convert the sensor output from volts to a

number inside the microcontroller representing pressure in units of

N/m2, we canmodel the output of the differential pressure sensor as

ydiff pres =
ρV2

a

2
+ βdiff pres + ηdiff pres, (7.10)

where βdiff pres is a temperature-related bias drift, ηdiff pres is zero-mean

Gaussian noise with variance σ 2
diff pres. The absolute and differential

pressure sensors are analog devices that are sampled by the onboard

processor at the same update rate as the main autopilot control loop.

Sensors for MAVs 131

Figure 7.6 Magnetic field and compass

measurement.

7.4 Digital Compasses
The earth’s magnetic field has been used as a navigational aid for

centuries. The first magnetic compasses are believed to have originated

with the Chinese around the first century AD Compasses appeared in

Europe around the 11th century AD and were used by Christopher

Columbus and other world explorers in the late 15th century. The

earth’s magnetic field continues to provide a means for navigation for

a variety of vehicles, including unmanned aircraft.

The magnetic field around the earth behaves similarly to that of a

commonmagnetic dipolewith themagnetic field lines runningnormal

to the earth’s surface at the poles and parallel to the earth’s surface near

the equator. Except near the poles, the earth’s magnetic field points

to magnetic north. A compass measures the direction of the magnetic

field locally and provides an indication of heading relative to magnetic

north, ψm. This is depicted schematically in figure 7.6. The declination

angle δ is the angle between true north andmagnetic north.

The earth’smagnetic field is three dimensional, with north, east, and

down components that vary with location along the earth’s surface.

For example, in Provo, Utah, the north component (X) of the mag-

netic field is 21,053 nT, the east component (Y) is 4520 nT, and the

down component (Z) is 47,689 nT. The declination angle is 12.12 de-

grees. Figure 7.7 shows the declination angle over the surface of the

earth and illustrates the significant dependence of the magnetic north

direction on location. The inclination angle is the angle that the

132 Chapter 7

Figure 7.7 Magnetic field declination according to the US/UK World Magnetic

Model. Adapted from [32].

magnetic field makes with the horizontal plane. In Provo, the inclina-

tion is 65.7 degrees.

Modern digital compasses use three-axis magnetometers to measure

the strength of the magnetic field along three orthogonal axes. In UAV

applications, these axes of measurement are usually aligned with the

body axes of the aircraft. Although only two sensing axes are required

to measure the magnetic heading if the aircraft is in level flight, a third

sensing axis is necessary if the aircraft is pitching or rolling out of the

horizontal plane.

From figure 7.6, we can see that the heading angle is the sum of the

declination angle and themagnetic headingmeasurement

ψ = δ + ψm. (7.11)

The declination angle for a given latitude and longitude can be calcu-

lated using models such as the World Magnetic Model (WMM), avail-

able from theNationalGeophysicalDataCenter (NGDC) [32]. Themag-

netic heading can be determined from measurements of the magnetic

field strength along the body-frame axes. To do so, we project the body-

frame measurements of the magnetic field onto the horizontal plane.

The angle between the horizontal component of themagnetic field and

the iv1 axis (the heading) is the magnetic heading. Mathematically, we

Sensors for MAVs 133

can calculate the magnetic heading from the following expressions as

mv1
0 =







mv1
0x

mv1
0y

mv1
0z






= Rv1

b (φ, θ)mb
0

= Rv1
v2(θ)R

v2
b (φ)mb

0

=





cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









1 0 0

0 cos φ − sin φ

0 sin φ cos φ



mb
0







mv1
0x

mv1
0y

mv1
0z






=





cθ sθsφ sθcφ

0 cφ −sφ
−sθ cθsφ cθcφ



mb
0, (7.12)

and

ψm = −atan2(mv1
0y

, mv1
0x). (7.13)

In these equations, mb
0 is a vector containing the body-frame mea-

surements of the magnetic field taken onboard the vehicle. The four-

quadrant inverse tangent function atan2(y,x) returns the arctangent of

y/x in the range [−π, π] using the signs of both arguments to determine

the quadrant of the return value. The components mv1
0x and mv1

0y
are the

horizontal components of the magnetic field measurement that result

when mb
0 is projected onto the horizontal plane. Notice that in level

flight (φ = θ = 0),mv1
0 = mb

0.

In practice, the use of magnetometers and digital compasses can be

challenging. This is primarily due to the sensitivity of the sensor to elec-

tromagnetic interference. Careful placement of the sensor on the air-

craft is essential to avoid interference from electric motors, servos, and

power wiring. Magnetometers can also be sensitive to interference from

power lines and weather systems. Some of the challenges associated

with magnetometers have been addressed by manufacturers that pack-

age magnetometers, signal conditioning, and a microcontroller into a

single-chip solution called a digital compass. These digital compasses

vary in their sophistication with full-featured versions incorporating

tilt compensation and automatic declination/inclination calculation

from latitude and longitude data.

To create a sensor model for simulation purposes, a reasonable ap-

proach to modeling a digital compass is to assume that the compass

gives ameasure of the true heading with a bias error, due to uncertainty

in the declination angle, and sensor noise from the magnetometers.

134 Chapter 7

Mathematically, this can be represented as

ymag = ψ + βmag + ηmag, (7.14)

where ηmag is a zero-meanGaussian process with variance σ 2
mag and βmag

is a bias error. A digital compass communicates over a serial link with

the autopilot at sample rate Ts.

7.5 Global Positioning System
The Global Positioning System (GPS) is a satellite-based navigation

system that provides 3-D position information for objects on or near

the earth’s surface. TheNAVSTARGPS systemwas developed by theU.S.

Department of Defense and has been fully operational since 1993. For

unmanned aircraft, it would be difficult to overstate the significance

of the development and availability of the GPS system. It was, and

continues to be, a critical enabling technology for small UAVs. The GPS

system and global navigation satellite systems have been described in

detail in numerous texts (e.g., [33, 34, 35, 36]). In this section, we will

provide a brief overview of GPS position sensing and present a model

for GPS position sensing suitable for simulation.

The key component of theGPS system is the constellation of 24 satel-

lites that continuously orbit the earth at an altitude of 20,180 km [33].

The configuration of the satellite orbits is designed so that any point

on the earth’s surface is observable by at least four satellites at all

times. By measuring the times of flight of signals from a minimum

of four satellites to a receiver on or near the surface of the earth, the

location of the receiver in three dimensions can be determined. The

time of flight of the radio wave signal is used to determine the range

from each satellite to the receiver. Because synchronization errors exist

between the satellite clocks and the receiver clock, the range estimate

determined from the time of flight measurement is called pseudorange

to distinguish it from the true range.

Because of clock synchronization errors between the satellites

(whose atomic clocks are almost perfectly synchronized) and the re-

ceiver, four independent pseudorange measurements are required to

triangulate the position of the receiver as depicted in figure 7.8. Why

are four pseudorange measurements required? We know that with one

range measurement from a known location, we can locate a point on a

line (1-D). Two range measurements can locate a point on a plane (2-D)

and three range measurements can locate a point on a 3-D surface. To

resolve position in three dimensions with a receiver clock offset error,

at least four measurements are needed. The geometry associated with

Sensors for MAVs 135

Figure 7.8 Pseudo-range measurements from four satellites used to triangulate

the position of a receiver.

pseudorange measurements from four different satellites form a system

of four nonlinear algebraic equations in four unknowns: latitude, longi-

tude, and altitude of theGPS receiver, and receiver clock timeoffset [33].

7.5.1 GPS Measurement Error

The accuracy of a GPS positionmeasurement is affected by the accuracy

of the satellite pseudorange measurements and by the geometry of the

satellites from which pseudorange measurements are taken. The effect

of satellite geometry is taken into consideration through a factor called

dilution of precision (DOP). Pseudorange accuracy is affected by errors

in the time of flight measurement for each satellite. Given that the

electromagnetic radio signals from the satellites travel at the speed of

light, small timing errors can cause significant positioning errors. For

example, a timing error of only 10 ns can result in a positioning error of

about 3m. Error sources in the time of flight are discussed briefly in the

following paragraphs drawing on information presented in [33, 34].

136 Chapter 7

Ephemeris Data

The satellite ephemeris is a mathematical description of its orbit. Cal-

culation of the receiver location requires the satellite locations to be

known. Ephemeris errors in the pseudorange calculation are due to

uncertainty in the transmitted location of the satellite. Errors in the

range of 1 to 5 m are typical.

Satellite Clock

GPS satellites use cesium and rubidium atomic clocks, which over the

course of one day, drift about 10 ns, introducing an error of about

3.5 m. Given that the clocks are updated every 12 hours, satellite clock

errors introduce a positioning error of 1 to 2 m on average.

Ionosphere

The ionosphere is the uppermost layer of the earth’s atmosphere and is

characterized by the presence of free electrons that delay the transmis-

sion of GPS signals. Although receivers make corrections for this delay

based on information in the GPS message, errors caused by variations

in the speed of light through the ionosphere are the largest source of

ranging errors in GPSmeasurements. Errors are typically between 2 and

5 m.

Troposphere

The troposphere is the lowest layer of the earth’s atmosphere, extending

from the earth’s surface to an altitude of between 7 and 20 km. Most of

the mass of the atmosphere is in the troposphere and almost all of the

weather activity around the earth occurs in the troposphere. Variations

in the temperature, pressure, andhumidity in the troposphere affect the

speed of light and thus affect time of flight and pseudorange estimates.

The uncertainty in the speed of light through the troposphere intro-

duces range errors of about 1 m.

Multipath Reception

Multipath errors are caused when a GPS receiver receives reflected sig-

nals that mask the true signal of interest. Multipath is most significant

for static receivers located near large reflecting surfaces, such as might

be encountered near large buildings or structures. Multipath errors are

below 1 m inmost circumstances.

Receiver Measurement

Receiver measurement errors stem from the inherent limits with which

the timing of the satellite signal can be resolved. Improvements in

Sensors for MAVs 137

Table 7.1

Standard pseudorange error model (1-σ , in meters) [34]

Error source Bias Random Total

Ephemeris data 2.1 0.0 2.1

Satellite clock 2.0 0.7 2.1

Ionosphere 4.0 0.5 4.0

Troposphere monitoring 0.5 0.5 0.7

Multipath 1.0 1.0 1.4

Receiver measurement 0.5 0.2 0.5

UERE, rms 5.1 1.4 5.3

Filtered UERE, rms 5.1 0.4 5.1

signal tracking and processing have resulted in modern receivers that

can compute the signal timing with sufficient accuracy to keep ranging

errors due to the receiver less than 0.5 m.

Pseudorange errors from the sources described above are treated

as statistically uncorrelated and can be added using the root sum

of squares. The cumulative effect of each of these error sources on

the pseudorange measurment is called the user-equivalent range error

(UERE). Parkinson, et al. [34] characterized these errors as a combi-

nation of slowly varying biases and random noise. The magnitudes

of these errors are tabulated in table 7.1. Recent publications indicate

that measurement accuracies have improved in recent years due to

improvements in error modeling and receiver technology with total

UERE being estimated as approximately 4.0 m (1-σ) [33].

The pseudorange error sources described above contribute to the

UERE in the range estimates for individual satellites. An additional

source of position error in the GPS system comes from the geometric

configuration of the satellites used to compute the position of the

receiver. This satellite geometry error is expressed in terms of a single

factor called the dilution of precision (DOP) [33]. The DOP value de-

scribes the increase in positioning error attributed to the positioning

of the satellites in the constellation. In general, a GPS position estimate

froma group of visible satellites that are positioned close to one another

will result in a higherDOP value, while a position estimate from a group

of visible satellites that are spread apart will result in a lower DOP value.

There are a variety of DOP terms defined in the literature. The two

DOP terms of greatest interest to us are the horizontal DOP (HDOP) and

the vertical DOP (VDOP). HDOP describes the influence of the satellite

geometry on the GPS positionmeasurement accuracy in the horizontal

plane, while VDOP describes the influence of satellite geometry on

138 Chapter 7

position measurement accuracy in altitude. Since DOP depends on the

number and configuration of visible satellites, it varies continuously

with time. In open areas where satellites are readily visible, a nominal

HDOP value would be 1.3, while a nominal VDOP value would be

1.8 [33].

The total error in aGPS positionmeasurement takes into account the

UERE and DOP. The standard deviation of the rms error in the north-

east plane is given by

En-e,rms = HDOP × UERErms

= (1.3)(5.1 m) (7.15)

= 6.6 m.

Similarly, the standard deviation of the rms altitude error is given by

Eh,rms = VDOP × UERErms

= (1.8)(5.1 m) (7.16)

= 9.2 m.

These expressions give an indication of the size of the error that can be

anticipated for a single receiver position measurement. As indicated in

table 7.1, these errors consist of statistically independent slowly-varying

biases and random noise components. Techniques, such as differential

GPS, can be used to reduce the bias error components of GPS position

measurements to much smaller values.

7.5.2 Transient Characteristics of GPS Positioning Error

The previous discussion has given us a good sense of the root-mean-

square magnitude of the positioning errors involved in GPS measure-

ments. For the purposes of simulation, however, we are not only in-

terested in the size of the error, we are also interested in knowing the

dynamic characteristics of the error. Referring to equation (7.15) and

assuming that the horizontal position error is composed of a north

position error and east position error that are independent but of

similar size, we can calculate the north and east error magnitudes to be

about 4.7 m in size. The north, east, and altitude errors are comprised

of a slowly changing bias along with random noise. For example, based

on a VDOP of 1.8 and the UERE values of table 7.1, we can approxi-

mately model the altitude position error from GPS as having a slowly

varying, zero-mean bias of 9.2 m and a random noise component

of 0.7 m.

Sensors for MAVs 139

Figure 7.9 Example GPS altitude position error from Gauss-Markov model.

Table 7.2

Gauss-Markov error model parameters

Nominal 1-σ error (m) Model Parameters

Direction Bias Random Std. Dev. ηGPS (m) 1/kGPS (s) Ts (s)

North 4.7 0.4 0.21 1100 1.0

East 4.7 0.4 0.21 1100 1.0

Altitude 9.2 0.7 0.40 1100 1.0

Tomodel the transient behavior of the error, we follow the approach

of [37] and model the error as a Gauss-Markov process. Gauss-Markov

processes are modeled by

ν[n+ 1] = e−kGPSTsν[n] + ηGPS[n] (7.17)

where ν[n] is the error being modeled, ηGPS[n] is zero-mean Gaussian

white noise, 1/kGPS is the time constant of the process, and Ts is the sam-

ple time. Figure 7.9 shows results from the Gauss-Markov GPS altitude

error model given by equation (7.17). The error over the 12-hour period

shownhas a standard deviation of 9.4 m,while the noise component of

the error has a standard deviation of 0.69 m. The upper plot shows the

error over a 12-hour period, while the lower plot shows the error over a

100-second segment of time. SuitableGauss-Markov process parameters

to model the GPS error are given in table 7.2.

Drawing on the error model in equation (7.17) and the parameters

in table 7.2, we can create position error models for the north, east,

and altitude measurements from GPS: νn, νe, and νh. Accordingly, a

model for GPSmeasurements that is suitable for simulation purposes is

140 Chapter 7

given by

yGPS,n[n] = pn[n] + νn[n] (7.18)

yGPS,e[n] = pe[n] + νe[n] (7.19)

yGPS,h[n] = −pd[n] + νh[n], (7.20)

where pn, pe, and h are the actual earth coordinates and altitude above

sea level, and n is the sample index. GPS measurements are commonly

available from small UAV receivers at 1 Hz. New systems suitable for

small UAV implementations provide GPS measurements at 5 Hz up-

dates.

7.5.3 GPS Velocity Measurements

Using carrier phase Doppler measurements from GPS satellite signals,

the velocity of the receiver can be calculated to accuracies with standard

deviations in the range of 0.01 to 0.05 m/s. Many modern GPS receiver

chips provide velocity information as part of their output data packet.

In addition, they provide information on horizontal ground speed

and course over the ground. Horizontal ground speed and course are

calculated from the north and east velocity components fromGPS as

Vg =

√

V2
n + V2

e (7.21)

χ = tan−1

(

Vn

Ve

)

, (7.22)

where Vn = Va cos ψ + wn and Ve = Va sin ψ + we.

Using basic principles of uncertainty analysis [38], the uncertainty in

ground speed and course measurements can be estimated to be

σVg
=

√

V2
n σ 2

Vn
+ V2

e σ 2
Ve

V2
n + V2

e

σχ =

√

V2
n σ 2

Ve
+ V2

e σ 2
Vn

(V2
n + V2

e)
2

.

If the uncertainty in the north and east directions have the same

magnitude (i.e., σVn
= σVe

= σV), these expressions simplify to be

σVg
= σV (7.23)

σχ =
σV

Vg
. (7.24)

Sensors for MAVs 141

Notice that the uncertainty in the course measurement scales with the

inverse of the ground speed—for high speeds the error is small and

for low speeds the error is large. This is not unexpected since course is

undefined for a stationary object. Based on equations (7.21)–(7.22) and

(7.23)–(7.24), we canmodel the ground speed and coursemeasurements

available fromGPS as

yGPS,Vg
=
√

(Va cos ψ + wn)2 + (Va sin ψ + we)2 + ηV (7.25)

yGPS,χ = atan2(Va sin ψ + we, Va cos ψ + wn) + ηχ , (7.26)

where ηV and ηχ are zero-mean Gaussian processes with variances σ 2
Vg

and σ 2
χ .

7.6 Chapter Summary
In this chapter, we have described the sensors commonly found on

small unmanned aircraft and proposed models that describe their

function for the purposes of simulation, analysis, and observer design.

The simulation models characterize the errors of the sensors and their

effective update rates. We have focused on sensors used for guidance,

navigation, and control of the aircraft including accelerometers, rate

gyros, absolute pressure sensors, differential pressure sensors, magne-

tometers, and GPS. Camera sensors will be discussed in chapter 13.

Notes and References

The accelerometers, rate gyros, and pressure sensors used on small

unmanned aircraft are usually based onMEMS technology due to their

small size and weight. Several references provide excellent overviews

of these devices including [39, 40, 41]. The development of the global

positioning system has been described in detail in several texts. Details

describing its function and modeling of position errors can be found

in [33, 34, 35, 36]. Specific information for sensor models can be found

inmanufacturer data sheets for the devices of interest.

7.7 Design Project
The objective of this project assignment is to add the sensors to the

simulationmodel of theMAV.

7.1. Download the files associated with this chapter from the

book website. Note that we have added a block for the

sensors that contains two files: sensors.m and gps.m. The

file sensors.mwill model all of the sensors that update at

142 Chapter 7

rate Ts (gyros, accelerometers, pressure sensors), and gps.m

will model the GPS sensor, which is updated at rate Ts,GPS.

7.2. Using the sensor parameters listed in appendix H, modify

sensors.m to simulate the output of the rate gyros

(eq. (7.5)), the accelerometers (eq. (7.3)), and the pressure

sensors (eq (7.9) and (7.10)).

7.3. Using the sensor parameters listed in appendix H, modify

gps.m to simulate the positionmeasurement output of the

GPS sensor (eq. (7.18)–(7.20)) and the ground speed and

course output of the GPS sensor (eq. (7.25)–(7.26)).

7.4. Using a Simulink scope, observe the output of each sensor

and verify that its sign andmagnitude are approximately

correct, and that the shape of the waveform is approximately

correct.

8
State Estimation

The autopilot designed in chapter 6 assumes that states of the system

like roll and pitch angles are available for feedback. However, one of the

challenges of MAV flight control is that sensors that directly measure

roll and pitch are not available. Therefore, the objective of this chapter

is to describe techniques for estimating the state of a small or micro

air vehicle from the sensor measurements described in chapter 7. Since

rate gyros directly measure roll rates in the body frame, the states p, q,

and r can be recovered by low-pass filtering the rate gyros. Therefore,

we begin the chapter by discussing digital implementation of low-

pass filters in section 8.2. In section 8.3 we describe a simple state-

estimation scheme that is basedonmathematically inverting the sensor

models. However, this scheme does not account for the dynamics of

the system and therefore does not perform well over the full range of

flight conditions. Accordingly, in section 8.4 we introduce dynamic-

observer theory as a precursor to our discussion on the Kalman filter. A

mathematical derivation of the Kalman filter is given in section 8.5. For

those with limited exposure to stochastic processes, appendix G pro-

vides anoverviewof basic concepts fromprobability theorywith a focus

on Gaussian stochastic processes. The last two sections of the chapter

describe applications of the Kalman filter. In section 8.6, an extended

Kalman filter is designed to estimate the roll and pitch attitude of the

MAV, and in section 8.7, an extended Kalman filter is used to estimate

the position, ground speed, course, and heading of the MAV, as well as

the wind speed and direction.

8.1 Benchmark Maneuver
To illustrate the different estimation schemes presented in this chapter,

we will use a maneuver that adequately excites all of the states. Initially

the MAV will be in wings-level, trimmed flight at an altitude of 100 m,

and an airspeed of 10 m/s. The maneuver is defined by commanding a

constant airspeed of 10 m/s and by commanding altitude and heading

as shown in figure 8.1. By using the same benchmark maneuver to

estimate the performance of the different estimators developed in this

chapter, we can evaluate their relative performance. The benchmark

maneuver commands longitudinal and lateralmotions simultaneously,

144 Chapter 8

Figure 8.1 Altitude and heading

commands that define the

benchmark maneuver used to

evaluate and tune the state

estimation scheme.

thus exposing any significant sensitivities of estimators to assumptions

of decoupled dynamics.

8.2 Low-pass Filters
Since some of the estimation schemes described in this chapter require

low-pass filtering of the sensor signal, this section describes digital

implementation of a single pole low-pass filter. The Laplace transform

representation of a simple unity DC-gain low-pass filter with cut-off

frequency a is given by

Y(s) =
a

s + a
U (s),

whereU (s) = L{u(t)} and u(t) is the input of the filter, and where Y(s) =

L{y(t)} and y(t) is the output. Taking the inverse Laplace transform gives

.
y = −ay + au. (8.1)

From linear-systems theory, it is well known that the sampled-data

solution to equation (8.1) is given by

y(t + Ts) = e−aTs y(t) + a

∫ Ts

0

e−a(Ts−τ)u(τ) dτ.

Assuming that u(t) is constant between sample periods results in the

expression

y[n+ 1] = e−aTs y[n] + a

∫ Ts

0

e−a(Ts−τ) dτu[n]

= e−aTs y[n] + (1 − e−aTs)u[n]. (8.2)

State Estimation 145

If we let αLPF = e−aTs then we get the simple form

y[n+ 1] = αLPFy[n] + (1 − αLPF)u[n].

Note that this equation has a nice physical interpretation: the new

value of y (filtered value) is a weighted average of the old value of y and

u (unfiltered value). If u is noisy, then αLPF ∈ [0, 1] should be close to

unity. However, if u is relatively noise free, then α should be close to

zero.

We will use the notation LPF (·) to represent the low-pass filter

operator. Therefore x̂ = LPF (x) is the low-pass filtered version of x.

8.3 State Estimation by Inverting the Sensor Model
In this section we will derive the simplest possible state estimation

scheme based on inverting the sensor models derived in chapter 7.

While thismethod is effective for angular rates, altitude, and airspeed, it

is not effective for estimating the Euler angles or the position and course

of theMAV.

8.3.1 Angular Rates

The angular rates p, q, and r can be estimated by low-pass filtering the

rate gyro signals given by equation (7.5) to obtain

p̂ = LPF (ygyro,x) (8.3)

q̂ = LPF (ygyro,y) (8.4)

r̂ = LPF (ygyro,z). (8.5)

For the benchmark maneuver discussed in section 8.1, the estimation

error for p, q, and r are shown in figure 8.2. From the figure we see that

low-pass filtering the gyromeasurements produces acceptable estimates

of p, q, and r .

8.3.2 Altitude

A estimate of the altitude can be obtained from the absolute pressure

sensor. Applying a low-pass filter to equation (7.9) and dividing by ρg

we get

ĥ =
LPF (ystatic pres)

ρg
. (8.6)

146 Chapter 8

Figure 8.2 Estimation error on the angular rates obtained by low-pass filtering

the rate gyros.

8.3.3 Airspeed

The airspeed can be estimated by applying a low-pass filter to the differ-

ential pressure sensor represented by equation (7.10), and inverting to

obtain

V̂a =

√

2

ρ
LPF (ydiff pres). (8.7)

For the benchmark maneuver discussed in section 8.1, the estimates

of the altitude and airspeed are shown in figure 8.3, together with

truth data. As can be seen from the figure, inverting the sensor model

produces a fairly accurate model of the altitude and airspeed.

8.3.4 Roll and Pitch Angles

Roll and pitch angles are themost difficult variables to estimate well on

small unmanned aircraft. A simple scheme that works in unaccelerated

flight can be derived as follows. Recall from equation (7.1) that

yaccel,x =
.
u + qw − rv + g sin θ + ηaccel,x

yaccel,y =
.
v + r u − pw − g cos θ sin φ + ηaccel,y

yaccel,z =
.
w + pv − qu − g cos θ cos φ + ηaccel,z.

State Estimation 147

Figure 8.3 Estimation error of the altitude and airspeed obtained by low-pass

filtering the pressure sensors and inverting the sensor model. For altitude and

airspeed, the accuracy of the simple scheme is adequate.

In unaccelerated flight we have
.
u =

.
v =

.
w = p = q = r = 0, which

implies that

LPF (yaccel,x) = g sin θ

LPF (yaccel,y) = −g cos θ sin φ

LPF (yaccel,z) = −g cos θ cos φ.

Solving for φ and θ we get

φ̂accel = tan−1

(
LPF (yaccel,y)

LPF (yaccel,z)

)

(8.8)

θ̂accel = sin−1

(
LPF (yaccel,x)

g

)

. (8.9)

The estimation errors of the roll and pitch angles for the benchmark

maneuver discussed in section 8.1 are shown in figure 8.4, where it is

clear that the estimation error during accelerated flight is unacceptable.

In section 8.6 we will use an extended Kalman filter to provide more

accurate estimates of the roll and pitch angles.

8.3.5 Position, Course, and Ground Speed

The position of the MAV can be estimated by low-pass filtering

equations (7.18) and (7.19). The biases due to multipath, clock, and

satellite geometry will not be removed. The estimates of the position

148 Chapter 8

Figure 8.4 Estimation error on the roll and pitch angles obtained by low-pass

filtering the accelerometers and inverting the model. Since this scheme assumes

unaccelerated flight during maneuvers where acceleration exists, the estimation

error can be unacceptably large.

variables are therefore given by

p̂n = LPF (yGPS,n) (8.10)

p̂e = LPF (yGPS,e). (8.11)

Similarly, estimates of the course angle and ground speed of the MAV

can be obtained by low-pass filtering equations (7.26) and (7.25) to

obtain

χ̂ = LPF (yGPS,χ) (8.12)

V̂g = LPF (yGPS,Vg
). (8.13)

The primary downside of low-pass filtering GPS signals is that since the

sample rate is slow (usually on the order of 1 Hz), there is significant

delay in the estimate. The estimation scheme described in section 8.7

will resolve this problem.

For the benchmarkmaneuver discussed in section 8.1, the estimation

error for the north and east position, and for the course and ground

speed are shown in figure 8.5. There is significant error due, in part,

to the fact that the GPS sensor is only updated at 1 Hz. Clearly, simply

low-pass filtering the GPS data does not produce satisfactory results.

State Estimation 149

Figure 8.5 Estimation error for the north and east position, course, and ground

speed obtained by low-pass filtering the GPS sensors.

We have shown in this section that adequate estimates of the body

rates p, q, and r , as well as the altitude and the airspeed can be obtained

by low-pass filtering the sensors. However, estimating the roll and

pitch angles and the position, course, and ground speed will require

more sophisticated techniques. In particular, a simple low pass filter

does not account for the underlying dynamics of the system. In the

following section we will introduce dynamic observer theory. Themost

commonly used dynamic observer is the Kalman filter which will be

derived in section 8.5. The application of the Kalman filter to attitude

estimation is in section 8.6, and the application of the Kalman filter to

position, course, and groundspeed estimation is in section 8.7.

8.4 Dynamic-observer Theory
The objective of this section is to briefly review observer theory, which

serves as a precursor to our discussionon theKalmanfilter. Suppose that

we have a linear time-invariant systemmodeled by the equations

.
x = Ax + Bu

y = Cx.

150 Chapter 8

A continuous-time observer for this system is given by the equation

.
x̂ = Ax̂ + Bu
︸ ︷︷ ︸

+ L (y − Cx̂)
︸ ︷︷ ︸

, (8.14)

copy of the model correction due to sensor reading

where x̂ is the estimated value of x. Defining the observation error as

x̃ = x − x̂we find that

.
x̃ = (A− LC)x̃,

which implies that the observation error decays exponentially to zero if

L is chosen so that the eigenvalues of A− LC are in the open left half of

the complex plane.

In practice, the sensors are usually sampled and processed in digital

hardware at sample rate Ts. How do we modify the observer equation

shown in equation (8.14) to account for sampled sensor readings? One

approach is to propagate the system model between samples using the

equation

.
x̂ = Ax̂ + Bu, (8.15)

and then to update the estimate when ameasurement is received using

x̂+ = x̂− + L(y(tn) − Cx̂−), (8.16)

where tn is the instant in time that the measurement is received and

x̂− is the state estimate produced by equation (8.15) at time tn. Equa-

tion (8.15) is then re-instantiated with initial conditions given by x̂+.

If the system is nonlinear, then the propagation and update equations

become

.
x̂ = f (x̂, u) (8.17)

x̂+ = x̂− + L(y(tn) − h(x̂−)). (8.18)

The observation process is shown graphically in figure 8.6. Note that

it is not necessary to have a fixed sample rate.

A pseudo-code implementation of the continuous-discrete observer

is shown in algorithm 1. In line 1 the state estimate is initialized to zero.

If additional information is known, then the state can be initialized

accordingly. The ordinary differential equation in equation (8.17) is

propagated between samples with the for-loop in lines 4–6 using and

State Estimation 151

Figure 8.6 Time line for continuous-discrete dynamic observer. The vertical

dashed lines indicate sample times at which measurements are received. In

between measurements, the state is propagated using equation (8.17). When a

measurement is received, the state is updated using equation (8.18).

Euler integrationmethod.When ameasurement is received, the state is

updated using equation (8.18) in line 8.

Algorithm 1 Continuous-discrete Observer

1: Initialize: x̂ = χ0.

2: Pick an output sample rate Tout that is less than the sample rates of

the sensors.

3: At each sample time Tout:

4: for i = 1 to N do {Propagate the state equation.}

5: x̂ = x̂ +
(
Tout
N

)
f (x̂, u)

6: end for

7: if Ameasurement has been received from sensor i then

{Measurement Update}

8: x̂ = x̂ + Li (yi − hi(x̂))

9: end if

8.5 Derivation of the Continuous-discrete Kalman Filter
The key parameter for the dynamic observer discussed in the previ-

ous section is the observer gain L. The Kalman filter and extended

Kalman filters discussed in the remainder of this chapter are standard

techniques for choosing L. If the process and measurement are linear,

and the process and measurement noise are zero-mean white Gaussian

processes with known covariancematrices, then the Kalman filter gives

the optimal gain, where the optimality criteria will be defined later

152 Chapter 8

in this section. There are several different forms for the Kalman filter,

but the form that is particularly useful for MAV applications is the

continuous-propagation, discrete-measurement Kalman filter.

We will assume that the (linear) system dynamics are given by

.
x = Ax + Bu + ξ (8.19)

y[n] = Cx[n] + η[n],

where y[n] = y(tn) is the nth sample of y, x[n] = x(tn) is the nth sample

of x, η[n] is the measurement noise at time tn, ξ is a zero-mean Gaussian

random process with covariance Q, and η[n] is a zero-mean Gaussian

random variable with covariance R. The random process ξ is called

the process noise and represents modeling error and disturbances on

the system. The random variable η is called the measurement noise

and represents noise on the sensors. The covariance R can usually be

estimated from sensor calibration, but the covariance Q is generally

unknown and therefore becomes a system parameter that can be tuned

to improve the performance of the observer. Note that the sample rate

does not need to be fixed.

Similar to equations (8.15) and (8.16) the continuous-discrete

Kalman filter has the form

.
x̂ = Ax̂ + Bu

x̂+ = x̂− + L(y(tn) − Cx̂−).

Define the estimation error as x̃ = x − x̂. The covariance of the

estimation error at time t is given by

P (t)
△= E {x̃(t)x̃(t)⊤}. (8.20)

Note that P (t) is symmetric and positive semi-definite, therefore, its

eigenvalues are real and non-negative. Also, small eigenvalues of P (t)

imply small variance, which implies low average estimation error.

Therefore, we would like to choose L(t) to minimize the eigenvalues of

P (t). Recall that

tr(P) =

n∑

i=1

λi ,

where tr(P) is the trace of P , and λi are the eigenvalues of P . There-

fore, minimizing tr(P) minimizes the estimation error covariance. The

Kalman filter is derived by finding L to minimize tr(P).

State Estimation 153

BetweenMeasurements

Differentiating x̃we get

.
x̃ =

.
x −

.
x̂

= Ax + Bu + ξ − Ax̂ − Bu

= Ax̃ + ξ.

Solving the differential equation with initial conditions x̃0 we obtain

x̃(t) = eAt x̃0 +

∫ t

0

eA(t−τ)ξ (τ) dτ.

We can compute the evolution of the error covariance P as

.
P =

d

dt
E {x̃x̃⊤}

= E {
.
x̃x̃⊤ + x̃

.
x̃

⊤
}

= E
{
Ax̃x̃⊤ + ξ x̃⊤ + x̃x̃⊤A⊤ + x̃ξ⊤

}

= AP + P A⊤ + E {ξ x̃⊤} + E {x̃ξ⊤}.

We can compute E {x̃ξ⊤} as

E {x̃ξ⊤} = E {eAt x̃0ξ
⊤(t) +

∫ t

0

eA(t−τ)ξ (τ)ξ⊤(τ) dτ

=

∫ t

0

eA(t−τ)Qδ(t − τ) dτ

=
1

2
Q,

where the 1
2
is because we only use half of the area inside the delta func-

tion. Therefore, since Q is symmetric we have that P evolves between

measurements as

.
P = AP + P A⊤ + Q.

154 Chapter 8

AtMeasurements

At a measurement, we have that

x̃+ = x − x̂+

= x − x̂− − L
(
Cx + η − Cx̂−

)

= x̃− − LCx̃− − Lη.

We also have that

P+ = E {x̃+x̃+T}

= E
{(

x̃− − LCx̃− − Lη
) (

x̃− − LCx̃− − Lη
)⊤
}

= E
{
x̃− x̃−⊤ − x̃− x̃−⊤C⊤L⊤ − x̃−η⊤L⊤

− LCx̃−x̃−⊤ + LCx̃− x̃−⊤C⊤L⊤ + LCx̃−η⊤L⊤

−Lηx̃−⊤ + Lηx̃−⊤C⊤L⊤ + Lηη⊤L⊤
}

= P− − P−C⊤L⊤ − LCP− + LCP−C⊤L⊤ + LRL⊤, (8.21)

where we have used the fact that since η and x̃− are independent,

E
{
x̃−η⊤L⊤

}
= E

{
Lηx̃−⊤

}
= 0.

In the derivation that follows, we will need the following matrix

relationships:

∂

∂A
tr(BAD) = B⊤D⊤ (8.22)

∂

∂A
tr(ABA⊤) = 2AB, if B = B⊤. (8.23)

Our objective is to pick L to minimize tr(P+). A necessary condition is

that

∂

∂L
tr(P+) = −P−C⊤ − P−C⊤ + 2LCP−C⊤ + 2LR = 0

=⇒ 2L(R + CP−C⊤) = 2P−C⊤

=⇒ L = P−C⊤(R + CP−C⊤)−1.

State Estimation 155

Substituting into equation (8.21) gives

P+ = P− + P−C⊤(R + CP−C⊤)−1CP− − P−C⊤(R + CP−C⊤)−1CP−

+ P−C⊤(R + CP−C⊤)−1(CP−C⊤ + R)(R + CP−C⊤)−1CP−

= P− − P−C⊤(R + CP−C⊤)−1CP−

= (I − P−C⊤(R + CP−C⊤)−1C)P−

= (I − LC)P−.

We can therefore summarize the Kalman filter as follows. In between

measurements, propagate the equations

.
x̂ = Ax̂ + Bu

.
P = AP + P A⊤ + Q,

where x̂ is the estimate of the state, and P is the symmetric covariance

matrix of the estimation error.When ameasurement from the i th sensor

is received, update the state estimate and error covariance according to

the equations

Li = P−C⊤
i (Ri + Ci P

−C⊤
i)

−1

P+ = (I − LiCi)P
−

x̂+ = x̂− + Li(yi(tn) − Ci x̂
−),

where Li is called the Kalman gain for sensor i.

We have assumed that the system propagation model and measure-

ment model are linear. However, for many applications, including the

applications discussed later in this chapter, the system propagation

model and the measurement model are nonlinear. In other words, the

model in equation (8.19) becomes

.
x = f (x, u) + ξ

y[n] = h(x[n], u[n]) + η[n].

For this case, the state propagation and update laws use the nonlinear

model, but the propagation and update of the error covariance use

the Jacobian of f for A, and the Jacobian of h for C. The resulting

algorithm is called the Extended Kalman Filter (EKF). Pseudo-code for

156 Chapter 8

the EKF is shown in algorithm 2. The state is initialized in line 1.

The propagation of the ordinary differential equations (ODEs) for x̂

and P using an Euler integration scheme are given by the for-loop in

lines 4–8. The update equations for the i th sensor are given in lines

9–14. The application of algorithm 2 to roll and pitch angle estimation

is described in section 8.6. The application of algorithm 2 to position,

heading, ground speed, course, and wind estimation is described in

section 8.7.

Algorithm 2 Continuous-discrete Extended Kalman Filter

1: Initialize: x̂ = χ0.

2: Pick an output sample rate Tout that is less than the sample rates of

the sensors.

3: At each sample time Tout:

4: for i = 1 to N do {Prediction Step}

5: x̂ = x̂ +
(
Tout
N

)
f (x̂, u)

6: A =
∂ f
∂x
(x̂, u)

7: P = P +
(
Tout
N

) (
AP + P A⊤ + Q

)

8: end for

9: ifMeasurement has been received from sensor i then

{Measurement Update}

10: Ci = ∂hi
∂x

(x̂, u[n])

11: Li = PC⊤
i (Ri + Ci PC

⊤
i)

−1

12: P = (I − LiCi)P

13: x̂ = x̂ + Li (yi [n] − h(x̂, u[n]))

14: end if

8.6 Attitude Estimation
This section describes the application of the EKF to estimate the roll

and pitch angles of the MAV. To apply the continous-discrete extended

Kalman filter derived in section 8.5 to roll and pitch estimation, we use

the nonlinear propagationmodel

.
φ = p + q sin φ tan θ + r cos φ tan θ + ξφ

.
θ = q cos φ − r sin φ + ξθ ,

where we have added the noise terms ξφ and ξθ tomodel the noise on p,

q, and r , where ξφ ∼ N (0, Qφ) and ξθ ∼ N (0, Qθ).

State Estimation 157

We will use the accelerometers as the output equations. From

equation (7.1) we have the accelerometer model

yaccel =











.
u + qw − rv + g sin θ

.
v + r u − pw − g cos θ sin φ

.
w + pv − qu − g cos θ cos φ








+ ηaccel. (8.24)

However, we do not have a method for directly measuring
.
u,

.
v,

.
w, u, v,

and w. We will assume that
.
u =

.
v =

.
w ≈ 0. From equation (2.7) we have







u

v

w







≈ Va







cos α cos β

sin β

sin α cos β







.

Assuming that α ≈ θ and β ≈ 0 we obtain







u

v

w







≈ Va







cos θ

0

sin θ







.

Substituting into equation (8.24), we get

yaccel =







qVa sin θ + g sin θ

r Va cos θ − pVa sin θ − g cos θ sin φ

−qVa cos θ − g cos θ cos φ







+ ηaccel.

Defining x = (φ, θ)⊤, u = (p, q, r, Va)
⊤, ξ = (ξφ, ξθ)

⊤, and η = (ηφ, ηθ)
⊤,

gives

.
x = f (x, u) + ξ

y = h(x, u) + η,

where

f (x, u) =

(

p + q sin φ tan θ + r cos φ tan θ

q cos φ − r sin φ

)

h(x, u) =





qVa sin θ + g sin θ

r Va cos θ − pVa sin θ − g cos θ sin φ

−qVa cos θ − g cos θ cos φ



 .

158 Chapter 8

Figure 8.7 Estimation error on the roll and pitch angles using

continuous-discrete extended Kalman filter.

Implementation of the Kalman filter requires the Jacobians ∂ f
∂x

and
∂h
∂x
. Accordingly we have

∂ f

∂x
=




q cos φ tan θ − r sin φ tan θ

q sin φ−r cos φ

cos2 θ

−q sin φ − r cos φ 0





∂h

∂x
=








0 qVa cos θ + g cos θ

−g cos φ cos θ −r Va sin θ − pVa cos θ + g sin φ sin θ

g sin φ cos θ (qVa + g cos φ) sin θ








.

The extended Kalman filter is implemented using algorithm 2.

For the benchmarkmaneuver discussed in section 8.1, the estimation

error of the roll and pitch angles using algorithm 2 is shown in

figure 8.7. Comparing figure 8.7 with figure 8.4 shows that the

continous-discrete extendedKalmanfilter producesmuch better results

during accelerated flight.

8.7 GPS Smoothing
In this section we will use GPS measurements to estimate the position,

ground speed, course, wind, and heading of the MAV. If we assume

that the flight path angle γ = 0, then the evolution of the position is

State Estimation 159

given by

.
pn = Vg cos χ

.
pe = Vg sin χ.

By differentiating equation (7.21) we get that the evolution of the

ground speed is given by

.
Vg =

d

dt

√

(Va cos ψ + wn)2 + (Va sin ψ + we)2

=
1

Vg

[

(Va cos ψ + wn)(
.
Va cos ψ − Va

.
ψ sin ψ +

.
wn)

+ (Va sin ψ + we)(
.
Va sin ψ + Va

.
ψ cos ψ +

.
we)
]

.

Assuming that wind and airspeed are constant we get

.
Vg =

(Va cos ψ + wn)(−Va

.
ψ sin ψ) + (Va sin ψ + we)(Va

.
ψ cos ψ)

Vg
.

From equation (5.15) the evolution of χ is given by

.
χ =

g

Vg
tan φ cos(χ − ψ).

Assuming that wind is constant we have

.
wn = 0

.
we = 0.

From equation (5.9) the evolution of ψ is given by

.
ψ = q

sin φ

cos θ
+ r

cos φ

cos θ
. (8.25)

Defining the state as x = (pn, pe, Vg , χ, wn, we, ψ)⊤, and the input

as u = (Va, q, r, φ, θ)⊤, the nonlinear propagation model is given by

160 Chapter 8

.
x = f (x, u), where

f (x, u)
△=

























Vg cos χ

Vg sin χ
(Va cos ψ+wn)(−Va

.
ψ sin ψ)+(Va sin ψ+we)(Va

.
ψ cos ψ)

Vg
g
Vg

tan φ cos(χ − ψ)

0

0

q sin φ

cos θ
+ r cos φ

cos θ















.

The Jacobian of f is given by

∂ f

∂x
=















0 0 cos χ −Vg sin χ 0 0 0

0 0 sin χ Vg cos χ 0 0 0

0 0 −
.
Vg

Vg
0 −

.
ψVa sin ψ

.
ψVa cos ψ

∂
.
Vg

∂ψ

0 0 ∂
.
χ

∂Vg

∂
.
χ

∂χ
0 0 ∂

.
χ

∂ψ

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0















,

where

∂
.
Vg

∂ψ
=

−
.
ψVa(wn cos ψ + we sin ψ)

Vg

∂
.
χ

∂Vg
= −

g

V2
g

tan φ cos(χ − ψ)

∂
.
χ

∂χ
= −

g

Vg
tan φ sin(χ − ψ)

∂
.
χ

∂ψ
=

g

Vg
tan φ sin(χ − ψ)

and
.
ψ is given in equation (8.25).

For measurements, we will use the GPS signals for north and east

position, ground speed, and course. Since the states are not indepen-

dent, we will use the wind triangle relationship given in equation (2.9).

Assuming that γ = γa = 0 we have that

Va cos ψ + wn = Vg cos χ

Va sin ψ + we = Vg sin χ.

State Estimation 161

From these expressions, we define the pseudomeasurements

ywind,n = Va cos ψ + wn − Vg cos χ

ywind,e = Va sin ψ + we − Vg sin χ,

where the (pseudo)measurement values are equal to zero. The resulting

measurement model is given by

yGPS = h(x, u) + ηGPS,

where yGPS = (yGPS,n, yGPS,e, yGPS,Vg
, yGPS,χ , yGPS,n, ywind,e), u = V̂a, and

h(x, u) =



















pn
pe
Vg

χ

Va cos ψ + wn − Vg cos χ

Va sin ψ + we − Vg sin χ












,

and where the Jacobian is given by

∂h

∂x
(x̂, u) =














1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 − cos χ Vg sin χ 1 0 −Va sin ψ

0 0 − sin χ −Vg cos χ 0 1 Va cos ψ














.

The extended Kalman filter to estimate pn, pe, Vg , χ , wn, we, and ψ is

implemented using algorithm 2.

For the benchmarkmaneuver discussed in section 8.1, the estimation

error for the position and heading using algorithm 2 is shown in

figure 8.8. Comparing figure 8.8 with figure 8.5, shows that the

continous-discrete extendedKalmanfilter producesmuch better results

than a simple low-pass filter.

8.8 Chapter Summary
This chapter has shown how to estimate the states that are required

for the autopilot discussed in chapter 6 using the sensors described in

chapter 7.We have shown that the angular rates in the body frame p, q,

162 Chapter 8

Figure 8.8 Estimation error for position, ground speed, course, wind, and

heading using continuous-discrete extended Kalman filter.

and r , can be estimated by low-pass filtering the rate gyros. Similarly,

the altitude h and airspeed Va can be estimated by low-pass filtering

the absolute and differential pressure sensors and inverting the sensor

model. The remaining statesmust be estimated using extended Kalman

filters. In section 8.6 we showed how a two-state EKF can be used to

estimate the roll and pitch angles. In section 8.7 we showed how the

position, ground speed, course, wind, and heading can be estimated

using a seven-state EKF based on GPSmeasurements.

Notes and References

The Kalman filter was first introduced in [42]. There are many excellent

texts on the Kalman filter including [43, 44, 45, 46]. Some of the

results in this chapter have been discussed previously in [47, 48]. State

estimation using computer vision instead of GPS has been discussed

in [49, 50, 51].

8.9 Design Project
8.1. Download the simulation files for this chapter from the web.

State estimation is performed in the file

estimate_states.m.

8.2. Implement the simple schemes described in section 8.3

using low-pass filters andmodel inversion to estimate the

states pn, pe, h, Va, φ, θ , ψ , p, q, and r . Tune the bandwidth of

the low-pass filter to observe the effect. Different states may

require a different filter bandwidth.

State Estimation 163

8.3. Modify estimate_states.m to implement the extended

Kalman filter for roll and pitch angles described in

section 8.6. Tune the filter until you are satisfied with the

performance.

8.4. Modify estimate_states.m to implement the extended

Kalman filter for position, heading, and wind described in

section 8.7. Tune the filter until you are satisfied with the

performance.

8.5. In the Simulinkmodel mavsim_chap8.mdl change the

switch that directs true states to the autopilot, to direct the

estimated states to the autopilot. Tune autopilot and

estimator gains if necessary. By changing the bandwidth of

the low-pass filter, note that the stability of the closed loop

system is heavily influenced by this value.

9
Design Models for Guidance

As described in chapter 1, when the equations of motion for a system

become complex, it is often necessary to develop design models that

have significantly less mathematical complexity, but still capture the

essential behavior of the system. Ifwe include all the elements discussed

in the previous eight chapters, including the six-degree-of-freedom

model developed in chapters 3 and 4, the autopilot developed in

chapter 6, the sensors developed in chapter 7, and the state-estimation

scheme developed in chapter 8, the resulting model is extremely com-

plex. This chapter approximates the performance of the closed-loop

MAV system and develops reduced-order design models that are appro-

priate for the design of higher-level guidance strategies for MAVs. We

will present several different models that are commonly used in the

literature. The design models developed in this chapter will be used in

chapters 10 through 13.

9.1 Autopilot Model
The guidance models developed in this chapter use a high-level repre-

sentation of the autopilot loops developed in chapter 6. The airspeed-

hold and roll-hold loops are represented by the first-order models

.
Va = bVa

(Vc
a − Va) (9.1)

.
φ = bφ(φ

c − φ), (9.2)

where bVa
and bφ are positive constants that depend on the implementa-

tion of the autopilot and the state estimation scheme. Drawing on the

closed-loop transfer functions of chapter 6, the altitude and course-hold

loops are represented by the second-order models

ḧ = b.h(
.
h
c
−

.
h) + bh(h

c − h) (9.3)

χ̈ = b .χ (
.
χ
c
−

.
χ) + bχ (χ

c − χ), (9.4)

where b.h, bh, b
.
χ , and bχ are also positive constants that depend on the

implementation of the autopilot and the state estimation schemes. As

explained in subsequent sections, some of the guidance models also

Design Models for Guidance 165

assume autopilot-hold loops for the flight-path angle γ and the load

factor nlf , where load factor is defined as lift divided byweight. The first-

order autopilot loops for flight-path angle and load factor are given by

.
γ = bγ (γ

c − γ) (9.5)

.
nlf = bn(n

c
lf − nlf), (9.6)

where bγ and bn are positive constants that depend on the implementa-

tion of the low-level autopilot loops.

9.2 Kinematic Model of Controlled Flight
In deriving reduced-order guidance models, the main simplification

we make is to eliminate the force- and moment-balance equations of

motion (those involving
.
u,

.
v,

.
w,

.
p,

.
q,

.
r), thus eliminating the need

to calculate the complex aerodynamic forces acting on the airframe.

These general equations are replaced with simpler kinematic equations

derived for the specific flight conditions of a coordinated turn and an

accelerating climb.

Recall from figure 2.10 that the velocity vector of the aircraft with

respect to the inertial frame can be expressed in terms of the course

angle and the (inertially referenced) flight-path angle as

Vi
g = Vg







cos χ cos γ

sin χ cos γ

− sin γ






.

Therefore, the kinematics can be expressed as







.
pn
.
pe
.
h






= Vg







cos χ cos γ

sin χ cos γ

sin γ






. (9.7)

Because it is common to control the heading and airspeed of an

aircraft, it is useful to express equation (9.7) in terms of ψ and Va. With

reference to thewind triangle expression in equation (2.9), we canwrite

equation (9.7) as







.
pn
.
pe
.
h






= Va







cos ψ cos γa

sin ψ cos γa

sin γa






+







wn

we

−wd






. (9.8)

166 Chapter 9

If we assume that the aircraft is maintained at a constant altitude and

that there is no downward component of wind, then the kinematic

expressions simplify as







.
pn
.
pe
.
h






= Va







cos ψ

sin ψ

0






+







wn

we

0






, (9.9)

which is a model commonly used in the UAV literature.

9.2.1 Coordinated Turn

In section 5.2 we showed that the coordinated-turn condition is de-

scribed by

.
χ =

g

Vg
tan φ cos(χ − ψ). (9.10)

Even though the coordinated-turn condition is not enforced by the

autopilot loops described in chapter 6, the essential behavior—that the

aircraft must bank to turn (as opposed to skid to turn)—is captured by

this model.

The coordinated-turn condition can also be expressed in terms of the

heading and the airspeed. To obtain the correct expression, we start by

differentiating both sides of equation (2.9) to get









cos χ cos γ −Vg sin χ cos γ −Vg cos χ sin γ

sin χ cos γ Vg cos χ cos γ −Vg sin χ sin γ

− sin γ 0 − cos γ













.
Vg.
χ
.
γ





=









cos ψ cos γa −Va sin ψ cos γa −Va cos ψ sin γa

sin ψ cos γa Va cos ψ cos γa −Va sin ψ sin γa

− sin γa 0 − cos γa

















.
Va

.
ψ

.
γ a









.

(9.11)

Under the condition of constant-altitude flight and no down compo-

nent of wind, where γ , γa,
.
γ ,

.
γ a, and wd are zero, we solve for

.
Vg and

.
ψ

in terms of
.
Va and

.
χ to obtain

.
Vg =

.
Va

cos(χ − ψ)
+ Vg

.
χ tan(χ − ψ) (9.12)

.
ψ =

.
Va

Va
tan(χ − ψ) +

Vg
.
χ

Va cos(χ − ψ)
. (9.13)

Design Models for Guidance 167

Figure 9.1 Free-body diagram for a pull-up

maneuver. The MAV is at a roll angle of φ.

If we assume that the airspeed is constant, then from equations (9.13)

and (9.10), we have
.
ψ =

g

Va
tan φ. (9.14)

This is the familiar coordinated-turn expression. Most notable is that

this equation is true in the presence of wind.

9.2.2 Accelerating Climb

To derive the dynamics for the flight-path angle, wewill consider a pull-

up maneuver in which the aircraft climbs along an arc. The free-body

diagram of the MAV in the ib-kb plane is shown in figure 9.1. Since

the airframe is rolled at an angle of φ, the projection of the lift vector

onto the ib-kb plane is Flift cos φ. The centripetal force due to the pull-

upmaneuver ismVg
.
γ . Therefore, summing the forces in the ib-kb plane

gives

Flift cos φ = mVg
.
γ + mg cos γ. (9.15)

Solving for
.
γ gives

.
γ =

g

Vg

(

Flift

mg
cos φ − cos γ

)

. (9.16)

Load factor is defined as the ratio of the lift acting on the aircraft

to the weight of the aircraft: nlf
△= Flift/mg. In wings-level, horizontal

flight where the roll angle and flight-path angle are zero (φ = γ = 0),

the load factor is equal to 1. From a control perspective, it is useful to

consider the load factor because it represents the force that the aircraft

experiences during climbing and turning maneuvers. Although the

168 Chapter 9

load factor is a dimensionless number, it is often referred to by the

number of “g’s” that an aircraft experiences in flight. By controlling

the load factor as a state, we can ensure that the aircraft is always given

commands that are within its structural capability. Taking into account

the definition of load factor, equation (9.16) becomes

.
γ =

g

Vg
(nlf cos φ − cos γ). (9.17)

We note that in a constant climb, when
.
γ = 0, the load factor can be

expressed as

nlf =
cos γ

cos φ
. (9.18)

This expression will be used in section 9.4.

9.3 Kinematic Guidance Models
In this sectionwe summarize several different kinematic guidancemod-

els for MAVs. The guidance models that we derive will assume the pres-

ence of wind. Wind can be tricky to model correctly using a kinematic

model because it introduces aerodynamic forces on the aircraft that

are expressed in the dynamic model in terms of the airspeed, angle

of attack, and side slip angle, as explained in chapter 4. The velocity

vector can be expressed in terms of the airspeed, heading, and air-

mass-referenced flight-path angle, as in equation (9.8), or in terms of

the groundspeed, course, and flight-path angle, as in equation (9.7).

However, we typically control the airspeed, the course angle, and the

flight-path angle. Therefore, if in the simulation, we directly propagate

airspeed, course angle, and flight path angle, then we will use equa-

tions (2.10) through (2.12) to solve for ground speed, heading, and air-

mass-referenced flight path angle.

The first guidance model that we will consider assumes that the

autopilot controls airspeed, altitude, and course angle. The correspond-

ing equations of motion do not include the flight-path angle and are

given by
.
pn = Va cos ψ + wn

.
pe = Va sin ψ + we

χ̈ = b .χ (
.
χ
c
−

.
χ) + bχ (χ

c − χ) (9.19)

ḧ = b.h(
.
h
c
−

.
h) + bh(h

c − h)

.
Va = bVa

(Vc
a − Va),

Design Models for Guidance 169

where the inputs are the commanded altitude hc, the commanded

airspeed Vc
a , and the commanded course χ c, and ψ is given by

equation (2.12), with γa = 0.

Alternatively, it is common to consider the roll angle as the in-

put command and to control the heading through roll by using the

coordinated-turn condition given in equation (9.10). In that case, the

kinematic equations become

.
pn = Va cos ψ + wn

.
pe = Va sin ψ + we

.
ψ =

g

Va
tan φ (9.20)

ḧ = b.h(
.
h
c
−

.
h) + bh(h

c − h)

.
Va = bVa

(Vc
a − Va)

.
φ = bφ(φ

c − φ),

where φc is the commanded roll angle.

For the longitudinal motion, altitude is often controlled indirectly

through the flight-path angle. With γ as a state, we choose to use χ as

a state since both are referenced to the inertial frame. In that case, we

have

.
pn = Va cos ψ cos γa + wn

.
pe = Va sin ψ cos γa + we

.
h = Va sin γa − wd

.
χ =

g

Vg
tan φ cos(χ − ψ) (9.21)

.
γ = bγ (γ

c − γ)

.
Va = bVa

(Vc
a − Va)

.
φ = bφ(φ

c − φ),

where γ c is the commanded (inertial referenced) flight-path angle, and

where Vg , γa, and ψ are given by Equations (2.10), (2.11), and (2.12),

respectively.

Some autopilots command the load factor instead of the flight-path

angle. Using equation (9.17), a kinematic model that represents this

170 Chapter 9

Figure 9.2 Free-body diagram indicating external forces on the UAV along the ib
axis. The UAV is assumed to be at a roll angle of φ.

situation is given by

.
pn = Va cos ψ cos γa + wn

.
pe = Va sin ψ cos γa + we

.
h = Va sin γa − wd

.
ψ =

g

Va
tan φ (9.22)

.
γ =

g

Vg

(
nlf cos φ − cos γ

)

.
Va = bVa

(Vc
a − Va)

.
φ = bφ(φ

c − φ)

.
nlf = bn(n

c
lf − nlf),

where nclf is the commanded load factor, and where Vg and γa are given

by Equations (2.10) and (2.11) respectively.

9.4 Dynamic Guidance Model
The reduced-order guidance models derived in the previous section

are based on kinematic relations between positions and velocities. Ad-

ditionally, they employ first-order differential equations to model the

closed-loop response of commanded states. In these equations, we took

advantage of the conditions for the coordinated turn to eliminate the

lift force from the equations of motion. Furthermore, we assumed that

airspeedwas a controlled quantity and therefore did not perform a force

balance along the body-fixed ib axis. In this section, we will derive an

alternative set of equations of motion commonly encountered in the

literature that utilize relationships drawn from free-body diagrams. Lift,

drag, and thrust forces are evident in these dynamic equations.

Figure 9.2 shows a free-body diagram for a MAV climbing at flight-

path angle γ and bank angle φ. Applying Newton’s second law along

Design Models for Guidance 171

the ib axis and rearranging gives

.
Vg =

Fthrust

m
−

Fdrag

m
− g sin γ,

where Fthrust is the thrust and Fdrag is the drag. It is interesting to note

that we arrived at this exact equation in the process of deriving transfer

functions from the full nonlinear equations of motion in chapter 5,

equation (5.34). The course angle can be expressed in terms of lift

by combining the coordinated turn equation in (9.10) with expres-

sion (9.18) for the load factor to get

.
χ =

g

Vg
tan φ cos(χ−ψ) =

g sin φ cos(χ − ψ)

Vg cos γ
nlf =

Flift sin φ cos(χ − ψ)

mVg cos γ
.

Similarly, equation (9.16) expresses the flight-path angle in terms of lift.

Combining these dynamic equations with the kinematic equations

relating Cartesian position and velocity gives the following alternative

equations of motion:

.
pn = Vg cos χ cos γ

.
pe = Vg sin χ cos γ

.
h = Vg sin γ (9.23)

.
Vg =

Fthrust

m
−

Fdrag

m
− g sin γ

.
χ =

Flift sin φ cos(χ − ψ)

mVg cos γ

.
γ =

Flift

mVg
cos φ −

g

Vg
cos γ,

whereψ is given by equation (2.12). The control variables are thrust, lift

coefficient, and bank angle [Fthrust, CL, φ]⊤. Lift and drag are given by

Flift =
1

2
ρV2

a SCL

Fdrag =
1

2
ρV2

a SCD,

172 Chapter 9

withCD = CD0
+KC2

L [52]. The induced drag factor K can be determined

from the aerodynamic efficiency, which is defined as

Emax
△=
(

Flift

Fdrag

)

max

,

and the zero-lift drag coefficient CD0
, using the expression

K =
1

4E 2
maxCD0

.

The popularity of this point-mass model is likely due to the fact that it

models aircraft behavior in response to inputs that a pilot commonly

controls: engine thrust, lift from the lifting surfaces, and bank angle as

observed using the attitude indicator. In the absence of wind, Vg = Va,

γ = γa and χ = ψ so that equation (9.23) can be expressed as

.
pn = Va cos ψ cos γ

.
pe = Va sin ψ cos γ

.
h = Va sin γ (9.24)

.
Va =

Fthrust

m
−

Fdrag

m
− g sin γ

.
ψ =

Flift

mVa

sin φ

cos γ

.
γ =

Flift

mVa
cos φ −

g

Va
cos γ.

9.5 Chapter Summary
The objective of this chapter is to present high-level design models

for the guidance loops. The guidance models are derived from the

six-degree-of-freedom model, kinematic relations, and force balance

equations. Kinematic design models are given in equations (9.19)

through (9.22). A dynamic design model often found in the literature

is given in equation (9.24).

Notes and References

Material supporting the development of the guidancemodels discussed

in this chapter can be found in [2, 25, 22, 52]. The discussion of the air-

mass-referenced flight-path angle is from a Boeing circular obtained at

www.boeing.com. The derivation of accelerating climb in section 9.2.2

draws on the discussion in [2, p. 227–228].

Design Models for Guidance 173

9.6 Design Project
The objective of the assignment in this chapter is to estimate the autopi-

lot constants b∗ and to develop a reduced-order Simulink model that

can be used to test and debug the guidance algorithm discussed in later

chapters, prior to implementation on the full simulation model. We

will focus primarily on themodels given in equations (9.19) and (9.20).

9.1. Create a Simulink S-function that implements the model

given in Equation (9.19) and insert it in your MAV simulator.

For different inputs χ c, hc, and Vc
a , compare the output of the

twomodels, and tune the autopilot coefficients bVa
, b.h, bh, b

.
χ ,

and bχ to obtain similar behavior. Youmay need to re-tune

the autopilot gains obtained from the previous chapter. You

may want to use the Simulink file mavsim_chap9.mdl and

theMatlab function guidance_model.m located on the

website.

9.2. Modify your autopilot function so that it uses the

commanded roll angle φc as an input instead of the

commanded course χ c. Create a Simulink S-function that

implements the model given in equation (9.20) and insert it

in your MAV simulator. For different inputs φc, hc, and Vc
a ,

compare the output of the twomodels, and tune the

autopilot coefficients b∗ to obtain similar behavior. Youmay

need to re-tune the autopilot gains obtained from the

previous chapter. Using the simulation under zero-wind

conditions, find the achievable minimum turn radius Rmin

of theMAVwhen the commanded roll angle is

φc = 30 degrees.

10
Straight-line and Orbit Following

This chapter develops guidance laws for tracking straight-line segments

and for tracking constant-altitude circular orbits. Chapter 11will discuss

techniques for combining straight-line segments and circular orbits to

track more complex paths, and chapter 12 will describe techniques for

path planning through obstacle fields. In the context of the architec-

tures shown in figures 1.1 and 1.2, this chapter describes algorithms for

the path following block. The primary challenge in tracking straight-

line segments and circular orbits is wind, which is almost always

present. For small unmanned aircraft, wind speeds are commonly 20

to 60 percent of the desired airspeed. Effective path-tracking strategies

must overcome the effect of this ever-present disturbance. For most

fixed-wing MAVs, the minimum turn radius is in the range of 10 to

50 m. This places a fundamental limit on the spatial frequency of

paths that can be tracked. Thus, it is important that the path-tracking

algorithms utilize the full capability of theMAV.

Implicit in the notion of trajectory tracking is that the vehicle is

commanded to be at a particular location at a specific time and that

the location typically varies in time, thus causing the vehicle to move

in the desired fashion. With fixed-wing aircraft, the desired position

is constantly moving (at the desired ground speed). The approach of

tracking a moving point can result in significant problems for MAVs

if disturbances, such as those due to wind, are not properly accounted

for. If the MAV is flying into a strong wind (relative to its commanded

ground speed), the progression of the trajectory point must be slowed

accordingly. Similarly, if the MAV is flying downwind, the speed of

the tracking point must be increased to keep it from overrunning the

desired position. Given that wind disturbances vary and are often not

easily predicted, trajectory tracking can be challenging in anything

other than calm conditions.

Rather than using a trajectory tracking approach, this chapter fo-

cuses on path following, where the objective is to be on the path rather

than at a certain point at a particular time. With path following, the

timedependence of the problem is removed. For this chapter, wewill as-

sume that the controlledMAV is modeled by the guidancemodel given

in equation (9.19). Our objective is to develop a method for accurate

path following in the presence of wind. For a given airframe, there is

Straight-line and Orbit Following 175

Figure 10.1 The configuration of the MAV indicated by (p, χ), and the

straight-line path indicated by Pline(r, q).

an optimal airspeed for which the airframe is themost aerodynamically

efficient, and to conserve fuel the MAV should maintain this airspeed.

Accordingly, in this chapter we will assume that the MAV is moving

with a constant airspeed Va.

10.1 Straight-line Path Following
A straight-line path is described by two vectors in R3, namely

Pline(r, q) =
{

x ∈ R3 : x = r + λq, λ ∈ R
}

,

where r∈R3 is the origin of the path, and q∈R3 is a unit vector whose

direction indicates the desired direction of travel. Figure 10.1 shows

a top-down or lateral view of Pline(r, q), and figure 10.2 shows a side

or longitudinal view. The course angle of Pline(r, q), as measured from

north is given by

χq
△
= atan2

qe

qn
, (10.1)

where q = (qn qe qd)
⊤ expresses the north, east, and down components

of the unit direction vector.

The path-following problem is most easily solved in a frame relative

to the straight-line path. Selecting r as the center of the path frame,with

the x-axis aligned with the projection of q onto the local north-east

plane, the z-axis aligned with the inertial z-axis, and the y-axis selected

176 Chapter 10

Figure 10.2 Desired altitude calculation for straight-line path following in

longitudinal direction.

to create a right-handed coordinate system, then

RPi
△=









cos χq sin χq 0

− sin χq cos χq 0

0 0 1









is the transformation from the inertial frame to the path frame, and

ep =





epx
epy

epz





△= RPi
(

pi − ri
)

is the relative path error expressed in the path frame. The relative error

dynamics in the north-east inertial plane, expressed in the path frame,

are given by

(.
e px
.
e py

)

=
(

cos χq sin χq

− sin χq cos χq

) (

Vg cos χ

Vg sin χ

)

= Vg

(

cos(χ − χq)

sin(χ − χq)

)

. (10.2)

For path following, we desire to regulate the cross-track error epy to zero

by commanding the course angle. The relevant dynamics are therefore

given by

.
e py = Vg sin(χ − χq) (10.3)

χ̈ = b .χ (
.
χ
c −

.
χ) + bχ (χ

c − χ). (10.4)

Straight-line and Orbit Following 177

The lateral straight-line path following problem is to select χ c so that

epy → 0 when χq is known.

The geometry for straight-line path following in the longitudinal

direction is shown in figure 10.2. To calculate the desired altitude, it

is necessary to project the relative path error vector onto the vertical

plane containing the path direction vector q as shown in figure 10.2(a).

We denote the projection of ep as s. Referring to the vertical plane

containing the path shown in figure 10.2(b) and using similar triangles,

we have the relationship

−sd
√

s2n + s2e
=

−qd
√

q2
n + q2

e

.

The projection s of the relative error vector is defined as

si =





sn
se
sd





= eip − (eip · n)n,

where

eip =





epn
epe
epd





△= pi − ri =





pn − rn
pe − re
pd − rd





and the unit vector normal to the q-ki plane is calculated as

n =
q × ki

∥

∥q × ki
∥

∥

.

Fromfigure 10.2(b), the desired altitude for an aircraft atp following the

straight-line path Pline(r, q) is given by

hd(r, p, q) = −rd +
√

s2n + s2e

(

qd
√

q2
n + q2

e

)

. (10.5)

Since the altitude dynamics are given by

ḧ = b.h(
.
h
c −

.
h) + bh(h

c − h), (10.6)

the longitudinal straight-line path following problem is to select hc so

that h → hd(r, p, q).

178 Chapter 10

10.1.1 Longitudinal Guidance Strategy for Straight-line Following

In this sectionwe specify the longitudinal guidance law for tracking the

altitude portion of the waypoint path. With the desired altitude speci-

fied by equation (10.5) and the dynamics modeled by equation (10.6),

we will show that letting hc = hd(r, p, q) and utilizing the altitude state

machine of figure 6.20, good path-following performance will result,

with zero steady-state error in altitude for straight-line paths.

With respect to the altitude state machine, we will assume that the

control laws in the climb and descend zones will cause the MAV to

climb or descend into the altitude-hold zone. In the altitude-hold zone,

pitch attitude is used to control the altitude of the MAV, as shown in

figure 6.16. Assuming that successive loop closure has been properly

implemented, figure 6.17 shows a simplified representation of the outer-

loop dynamics, which has the transfer function

h

hc
=

b.hs + bh

s2 + b.hs + bh
.

Defining the altitude error as

eh
△= h− hd(r, p, q) = h− hc,

we get that

eh

hc
= 1 −

h

hc

=
s2

s2 + b.hs + bh
.

By applying the final value theorem, we find that

eh,ss = lim
s→0

s
s2

s2 + b.hs + bh
hc

= 0, for hc = H0

s
, H0

s2
.

The analysis in chapter 6 also shows that constant disturbances are re-

jected. Thus, utilizing the altitude statemachine,we can track constant-

altitude and inclined straight-line paths with zero steady-state altitude

error provided we do not exceed the physical capabilities of the MAV

and disturbances (such as vertical components of wind) are zero or

constant inmagnitude.

Straight-line and Orbit Following 179

Figure 10.3 Vector field for straight-line path following. Far away from the

waypoint path, the vector field is directed with an angle χ∞ from the

perpendicular to the path.

10.1.2 Lateral Guidance Strategy for Straight-line Following

The objective in this section is to select the commanded course angle

χ c in equation (10.4) so that epy in equation (10.3) is driven to zero

asymptotically. The strategy in this sectionwill be to construct a desired

course angle at every spatial point relative to the straight-line path

that results in the MAV moving toward the path. The set of desired

course angles at every point will be called a vector field because the

desired course angle specifies a vector (relative to the straight line) with

a magnitude of unity. Figure 10.3 depicts an example vector field for

straight-line path following. The objective is to construct the vector

field so that when epy is large, the MAV is directed to approach the path

with course angle χ∞ ∈ (0, π
2
], and so that as epy approaches zero, the

desired course also approaches zero. Toward that end, we define the

desired course of theMAV as

χd(epy) = −χ∞ 2

π
tan−1(kpathepy), (10.7)

where kpath is a positive constant that influences the rate of the tran-

sition from χ∞ to zero. Figure 10.4 shows how the choice of kpath
affects the rate of transition. Large values of kpath result in short, abrupt

transitions, while small values of kpath cause long, smooth transitions in

the desired course.

If χ∞ is restricted to be in the range χ∞ ∈ (0, π
2
], then clearly

−
π

2
< χ∞ 2

π
tan−1(kpathepy) <

π

2

180 Chapter 10

Figure 10.4 Vector fields for various

values of kpath. Large values of kpath
yield abrupt transitions from χ∞ to

zero, while small values of kpath give

smooth transitions.

Figure 10.5 The calculation of χq needs to account for

the current course angle of the MAV. In this scenario,

the MAV should turn left to align with the waypoint

path, but if χq is computed with atan2, the angle will

be a positive number slightly smaller than +π , which

will cause the MAV to turn right to align with the

waypoint path.

for all values of epy. Therefore, since tan
−1(·) is anodd function and sin(·)

is odd over (−π
2
, π

2
), we can use the Lyapunov functionW(epy) = 1

2
e2py

to

argue that if χ = χq + χd(epy), then epy → 0 asymptotically, since

.
W= −Vgepy sin

(

χ∞ 2

π
tan−1(kpathepy)

)

is less than zero for epy �= 0. The command for lateral path following is

therefore given by

χ c(t) = χq − χ∞ 2

π
tan−1(kpathepy(t)). (10.8)

Before moving to orbit following, we note that using equation (10.8)

may result in undesirable behavior if χq is computed directly from

equation (10.1), where atan2 returns an angle between ±π . As an

example, consider the scenario shown in figure 10.5, where χq is a

positive number slightly smaller than +π . Since the current course is

negative, equation (10.8) will cause the MAV to turn right to align with

the waypoint path. As an alternative, if χq is expressed as a negative

angle slightly less than −π , then the MAV will turn left to align with

Straight-line and Orbit Following 181

Figure 10.6 Orbital path with center (cn, ce), and radius ρ. The distance from the

orbit center to the MAV is d, and the angular position of the MAV relative to the

orbit is ϕ.

the waypoint path. To alleviate this problem, χq should be computed as

χq = atan2(qe, qn) + 2πm,

where m ∈ N is selected so that −π ≤ χq − χ ≤ π , and atan2 is a four-

quadrant tan−1 function.

10.2 Orbit Following
Anorbit path is described by a center c∈R3, a radius ρ∈R, and a direction

λ ∈ {−1, 1}, as

Porbit(c, ρ, λ) =

{

r ∈ R3 : r = c + λρ
(

cos ϕ, sin ϕ 0
)⊤

, ϕ ∈ [0, 2π)
}

,

where λ = 1 signifies a clockwise orbit and λ = −1 signifies a counter-

clockwise orbit. We assume that the center of the orbit is expressed in

inertial coordinates so that c = (cn, ce, cd)
⊤, where −cd represents the

desired altitude of the orbit and tomaintain altitude we let hc = −cd
Figure 10.6 shows a top-down view of an orbital path. The guidance

strategy for orbit following is best derived in polar coordinates. Let

d be the radial distance from the desired center of the orbit to the

MAV, and let ϕ be the phase angle of the relative position, as shown in

figure 10.6. The constant-altitude MAV dynamics in polar coordinates

can be derived by rotating the differential equations that describe the

182 Chapter 10

motion of theMAV in the north and east directions as

(.
pn.
pe

)

=

(

Vg cos χ

Vg sin χ

)

,

through the phase angle ϕ so that the equations of motion represent

theMAVmotion in the normal and tangential directions to the orbit as

(.
d
d
.
ϕ

)

=

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

(.
pn.
pe

)

=

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

) (

Vg cos χ

Vg sin χ

)

=

(

Vg cos(χ − ϕ)

Vg sin(χ − ϕ)

)

.

These expressions can also be derived from the geometry illustrated

in figure 10.6. The MAV dynamics in polar coordinates are therefore

given by

.
d = Vg cos(χ − ϕ) (10.9)

.
ϕ =

Vg

d
sin(χ − ϕ) (10.10)

χ̈ = −b .χ
.
χ + bχ (χ

c − χ). (10.11)

As shown infigure 10.6, for a clockwise orbit, the desired course angle

when theMAV is located on the orbit is given by χo = ϕ+π/2. Similarly,

for a counterclockwise orbit, the desired angle is given by χo = ϕ − π/2.

Therefore, in general we have

χo = ϕ + λ
π

2
.

The control objective is to drive d(t) to the orbit radius ρ and to drive

the course angle χ(t) to χo in the presence of wind.

Our approach to orbit following is similar to the ideas developed

in section 10.1.2. The strategy is to construct a desired course field

that moves the MAV onto the orbit Porbit(c, ρ, λ). When the distance

between the MAV and the center of the orbit is large, it is desirable for

theMAV to fly toward the orbit center. In other words, when d ≫ ρ, the

Straight-line and Orbit Following 183

desired course is

χd ≈ χo + λ
π

2
,

and when d = ρ, the desired course is χd = χo. Therefore, a candidate

course field is given by

χd(d − ρ, λ) = χo + λ tan−1

(

korbit

(

d − ρ

ρ

))

, (10.12)

where korbit > 0 is a constant that specifies the rate of transition from

λπ/2 to zero. This expression for χd is valid for all values of d ≥ 0.

We can again use the Lyapunov function W = 1
2
(d − ρ)2 to argue

that if χ = χd, then the tracking objective is satisfied. Differentiating

W along the system trajectory gives

.
W= −Vg(d − ρ) sin

(

tan−1

(

korbit

(

d − ρ

ρ

)))

,

which is negative definite since the argument of sin is in the set

(−π/2, π/2) for all d > 0, implying that d → ρ asymptotically. The

course command for orbit following is therefore given by

χ c(t) = ϕ + λ

[

π

2
+ tan−1

(

korbit

(

d − ρ

ρ

))]

. (10.13)

Similar to the computation of the path angle χq , if the angular

position in the orbit ϕ is computed to be between±π , then there will be

a sudden jump of 2π in the commanded course as the MAV transitions

from ϕ = π to ϕ = −π . To alleviate this problem, ϕ should be computed

as

ϕ = atan2(pe − ce, pn − cn) + 2πm,

wherem ∈ N is selected so that −π ≤ ϕ − χ ≤ π .

10.3 Chapter Summary
This chapter introduced algorithms for following straight-line paths

and circular orbits in the presence of wind. The idea is to construct

a heading field that directs the MAV onto the path and is therefore

distinctly different from trajectory tracking, where the vehicle would

be commanded to follow a time-varying location. The algorithms de-

veloped in this chapter are summarized in algorithms 3 and 4.

184 Chapter 10

Algorithm 3 Straight-line Following: [hc, χ c] = followStraightLine

(r, q, p, χ)

Input: Path definition r = (rn, re, rd)
⊤ and q = (qn, qe, qd)

⊤, MAV

position p= (pn, pe, pd)
⊤, course χ , gains χ∞, kpath, sample rate Ts.

1: Compute commanded altitude using equation (10.5).

2: χq ← atan2(qe, qn)

3: while χq − χ < −π do

4: χq ← χq + 2π

5: endwhile

6: while χq − χ > π do

7: χq ← χq − 2π

8: endwhile

9: epy ← − sin χq(pn − rn) + cos χq(pe − re)

10: Compute commanded course angle using equation (10.8).

11: return hc, χ c

Algorithm 4 Circular Orbit Following: [hc, χ c] = followOrbit

(c, ρ, λ, p, χ)

Input: Orbit center c = (cn, ce, cd)
⊤, radius ρ, and direction λ, MAV

position p = (pn, pe, pd)
⊤, course χ , gains korbit, sample rate Ts.

1: hc ← −cd
2: d ←

√

(pn − cn)2 + (pe − ce)2

3: ϕ ← atan2(pe − ce, pn − cn)

4: while ϕ − χ < −π do

5: ϕ ← ϕ + 2π

6: endwhile

7: while ϕ − χ > π do

8: ϕ ← ϕ − 2π

9: endwhile

10: Compute commanded course angle using equation (10.13).

11: return hc, χ c

Straight-line and Orbit Following 185

Notes and References

Themethods described in sections 10.1 and 10.2 are variations on those

described in [29, 53, 54] and are based on the notion of a vector field,

which calculates a desired heading based on the distance from the path.

A nice extension of [53] is given in [55], which derives general stability

conditions for vector-field based methods. The focus is entirely on

orbits, but elongated oval orbits and elliptical orbits can be produced.

The method in [55], which is based on Lyapunov techniques, could be

extended to straight lines.

The notion of vector fields is similar to that of potential fields,

which have been widely used as a tool for path planning in the ro-

botics community (see, e.g., [56]). It has also been suggested in [57]

that potential fields can be used in UAV navigation for obstacle and

collision avoidance applications. The method of [57] provides a way

for groups of UAVs to use the gradient of a potential field to nav-

igate through heavily populated areas safely while still aggressively

approaching their targets. Vector fields are different from potential

fields in that they do not necessarily represent the gradient of a po-

tential. Rather, the vector field simply indicates a desired direction of

travel.

Several approaches have been proposed for UAV trajectory track-

ing. An approach for tight tracking of curved trajectories is presented

in [58]. For straight-line paths, the approach approximates PD con-

trol. For curved paths, an additional anticipatory control element

that improves the tracking capability is implemented. The approach

accommodates the addition of an adaptive element to account for

disturbances such as wind. This approach is validated with flight

experiments.

Reference [59] describes an integrated approach for developing guid-

ance and control algorithms for autonomous vehicle trajectory track-

ing. Their approach builds upon the theory of gain scheduling and

produces controllers for tracking trajectories that are defined in an in-

ertial reference frame. The approach is illustrated through simulations

of a small UAV. Reference [26] presents a path-following method for

UAVs that provides a constant line of sight between the UAV and an

observation target.

10.4 Design Project
The objective of this assignment is to implement Algorithms 3 and 4.

Download the sample code for this chapter from the book web-

site and note the addition of two blocks labeled PathManager and

186 Chapter 10

PathFollower. The output of the pathmanager is

ymanager =

































flag

Vd
g

r

q

c

ρ

λ

































,

where flag=1 indicates that Pline(r, q) should be followed and flag=2

indicates that Porbit(c, ρ, λ) should be followed, and where Vd
g is the

desired airspeed.

10.1 Modify path_follow.m to implement algorithms 3 and 4. By

modifying path_manager_chap10.m test both the

straight-line and orbit-following algorithms on the guidance

model given in equation (9.19). An example Simulink diagram

is given in mavsim_chap10_model.mdl. Test your design

with significant constant winds (e.g., wn = 3, we = −3). Tune

the gains to get acceptable performance.

10.2 Implement the path following algorithms on the full six-DOF

simulation of theMAV. An example Simulink diagram is given

in mavsim_chap10.mdl. Test your design with significant

constant winds (e.g., wn = 3, we = −3). If necessary, tune the

gains to get acceptable performance.

11
Path Manager

In Chapter 10 we developed guidance strategies for following straight-

line paths and circular orbits. The objective of this chapter is to describe

two simple strategies that combine straight-line paths and orbits to

synthesize general classes of paths that are useful for autonomous

operation of MAVs. In section 11.1, we show how the straight-line and

orbit guidance strategies can be used to follow a series of waypoints.

In section 11.2, the straight-line and orbit guidance strategies are used

to synthesize Dubins paths, which for constant-altitude, constant-

velocity vehicles with turning constraints, are time-optimal paths

between two configurations. In reference to the architectures shown in

figures 1.1 and 1.2, this chapter describes the pathmanager.

11.1 Transitions Between Waypoints
Define a waypoint path as an ordered sequence of waypoints

W = {w1, w2, . . . , wN}, (11.1)

where wi = (wn,i , we,i , wd,i)
⊤ ∈ R3. In this section, we address the

problemof switching fromonewaypoint segment to another. Consider

the scenario shown in figure 11.1 that depicts a MAV tracking the

straight-line segmentwi−1wi . Intuitively, when theMAV reacheswi , we

desire to switch the guidance algorithm so that it will track the straight-

line segmentwiwi+1.What is the bestmethod for determiningwhether

the MAV has reached wi? One possible strategy is to switch when the

MAV enters a ball around wi . In other words, the guidance algorithm

would switch at the first time instant when

∥

∥p(t) − wi)
∥

∥ ≤ b,

where b is the size of the ball and p(t) is the location of the MAV.

However, if there are disturbances like wind or if b is chosen too small

or if the segment from wi−1 to wi is short and the tracking algorithm

has not had time to converge, then the MAVmay never enter the b-ball

aroundwi .

A better approach, one that is not sensitive to tracking error, is to use

a half-plane switching criteria. Given a point r ∈ R3 and anormal vector

188 Chapter 11

Figure 11.1 When transitioning from one straight-line segment to another,

a criterium is needed to indicate when the MAV has completed the first

straight-line segment. A possible option is to switch when the MAV enters a b-ball

around the transition waypoint. A better option is to switch when the MAV enters

the half-plane H(wi , ni).

n ∈ R3, define the half plane

H(r, n)
△
= {p ∈ R3 : (p − r)⊤n ≥ 0}.

Referring to figure 11.1, we can define the unit vector pointing in the

direction of the linewiwi+1 as

qi
△
=

wi+1 − wi

‖wi+1 − wi‖
, (11.2)

and accordingly, the unit normal to the 3-D half plane that separates

the linewi−1wi from the linewiwi+1 is given by

ni
△
=

qi−1 + qi
∥

∥qi−1 + qi

∥

∥

.

The MAV tracks the straight-line path from wi−1 to wi until it enters

H(wi , ni), at which point it will track the straight-line path from wi to

wi+1.

A simple algorithm for following the sequence of waypoints in equa-

tion (11.1) is given in algorithm 5. The first time that the algorithm is

executed, the waypoint pointer is initialized to i = 2 in line 2. The

MAV will be commanded to follow the straight-line segment wi−1wi .

The index i is a static variable and retains its value from one execution

of the algorithm to the next. Lines 4 and 5 define r and q for the

currentwaypoint segment. Line 6 defines the unit vector along the next

Path Manager 189

waypoint path, and line 7 is a vector that is perpendicular to the half

plane that separates wi−1wi from wiwi+1. Line 8 checks to see if the

half plane defining the next waypoint segment has been reached by

theMAV. If it has, then line 9 will increment the pointer until reaching

the last waypoint segment.

Algorithm 5 will produce paths like that shown in figure 11.2. The

advantages of algorithm 5 are that it is extremely simple and that the

MAV reaches the waypoint before transitioning to the next straight-

line path. However, the paths shown in figure 11.2 provide neither a

smooth nor balanced transition between the straight-line segments. An

alternative is to smoothly transition between waypoints by inserting a

fillet as shown in figure 11.3. The disadvantage with the path shown in

figure 11.3 is that the MAV does not directly pass through waypointwi ,

whichmay sometimes be desired.

Algorithm 5 Follow Waypoints: (r, q) = followWpp(W, p)

Input: Waypoint pathW = {w1, . . . , wN}, MAV position

p = (pn, pe, pd)
⊤.

Require: N ≥ 3

1: ifNewwaypoint pathW is received then

2: Initialize waypoint index: i ← 2

3: end if

4: r ← wi−1

5: qi−1 ← wi−wi−1

‖wi−wi−1‖

6: qi ← wi+1−wi

‖wi+1−wi‖

7: ni ← qi−1+qi

‖qi−1+qi‖

8: if p ∈ H(wi , ni) then

9: Increment i ← (i + 1) until i = N − 1

10: end if

11: return r, q = qi−1 at each time step

In the remainder of this sectionwewill focus on smoothed paths like

those shown in figure 11.3. The geometry near the transition is shown

in figure 11.4. With the unit vector qi aligned with the line between

waypointswi andwi+1 defined as in equation (11.2), the angle between

wi−1wi andwiwi+1 is given by

̺
△
= cos−1

(

−q⊤
i−1qi

)

. (11.3)

190 Chapter 11

Figure 11.2 Path generated using the path-following approach given in

algorithm 5. The MAV follows the straight-line path until reaching the waypoint,

and then maneuvers onto the next straight-line section.

Figure 11.3 The transition from

straight-line path wi−1wi to wiwi+1

can be smoothed by inserting a fillet.

If the radius of the fillet is R, as shown in figure 11.4, then the distance

between thewaypointwi and the locationwhere the fillet intersects the

line wiwi+1 is R/ tan ̺

2
, and the distance between wi and the center of

the fillet circle is R/ sin ̺

2
. Therefore, the distance between wi and the

edge of the fillet circle along the bisector of ̺ is given by R/ sin ̺

2
− R.

To implement the fillet maneuver using the path-following algo-

rithms described in chapter 10, we will follow the straight-line segment

wi−1wi until entering the half plane H1 shown in figure 11.5. The

right-handed orbit of radius R is then followed until entering the half

planeH2 shown in figure 11.5, at which point the straight-line segment

wiwi+1 is followed.

Path Manager 191

Figure 11.4 The geometry

associated with inserting a fillet

between waypoint segments.

Figure 11.5 Definitions of the half planes associated with following a fillet

inserted between waypoint segments.

As shown in figure 11.5, the center of the fillet is given by

c = wi −

(

R

sin ̺

2

)

qi−1 − qi

‖qi−1 − qi‖
.

Similarly, the half planeH1 is defined by the location

r1 = wi −

(

R

tan ̺

2

)

qi−1,

and the normal vector qi−1. The half planeH2 is defined by the location

r2 = wi +

(

R

tan ̺

2

)

qi

and the normal vector qi .

The algorithm for maneuvering along the waypoint path W using

fillets to smooth between the straight-line segments is given by

algorithm 6. The If statement in line 1 tests to see if a new waypoint

192 Chapter 11

Figure 11.6 An example of the types of flight paths produced by algorithm 6.

path has been received, including when the algorithm is instantiated.

If a new waypoint path has been received by the path manager, then

thewaypoint pointer and the statemachine are initialized in line 2. The

unit vectors qi−1 and qi and the angle ̺ are computed in lines 4–6.

When the statemachine is in statestate=1, theMAV is commanded

to follow the straight-line path alongwi−1wi , which is parameterized by

r = wi−1, and q = qi−1, and are assigned in lines 8–10. Lines 11–14 test

to see if the MAV has transitioned into the half plane shown as H1 in

figure 11.5. If theMAV has transitioned intoH2, then the statemachine

is updated to state=2.

When the state machine is in state=2, the MAV is commanded to

follow the orbit that defines the fillet. The center, radius, and direction

of the orbit are assigned in lines 17–19. In Line 19, qi−1,n and qi−1,e

denote the north and east components of qi−1. Lines 21–24 test to see if

theMAVhas transitioned into the half plane shown asH2 in figure 11.5.

If the MAV has transitioned into H2, then the waypoint pointer is

incremented, and the state machine is switched back to state=1 to

follow the segmentwiwi+1. Algorithm6produces paths like that shown

in figure 11.6.

One of the disadvantages of the fillet method as given in algorithm 6

is that the path length is changed when fillets are inserted. For certain

applications, like the cooperative timing problems discussed in [60], it

is important to have a high quality estimate of the path length, or the

time required to traverse a certain waypoint path.Wewill conclude this

section by deriving an expression for the path length ofW after fillets

have been inserted.

Path Manager 193

Algorithm 6 Follow Waypoints with Fillets: (flag, r, q, c, ρ, λ) =

followWppFillet(W, p, R)

Input: Waypoint pathW = {w1, . . . , wN}, MAV position

p = (pn, pe, pd)
⊤, fillet radius R.

Require: N ≥ 3

1: ifNewwaypoint pathW is received then

2: Initialize waypoint index: i ← 2, and state machine: state ← 1.

3: end if

4: qi−1 ← wi−wi−1

‖wi−wi−1‖

5: qi ← wi+1−wi

‖wi+1−wi‖

6: ̺ ← cos−1(−q⊤
i−1qi)

7: if state = 1 then

8: flag ← 1

9: r ← wi−1

10: q ← qi−1

11: z ← wi −
(

R
tan(̺/2)

)

qi−1

12: if p ∈ H(z, qi−1) then

13: state ← 2

14: end if

15: else if state = 2 then

16: flag ← 2

17: c ← wi −
(

R
sin(̺/2)

)

qi−1−qi

‖qi−1−qi‖

18: ρ ← R

19: λ ← sign(qi−1,nqi,e − qi−1,eqi,n)

20: z ← wi +
(

R
tan(̺/2)

)

qi

21: if p ∈ H(z, qi) then

22: i ← (i + 1) until i = N − 1.

23: state ← 1

24: end if

25: end if

26: return flag, r, q, c, ρ, λ.

To be precise, let

|W|
△
=

N
∑

i=2

‖wi − wi−1‖

be defined as the length of the waypoint path W. Define |W|F as the

path length of the fillet-corrected waypoint path that will be obtained

using algorithm 6. From figure 11.4 we see that the length of the fillet

194 Chapter 11

traversed by the corrected path is R(̺i). In addition, it is clear that the

length of the straight-line segment removed from |W| by traversing the

fillet is 2R tan ̺i

2
. Therefore,

|W|F = |W| +

N
∑

i=2

(

R(̺i) −
2R

tan ̺i

2

)

, (11.4)

where ̺i is given in equation (11.3).

11.2 Dubins Paths

11.2.1 Definition of Dubins Path

This section focuses on so-called Dubins paths, where, rather than

following a waypoint path, the objective is to transition from one

configuration (position and course) to another. Itwas shown in [61] that

for a vehicle with kinematics given by

.
pn = V cos ϑ

.
pe = V sin ϑ

.
ϑ = u,

where V is constant and u ∈ [−ū, ū], the time-optimal path between

two different configurations consists of a circular arc, followed by a

straight line, and concluding with another circular arc to the final

configuration, where the radius of the circular arcs is V/ū. These

turn-straight-turn paths are one of several classes of Dubins paths de-

fined for optimal transitions between configurations. In the context of

unmanned aircraft, we will restrict our attention to constant-altitude,

constant-groundspeed scenarios.

The radius of the circular arcs that define a Dubins path will be

denoted by R, where we assume that R is at least as large as the

minimum turn radius of the UAV. Throughout this section, a MAV

configuration is defined as (p, χ), where p is inertial position and χ is

course angle.

Given a start configuration denoted as (ps, χs) and an end configu-

ration denoted as (pe, χe), a Dubins path consists of an arc of radius R

that starts at the initial configuration, followed by a straight line, and

concluded by another arc of radius R that ends at the end configura-

tion. As shown in figure 11.7, for any given start and end configura-

tions, there are four possible paths consisting of an arc, followed by

a straight line, followed by an arc. Case I (R-S-R) is a right-handed arc

Path Manager 195

Figure 11.7 Given a start configuration (ps, χs), an end configuration (pe, χe),

and a radius R , there are four possible paths consisting of an arc, a straight line,

and an arc. The Dubins path is defined as the case that results in the shortest

path length, which for this scenario is Case I.

followed by a straight line followed by another right-handed arc. Case II

(R-S-L) is a right-handed arc followed by a straight line followed by a left-

handed arc. Case III (L-S-R) is a left-handed arc followed by a straight

line followed by a right-handed arc. Case IV (L-S-L) is a left-handed arc

followed by a straight line followed by another left-handed arc. The

Dubins path is defined as the case with the shortest path length.

11.2.2 Path Length Computation

To determine the Dubins path, it is necessary to compute the path

length for the four cases shown in figure 11.7. In this section, we will

derive explicit formulas for the path length for each case. Given the

position p, the course χ , and the radius R, the centers of the right and

left turning circles are given by

cr = p + R
(

cos(χ + π
2
), sin(χ + π

2
), 0
)⊤

(11.5)

cl = p + R
(

cos(χ − π
2
), sin(χ − π

2
), 0
)⊤

. (11.6)

To compute the path length of the different trajectories, we need a

general equation for angular distances on a circle. Figure 11.8 shows the

geometry for both clockwise (CW) and counter clockwise (CCW) circles.

196 Chapter 11

Figure 11.8 The angular distance between angles ϑ1 and ϑ2 for clockwise (CW)

and counter clockwise (CCW) circles.

Figure 11.9 Dubins path, case I.

Wewill assume that both ϑ1 and ϑ2 are between 0 and 2π . For clockwise

circles, the angular distance between ϑ1 and ϑ2 is given by

|ϑ2 − ϑ1|CW
△
= 〈2π + ϑ2 − ϑ1〉, (11.7)

where

〈ϕ〉
△
= ϕ mod 2π.

Similarly, for counter clockwise circles, we get

|ϑ2 − ϑ1|CCW
△
= 〈2π − ϑ2 + ϑ1〉. (11.8)

Case I: R-S-R

The geometry for case I is shown in figure 11.9, where ϑ is the angle

formed by the line between cr s and cr e. Using equation (11.7), the

Path Manager 197

Figure 11.10 Dubins path, case II.

distance traveled along cr s is given by

R
〈

2π +
〈

ϑ −
π

2

〉

−
〈

χs −
π

2

〉〉

.

Similarly, using equation (11.7), the distance traveled along cr e is

given by

R
〈

2π +
〈

χe −
π

2

〉

−
〈

ϑ −
π

2

〉〉

.

The total path length for case I is therefore given by

L1 = ‖cr s − cr e‖ + R
〈

2π +
〈

ϑ −
π

2

〉

−
〈

χs −
π

2

〉〉

+ R
〈

2π +
〈

χe −
π

2

〉

−
〈

ϑ −
π

2

〉〉

. (11.9)

Case II: R-S-L

The geometry for case II is shown in figure 11.10, where ϑ is the angle

formed by the line between cr s and cle, ℓ = ‖cle − cr s‖, and

ϑ2 = ϑ −
π

2
+ sin−1

(

2R

ℓ

)

.

Using equation (11.7), the distance traveled along cr s is given by

R
〈

2π + 〈ϑ2〉 −
〈

χs −
π

2

〉〉

.

198 Chapter 11

Figure 11.11 Dubins path, case III.

Similarly, using equation (11.8), the distance traveled along cle is given

by

R
〈

2π + 〈ϑ2 + π〉 −
〈

χe +
π

2

〉〉

.

The total path length for case II is therefore given by

L2 =
√

ℓ2 − 4R2 + R
〈

2π + 〈ϑ2〉 −
〈

χs −
π

2

〉〉

+ R
〈

2π + 〈ϑ2 + π〉 −
〈

χe +
π

2

〉〉

. (11.10)

Case III: L-S-R

The geometry for case III is shown in figure 11.11, where ϑ is the angle

formed by the line between cls and cr e, ℓ = ‖cr e − cls‖, and

ϑ2 = cos−1 2R

ℓ
.

Using equation (11.8), the distance traveled along cls is given by

R
〈

2π +
〈

χs +
π

2

〉

− 〈ϑ + ϑ2〉
〉

.

Path Manager 199

Figure 11.12 Dubins path, case IV.

Similarly, using equation (11.7), the distance traveled along cr e is given

by

R
〈

2π +
〈

χe −
π

2

〉

− 〈ϑ + ϑ2 − π〉
〉

.

The total path length for case III is therefore given by

L3 =
√

ℓ2 − 4R2 + R
〈

2π +
〈

χs +
π

2

〉

− 〈ϑ + ϑ2〉
〉

+ R
〈

2π +
〈

χe −
π

2

〉

− 〈ϑ + ϑ2 − π〉
〉

. (11.11)

Case IV: L-S-L

The geometry for case IV is shown in figure 11.12, where ϑ is the

angle formed by the line between cls and cle. Using equation (11.8),

the distance traveled along cls is given by

R
〈

2π +
〈

χs +
π

2

〉

−
〈

ϑ +
π

2

〉〉

.

Similarly, using equation (11.8), the distance traveled along cle is

given by

R
〈

2π +
〈

ϑ +
π

2

〉

−
〈

χe +
π

2

〉〉

.

200 Chapter 11

Figure 11.13 Definition of switching

half planes for Dubins paths. The

algorithm begins in a circular orbit

and switches to straight-line tracking

when H1 is entered. Orbit tracking is

again initialized upon entering H2.

The half plane H3 defines the end of

the Dubins path.

The total path length for case IV is therefore given by

L4 = ‖cls − cle‖ + R
〈

2π +
〈

χs +
π

2

〉

−
〈

ϑ +
π

2

〉〉

+ R
〈

2π +
〈

ϑ +
π

2

〉

−
〈

χe +
π

2

〉〉

. (11.12)

11.2.3 Algorithm for Tracking Dubins Paths

The guidance algorithm for tracking aDubins path is showngraphically

in figure 11.13 for case III. The algorithm is initialized in a left-handed

orbit about cls and continues in that orbit until the MAV enters the

half plane denoted as H1. After entering H1, a straight-line guidance

strategy is used until the MAV enters the half plane denoted as H2. A

right-handed orbit around cr e is then followed until theMAV enters the

half plane denoted as H3, which defines the completion of the Dubins

path.

It follows that a Dubins path can be parameterized by the start circle

cs, the direction of the start circle λs, the end circle ce, the direction of

the end circle λe, the parameters of the half planeH1 denoted as z1 and

q1, the parameters of the half plane H2 denoted as z2 and q2 = q1,

and the parameters of the half plane H3 denoted as z3 and q3. The

parameters of the Dubins path associated with the start configuration

(ps, χs), the end configuration (pe, χe), and the radius R are computed

in algorithm 7. The length of the Dubins path L is also computed. The

notationRz(ϑ) denotes the rotation matrix for a right-handed rotation

of ϑ about the z-axis and
e1 = (1, 0, 0)⊤.

If we define the sequence of configurations

P = {(w1, χ1), (w2, χ2), · · · , (wN, χN)}, (11.13)

then a guidance algorithm that follows Dubins paths between the

configurations is given in algorithm 8. In line 4 the Dubins parameters

Path Manager 201

Algorithm 7 Find Dubins Parameters:

(L, cs, λs, ce, λe, z1, q1, z2, z3, q3) =

findDubinsParameters(ps, χs, pe, χe, R)

Input: Start configuration (ps, χs), End configuration (pe, χe),

Radius R.

Require:
∥

∥ps − pe

∥

∥ ≥ 3R

Require: R is larger thanminimum turn radius of MAV

1: cr s ← ps + RRz

(

π
2

)

(cos χs, sin χs, 0)
⊤

2: cls ← ps + RRz

(

−π
2

)

(cos χs, sin χs, 0)
⊤

3: cr e ← pe + RRz

(

π
2

)

(cos χe, sin χe, 0)
⊤

4: cle ← pe + RRz

(

−π
2

)

(cos χe, sin χe, 0)
⊤

5: Compute L1, L2, L3, and L4 using equations (11.9)

through (11.12).

6: L ← min{L1, L2, L3, L4}

7: if arg min{L1, L2, L3, L4} = 1 then

8: cs ← cr s, λs ← +1, ce ← cr e, λe ← +1

9: q1 ← ce−cs
‖ce−cs‖

10: z1 ← cs + RRz

(

−π
2

)

q1

11: z2 ← ce + RRz

(

−π
2

)

q1

12: else if arg min{L1, L2, L3, L4} = 2 then

13: cs ← cr s, λs ← +1, ce ← cle, λe ← −1

14: ℓ ← ‖ce − cs‖

15: ϑ ← angle(ce − cs)

16: ϑ2 ← ϑ − π
2

+ sin−1 2R
ℓ

17: q1 ← Rz

(

ϑ2 + π
2

)

e1
18: z1 ← cs + RRz (ϑ2) e1
19: z2 ← ce + RRz (ϑ2 + π) e1
20: else if arg min{L1, L2, L3, L4} = 3 then

21: cs ← cls, λs ← −1, ce ← cr e, λe ← +1

22: ℓ ← ‖ce − cs‖,

23: ϑ ← angle(ce − cs),

24: ϑ2 ← cos−1 2R
ℓ

25: q1 ← Rz

(

ϑ + ϑ2 − π
2

)

e1,

26: z1 ← cs + RRz (ϑ + ϑ2) e1,

27: z2 ← ce + RRz (ϑ + ϑ2 − π) e1
28: else if arg min{L1, L2, L3, L4} = 4 then

29: cs ← cls, λs ← −1, ce ← cle, λe ← −1

30: q1 ← ce−cs
‖ce−cs‖

,

31: z1 ← cs + RRz

(

π
2

)

q1,

32: z2 ← ce + RRz

(

π
2

)

q2

33: end if

34: z3 ← pe

35: q3 ← Rz(χe)e1

202 Chapter 11

Figure 11.14 An example of the types of flight paths produced by algorithm 8.

are found for the current waypoint segment using algorithm 7. Since

the initial configuration may be in the far side of the circle that is

already inH1, the start circle is followed in state=1 until crossing into

the part of circle opposite H1, as shown in lines 7–9. The start circle is

then followed in state=2 until the MAV has crossed half plane H1, as

shown in lines 10–13. After crossing into H1, the straight-line segment

of the Dubins path is followed in state=3 as shown in lines 14–18.

Line 16 tests to see if the MAV has crossed half plane H2. When it

has, the end circle is followed in state=4 and state=5. Two states

are again needed since the MAV may already be in H3 at the instant

that it enters H2. If so, it follows the end circle until entering H3 as

shown in lines 19–23. After theMAV has entered intoH3, as detected in

line 25, the waypoints are cycled and newDubins parameters are found

in lines 27–28. Figure 11.14 shows an example of a path generated using

algorithm 8.

11.3 Chapter Summary
This chapter introduced several schemes for transitioning between

waypoint configurations using the straight-line and orbit-following

algorithms described in chapter 10. Section 11.1 discussed transitioning

between waypoint segments using a half plane and by inserting a fillet

between the waypoint segments. Section 11.2 introduced Dubins paths

and showed how to construct Dubins paths between waypoint config-

Path Manager 203

Algorithm 8 Follow Waypoints with Dubins: (flag, r, q, c, ρ, λ) =

followWppDubins(P, p, R)

Input: Configuration path P = {(w1, χ1), . . . , (wN, χN)}, MAV

position p = (pn, pe, pd)
⊤, fillet radius R.

Require: N ≥ 3

1: ifNew configuration path P is received then

2: Initialize waypoint pointer: i←2, and state machine: state←1.

3: end if

4: (L, cs, λs, ce, λe, z1, q1, z2, z3, q3) ←

findDubinsParameters(wi−1, χi−1, wi , χi , R)

5: if state = 1 then

6: flag ← 2, c ← cs, ρ ← R, λ ← λs

7: if p ∈ H(z1, −q1) then

8: state ← 2

9: end if

10: else if state = 2 then

11: if p ∈ H(z1, q1) then

12: state ← 3

13: end if

14: else if state = 3 then

15: flag ← 1, r ← z1, q ← q1

16: if p ∈ H(z2, q1) then

17: state ← 4

18: end if

19: else if state = 4 then

20: flag ← 2, c ← ce, ρ ← R, λ ← λe

21: if p ∈ H(z3, −q3) then

22: state ← 5

23: end if

24: else if state = 5 then

25: if p ∈ H(z3, q3) then

26: state ← 1

27: i ← (i + 1) until i = N.

28: (L, cs, λs, ce, λe, z1, q1, z2, z3, q3) ←

findDubinsParameters(wi−1, χi−1, wi , χi , R)

29: end if

30: end if

31: return flag, r, q, c, ρ, λ.

204 Chapter 11

urations. In the next chapter, we will describe several path-planning

algorithms that find waypoint paths and waypoint configurations in

order to maneuver through an obstacle field.

Notes and References

Section 11.1 is based largely on [62]. Dubins paths were introduced

in [61]. In certain degenerate cases, the Dubins path may not contain

one of the three elements. For example, if the start and end configura-

tions are on a straight line, then the beginning and end arcs will not

be necessary. Or if the start and end configurations lie on a circle of

radius R, then the straight line and end arc will not be necessary. In this

chapter, we have ignored these degenerate cases. Reference [63] builds

upon Dubins’s ideas to generate feasible trajectories for UAVs given

kinematic and path constraints by algorithmically finding the optimal

location of Dubins circles and straight-line paths. In [64], Dubins circles

are superimposed as fillets at the junction of straight-line waypoint

paths produced from a Voronoi diagram. In some applications, like the

cooperative-timing problem described in [60], it may be desirable to

transition between waypoints in a way that preserves the path length.

A pathmanager for this scenario is described in [62].

11.4 Design Project
The objective of this assignment is to implement algorithms 5 and 6

for following a set of waypoints denoted as W, and algorithm 8 for

following a set of configurations denoted as P. The input to the path

manager is eitherW or P, and the output is the path definition

ymanager =























flag

Vd
a

r

q

c

ρ

λ























.

Skeleton code for this chapter is given on the website.

11.1. Modify path_manager_line.m to implement algorithm 5

to follow the waypoint path defined in

path_planner_chap11.m. Test and debug the algorithm

on the guidance model given in equation (9.19). When the

algorithm is working well on the guidance model, verify

that it performs adequately for the full six-DOFmodel.

Path Manager 205

11.2. Modify path_manager_fillet.m and implement

algorithm 6 to follow the waypoint path defined in

path_planner_chap11.m. Test and debug the algorithm

on the guidance model given in equation (9.19). When the

algorithm is working well on the guidance model, verify

that it performs adequately for the full six-DOFmodel.

11.3. Modify path_manager_dubins.m and implement

algorithm 8 to follow the path configuration defined in

path_planner_chap11.m. Test and debug the algorithm

on the guidance model given in equation (9.19). When the

algorithm is working well on the guidance model, verify

that it performs adequately for the full six-DOFmodel.

12
Path Planning

In the robotics literature, there are essentially two different approaches

to motion planning: deliberative motion planning, where explicit

paths and trajectories are computed based on global world knowledge

[65, 66, 67], and reactivemotion planning, which uses behavioral meth-

ods to react to local sensor information [68, 69]. In general, deliberative

motion planning is useful when the environment is known a priori,

but can become computationally intensive in highly dynamic environ-

ments. Reactive motion planning, on the other hand, is well suited for

dynamic environments, particularly collision avoidance, where infor-

mation is incomplete and uncertain, but it lacks the ability to specify

and direct motion plans.

This chapter focuses on deliberative path planning techniques that

we have found to be effective and efficient for miniature air vehicles.

In deliberative approaches, the MAV’s trajectories are planned explic-

itly. The drawback of deliberative approaches is that they are strongly

dependent upon the models used to describe the state of the world

and the motion of the vehicle. Unfortunately, precise modeling of the

atmosphere and the vehicle dynamics is not possible. To compensate

for this inherent uncertainty, the path planning algorithms need to be

executed on a regular basis in an outer feedback loop. It is essential,

therefore, that the path planning algorithms be computationally effi-

cient. To reduce the computational demand, we will use simple low-

order navigation models for the vehicle and constant-wind models for

the atmosphere. We assume that a terrain elevation map is available

to the path planning algorithms. Obstacles that are known a priori are

represented on the elevationmap.

This chapter describes several simple and efficient path planning

algorithms that are suitable for miniature air vehicles. The methods

that we present are by no means exhaustive and might not be the

best possible methods. However, we feel that they provide an accessible

introduction to path planning. In reference to the architecture shown

in figure 1.1, this chapter describes the design of the path planner. We

will describe path planning algorithms for two types of problems. In

section 12.1 we will address point-to-point problems, where the objec-

tive is to plan a waypoint path from one point to another through an

obstacle field. In section 12.2 we will address coverage problems, where

Path Planning 207

Figure 12.1 An example of a Voronoi graph with Q = 20 point obstacles.

the objective is to plan awaypoint path so that theMAV covers all of the

area in a certain region. The output of the path planning algorithms

developed in this chapter will be a sequence of either waypoints or

configurations (waypoint plus orientation) and will therefore interface

with the pathmanagement algorithms developed in chapter 11.

12.1 Point-to-Point Algorithms

12.1.1 Voronoi Graphs

TheVoronoi graph is particularlywell suited to applications that require

theMAV tomaneuver through a congested airspace with obstacles that

are small relative to the turning radius of the vehicle. The relative size

allows the obstacles to bemodeled as pointswith zero area. TheVoronoi

method is essentially restricted to 2.5-D (or constant predefined alti-

tude) pathplanning,where the altitude at eachnode is fixed in themap.

Given a finite setQ of points inR2, the Voronoi graph dividesR2 into

Q convex cells, each containing exactly one point in Q. The Voronoi

graph is constructed so that the interior of each convex cell is closer

to its associated point than to any other point in Q. An example of a

Voronoi graph is shown in figure 12.1.

The key feature of the Voronoi graph that makes it useful for MAV

path planning is that the edges of the graph are perpendicular bisectors

between the points inQ. Therefore, following the edges of the Voronoi

208 Chapter 12

Figure 12.2 The Voronoi graph of Q is augmented with start and end nodes and

with edges that connect the start and end notes to Q.

graph potentially produces paths that avoid the points in Q. However,

figure 12.1 illustrates several potential pitfalls of using the Voronoi

graph. First, graph edges that extend to infinity are obviously not

good potential waypoint paths. Second, even for Voronoi cells with

finite area, following the edges of the Voronoi graph may lead to

unnecessarily long excursions. Finally, note that for the two points in

the lower right-hand corner of figure 12.1, the Voronoi graph produces

an edge between the two points; however, since the edge is so close to

the points, the corresponding waypoint pathmay not be desirable.

There are well-established and widely available algorithms for gener-

ating Voronoi graphs. For example, Matlab has a built-in Voronoi func-

tion, and C++ implementations are publicly available on the Internet.

Given the availability of Voronoi code, we will not discuss implementa-

tion of the algorithm. For additional discussions, see [70, 71, 72].

To use the Voronoi graph for point-to-point path planning, let G =

(V, E) be a graph produced by implementing the Voronoi algorithm on

the set Q. The node set V is augmented with the desired start and end

locations as

V+ = V ∪ {ps, pe},

whereps is the start position andpe is the end position. The edge set E is

then augmentedwith edges that connect the start and end nodes to the

three closest nodes in V. The associated graph is shown in figure 12.2.

Path Planning 209

Figure 12.3 The cost penalty assigned to

each edge of the Voronoi graph is

proportional to the path length ‖v1 − v2‖

and the reciprocal of the minimum distance

from the path to a point in Q.

The next step is to assign a cost to each edge in the Voronoi graph.

Edge costs can be assigned in a variety of ways. For illustrative purposes,

we will assume that the cost of traversing each path is a function of

the path length and the distance from the path to points in Q. The

geometry for deriving themetric is shown in figure 12.3.

Let the nodes of the graph edge be denoted by v1 and v2. The length

of the edge is given by ‖v1 − v2‖. Any point on the line segment can be

written as

w(σ) = (1 − σ)v1 + σv2,

where σ ∈ [0, 1]. Theminimum distance between p and the graph edge

can be expressed as

D(v1, v2, p)
△
= min

σ∈[0,1]

∥

∥p − w(σ)
∥

∥

= min
σ∈[0,1]

√

(p − w(σ))⊤(p − w(σ))

= min
σ∈[0,1]

√

√

√

√

p⊤p − 2(1 − σ)σp⊤v1 − σp⊤v2

+(1 − σ)2v⊤
1 v1 + 2(1 − σ)σv⊤

1 v2 + σ 2v⊤
2 v2

= min
σ∈[0,1]

√

√

√

√

∥

∥p − v1

∥

∥

2
+ 2σ (p − v1)

⊤(v1 − v2)

+σ 2 ‖v1 − v2‖
2

.

If σ is unconstrained, then its optimizing value is

σ ∗ =
(v1 − p)⊤(v1 − v2)

‖v1 − v2‖
2

,

210 Chapter 12

and

w(σ ∗) =

√

∥

∥p − v1

∥

∥

2 − ((v1 − p)⊤(v1 − v2))
2

‖v1 − v2‖
2

.

If we define

D
′

(v1, v2, p)
△
=















w(σ ∗) if σ ∗ ∈ [0, 1]
∥

∥p − v1

∥

∥ if σ ∗ < 0
∥

∥p − v2

∥

∥ if σ ∗ > 1,

then the distance between the point setQ and the line segment v1v2 is

given by

D(v1, v2, Q) = min
p∈Q

D
′

(v1, v2, p).

The cost for the edge defined by (v1, v2) is assigned as

J (v1, v2) = k1 ‖v1 − v2‖ +
k2

D(v1, v2, Q)
, (12.1)

where k1 and k2 are positive weights. The first term in equation (12.1)

is the length of the edge, and the second term is the reciprocal of the

distance from the edge to the closest point inQ.

The final step is to search the Voronoi graph to determine the lowest

cost path from the start node to the end node. There are numerous ex-

isting graph search techniques thatmight be appropriate to accomplish

this task [72]. A well-known algorithm with readily available code is

Dijkstra’s algorithm [73], which has a computational complexity equal

to O (|V|). An example of a path found by Dijkstra’s algorithm with

k1 = 0.1 and k2 = 0.9 is shown in figure 12.4.

Pseudo-code for the Voronoi path planning method is listed in algo-

rithm 9. If there are not a sufficient number of obstacle points inQ, the

resulting Voronoi graphwill be sparse and could potentially havemany

edges extending to infinity. To avoid that situation, algorithm9 requires

that Q has at least 10 points. That number is, of course, arbitrary. In

line 1 the Voronoi graph is constructed using a standard algorithm. In

line 2 the start and end points are added to the Voronoi graph, and

the edges between the start and end points and the closest nodes in Q

are added in lines 3–4. Edge costs are assigned in lines 5–7 according

to equation (12.1), and the waypoint path is determined via a Dijkstra

search in line 8.

Path Planning 211

Figure 12.4 Optimal path through the Voronoi graph.

Algorithm 9 Plan Voronoi Path:W = planVoronoi(Q, ps, pe)

Input: Obstacle pointsQ, start position ps, end position pe

Require: |Q| ≥ 10 Randomly add points if necessary.

1: (V, E) = constructVoronoiGraph(Q)

2: V+ = V
⋃

{ps}
⋃

{pe}
3: Find {v1s, v2s, v3s}, the three closest points in V to ps, and

{v1e, v2e, v3e}, the three closest points in V to pe

4: E+ = E
⋃

i=1,2,3(vis, ps)
⋃

i=1,2,3(vie, pe)

5: for Each element (va, vb) ∈ E do

6: Assign edge cost Jab = J (va, vb) according to equation (12.1).

7: end for

8: W = DijkstraSearch(V+, E+, J)

9: return W

One of the disadvantages of the Voronoi method described in al-

gorithm 9 is that it is limited to point obstacles. However, there are

straightforward modifications for non-point obstacles. For example,

consider the obstacle field shown in figure 12.5(a). A Voronoi graph can

be constructed by first adding points around the perimeter of the obsta-

cles that exceed a certain size, as shown in figure 12.5(b). The associated

Voronoi graph, including connections to start and end nodes, is shown

in figure 12.5(c). However, it is obvious from figure 12.5(c) that the

Voronoi graph includes many infeasible links that are contained inside

212 Chapter 12

Figure 12.5 (a) An obstacle field with non-point obstacles. (b) The first step in

using the Voronoi method to construct a path through the obstacle field is to

insert points around the perimeter of the obstacles. (c) The resulting Voronoi

graph includes many infeasible links contained inside the obstacles or that

terminate on the obstacles. (d) When infeasible links are removed, the resulting

graph can be used to plan paths through the obstacle field.

an obstacle or terminate on the obstacle. The final step is to remove

the infeasible links, as shown in figure 12.5(d), which also displays the

resulting optimal path.

12.1.2 Rapidly Exploring Random Trees

Another method for planning paths through an obstacle field from

a start node to an end node is the Rapidly Exploring Random Tree

(RRT) method. The RRT scheme is a random exploration algorithm

that uniformly, but randomly, explores the search space. It has the

advantage that it can be extended to vehicles with complicated non-

linear dynamics. We assume throughout this section that obstacles are

represented in a terrain map that can be queried to detect possible

collisions.

Path Planning 213

Figure 12.6 A tree is a special graph

where every node, except the root,

has exactly one parent.

The RRT algorithm is implemented using a data structure called a

tree. A tree is a special case of a directed graph. Figure 12.6 is a graphical

depiction of a tree. Edges in trees are directed from a child node to its

parent. In a tree, every node has exactly one parent, except the root,

which does not have any parents. In the RRT framework, the nodes

represent physical states, or configurations, and the edges represent

feasible paths between the states. The cost associated with each edge,

ci j , is the cost associatedwith traversing the feasible path between states

represented by the nodes.

The basic idea of the RRT algorithm is to build a tree that uniformly

explores the search space. The uniformity is achieved by randomly

sampling from a uniformprobability distribution. To illustrate the basic

idea, let the nodes represent north-east locations at a constant altitude,

and let the cost ci j of the edges between nodes be the length of the

straight-line path between the nodes.

Figure 12.7 depicts the basic RRT algorithm. As shown in fig-

ure 12.7(a), the input to the RRT algorithm is a start configuration ps,

an end configuration pe, and the terrain map. The first step of the

algorithm is to randomly select a configuration p in the workspace.

As shown in figure 12.7(b), a new configuration v1 is selected a fixed

distance D from ps along the line pps, and inserted into the tree. At

each subsequent step, a random configuration p is generated in the

workspace, and the tree is searched to find the node that is closest to

p. As shown in figure 12.7(c), a new configuration is generated that is a

distance D from the closest node in the tree, along the line connecting

p to the closest node. Before a path segment is added to the tree, it needs

to be checked for collisions with the terrain. If a collision is detected, as

shown in figure 12.7(d), then the segment is deleted and the process is

repeated. When a new node is added, its distance from the end node

pe is checked. If it is less than D, then a path segment from pe is added

to the tree, as shown in figure 12.7(f), indicating that a complete path

through the terrain has been found.

Let T be the terrain map, and let ps and pe be the start and end

configurations in themap. Algorithm 10 gives the basic RRT algorithm.

214 Chapter 12

Figure 12.7 (a) The RRT algorithm is initialized with a terrain map and a start

node and an end node. (b) and (c) The RRT graph is extended by randomly

generating a point p in the terrain and planning a path of length D in the

direction of p. (d) If the resulting configuration is not feasible, then it is not added

to the RRT graph, and the process continues as shown in (e). (f) The RRT

algorithm completes when the end node is added to the the RRT graph.

In line 1, the RRT graph G is initialized to contain only the start node.

The while loop in lines 2–14 adds nodes to the RRT graph until the end

node is included in the graph, indicating that a path from ps to pe has

been found. In line 3 a random configuration is drawn from the terrain

according to a uniformdistribution over T . Line 4 finds the closest node

v∗ ∈ G to the randomly selected point p. Since the distance between p

Path Planning 215

and v∗ may be large, line 5 plans a path of fixed length D from v∗ in

the direction of p. The resulting configuration is denoted as v+. If the

resulting path is feasible, as checked in line 6, then v+ is added to G in

line 7 and the costmatrix is updated in line 8. The if statement in line 10

checks to see if the new node v+ can be connected directly to the end

node pe. If so, pe is added to G in line 11–12, and the algorithm ends in

line 15 by returning the shortest waypoint path in G.

Algorithm 10 Plan RRT Path:W = planRRT(T , ps, pe)

Input: Terrain map T , start configuration ps, end configuration pe

1: Initialize RRT graph G = (V, E) as V = {ps}, E = ∅
2: while The end node pe is not connected to G, i.e., pe
∈ V do

3: p ← generateRandomConfiguration(T)

4: v∗ ← findClosestConfiguration(p, V)

5: v+ ← planPath(v∗, p, D)

6: if existFeasiblePath(T , v∗, v+) then

7: Update graph G = (V, E) as V ← V
⋃

{v+}, E ← E
⋃

{(v∗, v+)}

8: Update edge costs as C[(v∗, v+)] ← pathLength(v∗, v+)

9: end if

10: if existFeasiblePath(T , v+, pe) then

11: Update graph G = (V, E) as V ← V
⋃

{pe} E ← E
⋃

{(v∗, pe)}

12: Update edge costs as C[(v∗, pe)] ← pathLength(v∗, pe)

13: end if

14: endwhile

15: W = findShortestPath(G, C).

16: return W

The result of implementing algorithm 10 for four different randomly

generated obstacle fields and randomly generated start and end nodes

is displayed with a dashed line in figure 12.8. Note that the paths gener-

ated by Algorithm 10 sometimes wander needlessly and that eliminat-

ing some nodes may result in a more efficient path. Algorithm 11 gives

a simple scheme for smoothing the paths generated by algorithm 10.

The basic idea is to remove intermediate nodes if a feasible path still

exists. The result of applying algorithm 11 is shown with a solid line in

figure 12.8.

There are numerous extensions to the basic RRT algorithm. A com-

mon extension, which is discussed in [74], is to extend the tree from

both the start and the end nodes and, at the end of each extension,

to attempt to connect the two trees. In the next two subsections, we

216 Chapter 12

Figure 12.8 The results of algorithm 10 for four randomly generated obstacle

fields and randomly generated start and end nodes are indicated by dashed lines.

The smoothed paths generated by algorithm 11 are indicated by the solid lines.

will give two simple extensions that are useful for MAV applications:

waypoint planning over 3-D terrain and using Dubins paths to plan

kinematically feasible paths in complex 2-D terrain.

RRTWaypoint Planning over 3-D Terrain

In this sectionwewill consider the extensionof the basic RRT algorithm

to planning waypoint paths over 3-D terrain. We will assume that the

terrain T can be queried for the altitude of the terrain at any north-east

position. The primary question that must be answered to extend the

basic RRT algorithm to 3-D is how to generate the altitude at random

nodes. For example, one option is to randomly select the altitude as a

uniform distribution of height-above-ground, up to a maximum limit.

Another option is to pre-select several altitude levels and then randomly

select one of these levels.

In this section, we will select the altitude as a fixed height-above-

ground hAGL . Therefore, the (unsmoothed) RRT graph will, in essence,

be a 2-D graph that follows the contour of the terrain. The output of

Path Planning 217

Algorithm 11 Smooth RRT Path: (Ws, Cs) = smoothRRT(T ,W, C)

Input: Terrain map T , waypoint pathW = {w1, . . . , wN}, cost

matrix C

1: Initialized smoothed pathWs ← {w1}

2: Initialize pointer to current node inWs: i ← 1

3: Initialize pointer to next node inW: j ← 2

4: while j < N do

5: ws ← getNode(Ws, i)

6: w+ ← getNode(W, j + 1)

7: if existFeasiblePath(T , ws, w
+) = FALSE then

8: Get last node:w ← getNode(W, j)

9: Add deconflicted node to smoothed path:Ws ←Ws

⋃

{w}

10: Update smoothed cost: Cs[(ws, w)] ← pathLength(ws, w)

11: i ← i + 1

12: end if

13: j ← j + 1

14: endwhile

15: Add last node fromW:Ws ←Ws

⋃

{wN}

16: Update smoothed cost: Cs[(wi , wN)] ← pathLength(wi , wN)

17: return Ws

algorithm 10 will be a path that follows the terrain at a fixed altitude

hAGL . However, the smoothing step represented by algorithm 11 will

result in paths with much less altitude variation. For 3-D terrain, the

climb rate and descent rates of the MAV are usually constrained to be

within certain limits. The function existFeasiblePath in algorithms 10

and 11 can be modified to ensure that the climb and descent rates are

satisfied and that terrain collisions are avoided.

The results of the 3-D RRT algorithm are shown in figures 12.9

and 12.10, where the thin lines represent the RRT tree, the thick dashed

line is the RRT path generated by algorithm 10, and the thick solid line

is the smoothed path generated by algorithm 11.

RRTDubins Path Planning in a 2-D Obstacle Field

In this section, we will consider the extension of the basic RRT al-

gorithm to planning paths subject to turning constraints. Assuming

that the vehicle moves at constant velocity, optimal paths between

configurations are given by Dubins paths, as discussed in section 11.2.

Dubins paths are planned between two different configurations, where

a configuration is given by three numbers representing the north and

east positions and the course angle at that position. To apply the RRT

algorithm to this scenario, we need to have a technique for generating

random configurations.

218 Chapter 12

Figure 12.9 (a) Overhead view of the results of the 3-D RRT waypoint path

planning algorithm. (b) Side view of the results of the 3-D RRT waypoint path

planning algorithm. The thin lines are the RRT graph, the thick dotted line is the

RRT path returned by algorithm 10, and the thick solid line is the smoothed path.

The RRT graph is generated at a fixed height above the terrain.

Figure 12.10 (a) Overhead view of the results of the 3-D RRT waypoint path

planning algorithm. (b) Side view of the results of the 3-D RRT waypoint path

planning algorithm. The thin lines are the RRT graph, the thick dashed line is the

RRT path returned by algorithm 10, and the thick solid line is the smoothed path.

The RRT graph is generated at a fixed height above the terrain.

Wewill generate a random configuration as follows:

1. Generate a random north-east position in the environment.

2. Find the closest node in the RRT graph to the new point.

3. Select a position of distance L from the closest RRT node, and

use that position as the north-east coordinates of the new

configuration.

4. Select the course angle for the configuration as the angle of the

line that connects the new configuration to the RRT tree.

Path Planning 219

Figure 12.11 (a) Overhead view of the results of the RRT Dubins path planning

algorithm. (b) Side view of the results of the RRT Dubins path planning

algorithm. The thin lines are the RRT graph, the thick dashed line is the RRT path

returned by algorithm 10, and the thick solid line is the smoothed path. The RRT

graph is generated at a fixed height above the terrain.

Figure 12.12 (a) Overhead view of the results of the 3-D RRT waypoint path

planning algorithm. (b) Side view of the results of the 3-D RRT waypoint path

planning algorithm. The thin lines are the RRT graph, the thick dashed line is the

RRT path returned by algorithm 10, and the thick solid line is the smoothed path.

The RRT graph is generated at a fixed height above the terrain.

The RRT algorithm is then implemented as described in algorithm 10,

where the function pathLength returns the length of the Dubins path

between configurations.

The results of the RRT Dubins algorithm are shown in figures 12.11

and 12.12, where the thin lines represent the RRT tree, the thick dashed

line is the RRT path generated by algorithm 10, and the thick solid line

is the smoothed path generated by algorithm 11.

220 Chapter 12

12.2 Coverage Algorithms
In this section we will briefly discuss coverage algorithms, where the

objective is not to transition from a start configuration to an end

configuration, but rather to cover as much area as possible. Coverage

algorithms are used, for example, in search problems, where the air ve-

hicle is searching for objects of interest within a given region. Since the

location of the object may be unknown, the regionmust be searched as

uniformly as possible. The particular algorithm that we present in this

section allows for prior information about possible locations of objects

to be included.

The basic idea is to maintain two maps in memory: the terrain map

and the returnmap. The terrainmap is used to detect possible collisions

with the environment.Wewillmodel the benefit of being at a particular

location in the terrain by a return valueϒi , where i indexes the location

in the terrain. To ensure uniform coverage of an area, the return map is

initialized so that all locations in the terrain have the same initial return

value. As locations are visited, the return value is decremented by a fixed

amount according to

ϒi [k] = ϒi [k − 1] − c, (12.2)

where c is a positive constant. The path planner searches for paths

that provide the largest possible return over a finite look-ahead

window.

The basic coverage algorithm is listed in algorithm 12. At each step

of the algorithm, a look-ahead tree is generated from the current MAV

configuration and used to search for regions of the terrain with a large

return value. In line 1 the look-ahead tree is initialized to the start

configuration ps, and in line 8 the look-ahead tree is reset to the current

configuration. More advanced algorithms could be designed to retain

portions of the look-ahead tree that have already been explored. The

return map is initialized in line 2. We initialize the return map to be a

large constant number plus additive noise. The additive noise facilitates

choices in the initial stages of the algorithm, where all regions of the

terrain need to be searched and, therefore, produce equal return values.

After the MAV has moved into a new region of the terrain, the return

map ϒ is updated in line 9 according to equation 12.2. In line 5 the

look-ahead tree is generated, starting from the current configuration.

The look-ahead tree is generated in a way that avoids obstacles in the

terrain. In line 6 the look-ahead tree G is searched for the the path that

produces the largest return value.

There are several techniques that can be used to generate the look-

ahead tree in line 5 of algorithm12; wewill briefly describe two possible

Path Planning 221

Figure 12.13 A look-ahead tree of depth three is generated from the position

(0, 0), where L = 10, and ϑ = π/6.

methods. In the first method, the path is given by waypoints, and the

look-ahead tree is generated by taking finite steps of length L and, at

the end of each step, by allowing the MAV to move straight or change

heading by ±ϑ at each configuration. A three-step look-ahead tree

where ϑ = π/6 is shown in figure 12.13.

Algorithm 12 Plan Cover Path: planCover(T , ϒ, p)

Input: Terrain map T , returnmap ϒ, initial configuration ps

1: Initialize look-ahead tree G = (V, E) as V = {ps}, E = ∅
2: Initialize returnmap ϒ = {ϒi : i indexes the terrain}
3: p = ps

4: for Each planning cycle do

5: G = generateTree(p, T , ϒ)

6: W = highestReturnPath(G)

7: Update p bymoving along the first segment ofW

8: Reset G = (V, E) as V = {p}, E = ∅
9: ϒ = updateReturnMap(ϒ, p)

10: end for

The results of using a waypoint look-ahead tree in algorithm 12 are

shown in figure 12.14. figure 12.14(a) shows paths through an obstacle

field where the look-ahead length is L = 5, the allowed heading change

222 Chapter 12

Figure 12.14 Plots (a) and (c) provide an overhead view of the results of the

coverage algorithm using a three-angle expansion tree. The associated return

maps after 200 planning cycles are shown in plots (b) and (d). In (a) and (b), the

allowed heading change is ϑ = π/6, and in (c) and (d), the allowed heading

change is ϑ = π/3.

at each step is ϑ = π/6, and the depth of the look-ahead tree is three.

The associated returnmap after 200 iterations of the algorithm is shown

in figure 12.14(a). figure 12.14(b) shows paths through an obstacle field

where the look-ahead length is L = 5, the allowed heading change at

each step is ϑ = π/3, and the depth of the look-ahead tree is three. The

associated return map after 200 iterations of the algorithm is shown in

figure 12.14(c). Note that the area is approximately uniformly covered,

but that paths through regions are often repeated, especially through

tight regions.

Another method that can be used to generate the look-ahead tree in

line 5 of algorithm 12 is an RRT algorithm using Dubins paths. Given

the current configuration, N steps of the RRT tree expansion algorithm

are used to generate the look-ahead tree. Results using this algorithm

in a 3-D urban environment are shown in figure 12.15. Figures 12.15(a)

Path Planning 223

Figure 12.15 Plots (a) and (d) provide an overhead view of the results of the

coverage algorithm using the RRT planner to find new regions using Dubins

paths between configurations. Plots (b) and (e) show side views of the results.

Plots (c) and (f) show the return map after 100 iterations of the search algorithm.

and 12.15(b) show overhead views of two different instances of the

algorithm. The altitude of the MAV is fixed at a certain height, so

buildings prevent certain regions from being searched. A side view of

the results are shown in figures 12.15(b) and 12.15(e) to provide the 3-D

perspective. The associated return maps are shown in figures 12.15(c)

and 12.15(f). The results again show that the area is covered fairly

uniformly, but it also highlights that the coverage algorithm is not

particularly efficient.

12.3 Chapter Summary
This chapter has provided a brief introduction to path planning meth-

ods for small unmanned aircraft. The algorithms presented in this

chapter are not intended to be complete or even the best algorithms

for MAVs. Rather we have selected algorithms that are easy to under-

stand and implement and that provide a good springboard for further

research. We have presented two classes of algorithms: point-to-point

algorithms for planing paths between two configurations, and coverage

algorithms for planning paths that uniformly cover a region, given the

constraints of the obstacle field. Our primary focus has been the use of

the rapidly exploring random tree (RRT) algorithm using Dubins paths

between nodes.

224 Chapter 12

Notes and References

There is extensive literature on path planning methods, including

the textbooks by Latombe [75], Choset, et al. [76], and LaValle [77],

which contain thorough reviews of related path planning research.

An introduction to the Voronoi graph is contained in [71] and early

applications of Voronoi techniques to UAV path planning are described

in [64, 78, 79, 80]. Incremental construction of Voronoi graphs based

on sensor measurements is described in [81, 82]. An effective search

technique for Voronoi diagrams providing multiple path options is the

Eppstein’s k-shortest paths algorithm [83].

The RRT algorithm was first introduced in [84] and applied to non-

holonomic robotic vehicles in [85, 74]. There are numerous applications

of RRTs reported in the literature, as well as extensions to the basic

algorithms [86]. A recent extension to theRRT algorithm that converges

with probability one to the optimal path is described in [87]. The RRT

algorithm is closely related to the probabilistic roadmap technique

described in [88], which is applied to UAVs in [89].

There are several coverage algorithms discussed in the literature.

Reference [90] describes a coverage algorithm that plans paths such

that the robot passes over all points in its free space and also includes

a nice survey of other coverage algorithms reported in the literature.

A coverage algorithm in the presence of moving obstacles is described

in [91]. Multiple vehicle coverage algorithms are discussed in [92],

and coverage algorithms in the context of mobile sensor networks are

described in [93, 94].

12.4 Design Project
The objective of this assignment is to implement several of the

path planning algorithms described in this chapter. Skeleton code

for this chapter is given on the website. The file createWorld.m

creates a map similar to those shown in figures 12.11 and 12.12.

The file drawEnvironment.m draws the map, the waypoint path,

and the current straight-line or orbit that is being followed. The file

path_planner.m contains a switch statement for manually choosing

between different path planning algorithms. The sample code contains

the file planRRT.m for planning straight line paths through a synthetic

urban terrain.

12.1. Using planRRT.m as a template, create planRRTDubins.m

andmodify path_planner.m so that it calls

planRRTDubins.m to plan Dubins paths through themap.

Modify planRRTDubins.m to implement the RRT

Path Planning 225

algorithm based on Dubins paths and the associated

smoothing algorithm. Test and debug the algorithm on the

guidance model given in equation (9.19). When the

algorithm is working well on the guidance model, verify

that it performs adequately for the full six-DOFmodel.

12.2. Using planCover.m as a template, create

planCoverRRTDubins.m andmodify path_planner.m

so that it calls the function planRRTCoverDubins.m.

Modify planCoverRRTDubins.m to implement the

coverage algorithm described in algorithm 12 where the

motion of the vehicle is based on Dubins paths. Test and

debug the algorithm on the guidance model given in

equation (9.19). When the algorithm is working well on the

guidance model, verify that it performs adequately for the

full six-DOFmodel.

13
Vision-guided Navigation

One of the primary reasons for the current interest in small unmanned

aircraft is that they offer an inexpensive platform to carry electro-

optical (EO) and infrared (IR) cameras. Almost all small and miniature

air vehicles that are currently deployed carry either an EO or IR camera.

While the camera’s primary use is to relay information to a user, it

makes sense to attempt to also use the camera for the purpose of

navigation, guidance, and control. Further motivation comes from the

fact that birds and flying insects use vision as their primary guidance

sensor [95].

This chapter briefly introduces some of the issues that arise in vision-

based guidance and control of MAVs. In section 13.1 we revisit coor-

dinate frame geometry and expand upon the discussion in chapter 2

by introducing the gimbal and camera frames. We also discuss the

image plane and the projective geometry that relates the position of 3-

D objects to their 2-D projection on the image plane. In section 13.2 we

give a simple algorithm for pointing a pan-tilt gimbal at a knownworld

coordinate. In section 13.3 we describe a geolocation algorithm that

estimates the position of a ground-based target based on the location

and motion of the target in the video sequence. In this chapter we will

assume that an algorithm exists for tracking the features of a target in

the video sequence. The motion of the target on the image plane is

influenced by both the target motion and by the translational and rota-

tional motion of the aircraft. In section 13.4 we describe a method that

compensates for the apparent target motion that is induced by gimbal

movement and angular rates of the air platform. As a final application

of vision-based guidance, section 13.6 describes an algorithm that uses

vision to land accurately at a user-specified location on the ground.

13.1 Gimbal and Camera Frames and Projective Geometry
In this section we will assume that the origins of the gimbal and

camera frames are located at the center of mass of the vehicle. For more

general geometry, see [96]. Figure 13.1 shows the relationship between

the vehicle and body frames of the MAV and the gimbal and camera

frames. There are three frames of interest: the gimbal-1 frame denoted

by F g1 = (ig1, jg1, kg1), the gimbal frame denoted by F g = (ig , jg , kg),

Vision-guided Navigation 227

Figure 13.1 A graphic showing the relationship between the gimbal and camera

frames and the vehicle and body frames.

and the camera frame denoted byF c = (ic, jc, kc). The gimbal-1 frame is

obtained by rotating the body frame about thekb axis by an angle of αaz,

which is called the gimbal azimuth angle. The rotation from the body

to the gimbal-1 frame is given by

R
g1
b (αaz)

△=





cos αaz sin αaz 0

−sin αaz cos αaz 0

0 0 1



. (13.1)

The gimbal frame is obtained by rotating the gimbal-1 frame about

the jg1 axis by an angle of αel, which is called the gimbal elevation

angle. Note that a negative elevation angle points the camera toward

the ground. The rotation from the gimbal-1 frame to the gimbal frame

is given by

R
g
g1(αel)

△=





cos αel 0 −sin αel

0 1 0

sin αel 0 cos αel



. (13.2)

The rotation from the body to the gimbal frame is, therefore, given by

R
g
b = Rg

g1R
g1
b =





cos αel cos αaz cos αel sin αaz −sin αel

−sin αaz cos αaz 0

sin αel cos αaz sin αel sin αaz cos αel



. (13.3)

The literature in computer vision and image processing traditionally

aligns the coordinate axis of the camera such that ic points to the right

in the image, jc points down in the image, and kc points along the

optical axis. It follows that the transformation from the gimbal frame

to the camera frame is given by

Rc
g =





0 1 0

0 0 1

1 0 0



 . (13.4)

228 Chapter 13

Figure 13.2 The camera frame. The target in the camera frame is represented by

ℓ
c. The projection of the target onto the image plane is represented by ǫ. The

pixel location (0,0) corresponds to the center of the image, which is assumed to

be aligned with the optical axis. The distance to the target is given by L, ǫ and f

are in units of pixels, ℓ is in units of meters.

13.1.1 Camera Model

The geometry in the camera frame is shown in figure 13.2, where f is

the focal length in units of pixels and P converts pixels to meters. To

simplify the discussion, we will assume that the pixels and the pixel

array are square. If thewidth of the square pixel array in units of pixels is

M and the field-of-view of the camera υ is known, then the focal length

f can be expressed as

f =
M

2 tan
(

υ
2

) . (13.5)

The location of the projection of the object is expressed in the camera

frame as (Pǫx, Pǫy, P f), where ǫx and ǫy are the pixel location (in units

of pixels) of the object. The distance from the origin of the camera frame

to the pixel location (ǫx, ǫy), as shown in figure 13.2, is P F where

F =
√

f 2 + ǫ2x + ǫ2
y
. (13.6)

Using similar triangles in figure 13.2, we get

ℓcx

L
=

Pǫx

P F
=

ǫx

F
. (13.7)

Vision-guided Navigation 229

Similarly, we get that ℓc
y
/L = ǫy/F and ℓcz/L = f/F . Combining, we have

that

ℓ
c =
L

F





ǫx

ǫy

f



 , (13.8)

where ℓ is the vector to the object of interest and L = ‖ℓ‖.

Note that ℓ
c cannot be determined strictly from camera data since L

is unknown.However, we can determine the unit direction vector to the

target as

ℓ
c

L
=

1

F





ǫx

ǫy

f



 =
1

√

ǫ2x + ǫ2
y

+ f 2





ǫx

ǫy

f



 . (13.9)

Since the unit vector ℓ
c/L plays a major role throughout this chapter,

we will use the notation

ℓ̌
△=





ℓ̌x

ℓ̌y

ℓ̌z





△=
ℓ

L

to denote the normalized version of ℓ.

13.2 Gimbal Pointing
Small and miniature air vehicles are used primarily for intelligence,

surveillance, and reconnaissance (ISR) tasks. If the MAV is equipped

with a gimbal, this involvesmaneuvering the gimbal so that the camera

points at certain objects. The objective of this section is to describe a

simple gimbal-pointing algorithm. We assume a pan-tilt gimbal and

that the equations of motion for the gimbal are given by

.
αaz = uaz
.
αel = uel,

where uaz and uel are control variables for the gimbal’s azimuth and

elevation angles, respectively.

We will consider two pointing scenarios. In the first scenario, the

objective is to point the gimbal at a given world coordinate. In the

second scenario, the objective is to point the gimbal so that the optical

axis aligns with a certain point in the image plane. For the second

230 Chapter 13

scenario, we envision a user watching a video stream from theMAV and

using a mouse to click on a location in the image plane. The gimbal is

thenmaneuvered to push that location to the center of the image plane.

For the first scenario, let pi
obj be the known location of an object in

the inertial frame. The objective is to align the optical axis of the camera

with the desired relative position vector

ℓ
i
d

△= pi
obj − pi

MAV,

where pi
MAV = (pn, pe, pd)

⊤ is the inertial position of the MAV and

where the subscript d indicates a desired quantity. The body-frame unit

vector that points in the desired direction of the object is given by

ℓ̌
b

d =
1
∥

∥ℓ
i
d

∥

∥

Rb
i ℓ

i
d.

For the second scenario, suppose that we desire to maneuver the

gimbal so that the pixel location ǫ is pushed to the center of the image.

Using equation (13.9), the desired direction of the optical axis in the

camera frame is given by

ℓ̌
c

d =
1

√

f 2 + ǫ2x + ǫ2
y





ǫx

ǫy

f



.

In the body frame, the desired direction of the optical axis is

ℓ̌
b

d = Rb
gR

g
c ℓ̌

c

d.

The next step is to determine the desired azimuth and elevation

angles that will align the optical axis with ℓ̌
b

d. In the camera frame, the

optical axis is given by (0, 0, 1)c. Therefore, the objective is to select the

commanded gimbal angles αc
az and αc

el so that

ℓ̌
b

d
△=









ℓ̌bxd

ℓ̌b
yd

ℓ̌bzd









= Rb
g(α

c
az, αc

el)R
g
c







0

0

1






(13.10)

=









cos αc
el cos αc

az −sin αc
el −sin αc

el cos αc
az

cos αc
el sin αc

az cos αc
az −sin αc

el sin αc
az

sin αc
el 0 cos αc

el















0 0 1

1 0 0

0 1 0













0

0

1






(13.11)

Vision-guided Navigation 231

=









cos αc
el cos αc

az

cos αc
el sin αc

az

sin αc
el









. (13.12)

Solving for αc
el and αc

az gives the desired azimuth and elevation angles as

αc
az = tan−1

(

ℓ̌b
yd

ℓ̌bxd

)

(13.13)

αc
el = sin−1

(

ℓ̌bzd
)

. (13.14)

The gimbal servo commands can be selected as

uaz = kaz(α
c
az − αaz) (13.15)

uel = kel(α
c
el − αel),

where kaz and kel are positive control gains.

13.3 Geolocation
This section presents a method for determining the location of objects

in world/inertial coordinates using a gimbaled EO/IR camera on board

a fixed-wing MAV.We assume that the MAV canmeasure its own world

coordinates using, for example, aGPS receiver, and that otherMAV state

variables are also available.

Following section 13.1, let ℓ = pobj − pMAV be the relative position

vector between the target of interest and the MAV, and define L = ‖ℓ‖

and ℓ̌ = ℓ/L. From geometry, we have the relationship

pi
obj = pi

MAV +Ri
bR

b
gR

g
c ℓ

c

= pi
MAV + L

(

Ri
bR

b
gR

g
c ℓ̌

c
)

, (13.16)

where pi
MAV = (pn, pe, pd)

⊤, Ri
b = Ri

b(φ, θ, ψ), and Rb
g = Rb

g(αaz, αel).

The only element on the right-hand side of equation (13.16) that is

unknown is L. Therefore, solving the geolocation problem reduces to

the problem of estimating the range to the target L.

13.3.1 Range to Target Using the Flat-earth Model

If the MAV is able to measure height-above-ground, then a simple

strategy for estimatingL is to assume a flat-earthmodel [96]. Figure 13.3

232 Chapter 13

Figure 13.3 Range estimation using the flat-earth assumption.

shows the geometry of the situation, where h = −pd is the height-

above-ground, and ϕ is the angle between ℓ and the ki axis. It is clear

from figure 13.3 that

L =
h

cos ϕ
,

where

cos ϕ = ki · ℓ̌
i

= ki ·Ri
bR

b
gR

g
c ℓ̌

c
.

Therefore, the range estimate using the flat-earthmodel is given by

L =
h

ki ·Ri
bR

b
gR

g
c ℓ̌

c . (13.17)

The geolocation estimate is given by combining equations (13.16)

and (13.17) to obtain

pi
obj =





pn
pe
pd



+ h
Ri

bR
b
gR

g
c ℓ̌

c

ki ·Ri
bR

b
gR

g
c ℓ̌

c . (13.18)

13.3.2 Geolocation Using an Extended Kalman Filter

The geolocation estimate in equation (13.18) provides a one-shot

estimate of the target location. Unfortunately, this equation is highly

sensitive tomeasurement errors, especially attitude estimation errors of

the airframe. In this section we will describe the use of the extended

Kalman filter (EKF) to solve the geolocation problem.

Rearranging equation (13.16), we get

pi
MAV = pi

obj − L
(

Ri
bR

b
gR

g
c ℓ̌

c
)

, (13.19)

Vision-guided Navigation 233

Figure 13.4 The geolocation algorithm uses the output of the GPS smoother, the

normalized line-of-sight vector from the vision algorithm, and the attitude to

estimate the position of the object in the inertial frame and the distance to the

object.

which, since pi
MAV is measured by GPS, will be used as themeasurement

equation, assuming that GPS noise is zero-mean Gaussian. However,

since GPS measurement error contains a constant bias, the geolocation

error will also contain a bias. If we assume that the object is stationary,

we have
.
p
i

obj = 0.

Since L = ‖pi
obj − pi

MAV‖, we have

.
L =

d

dt

√

(pi
obj − pi

MAV)
⊤(pi

obj − pi
MAV)

=
(pi

obj − pi
MAV)

⊤(
.
p
i

obj −
.
p
i

MAV)

L

= −
(pi

obj − pi
MAV)

⊤
.
p
i

MAV

L
,

where for constant-altitude flight,
.
p
i

MAV can be approximated as

.
p
i

MAV =





V̂g cos χ̂

V̂g sin χ̂

0



 ,

and where V̂g and χ̂ are estimated using the EKF discussed in

section 8.7.

A block diagramof the geolocation algorithm is shown in figure 13.4.

The input to the geolocation algorithm is the position and the velocity

234 Chapter 13

of the MAV in the inertial frame as estimated by the GPS smoother

described in section 8.7, the estimate of the normalized line-of-sight

vector as given in equation (13.9), and the attitude as estimated by the

scheme described in section 8.6.

The geolocation algorithm is an extended Kalman filter with state

x̂ = (p̂i⊤

obj, L̂)
⊤ and prediction equations given by





.
p̂
i

obj
.
L̂



 =





0

−
(p̂i

obj−p̂i
MAV)

⊤
.
p̂
i

MAV

L̂



 .

The Jacobian is therefore given by

∂ f

∂x
=

(

0 0

−

.
p̂
iT

MAV

L̂

(p̂i
obj−p̂i

MAV)
⊤
.
p̂MAV

L̂2

)

.

The output equation is given by equation (13.19), where the Jacobian of

the output equation is

∂h

∂x
=

(

I Ri
bR

b
gR

g
c ℓ̌

c
)

.

13.4 Estimating Target Motion in the Image Plane
We assume in this chapter that a computer vision algorithm is used

to track the pixel location of the target. Since the video stream often

contains noise and the tracking algorithms are imperfect, the pixel

location returned by these algorithms is noisy. The guidance algorithm

described in the next section needs both the pixel location of the target

and the pixel velocity of the target. In section 13.4.1 we show how to

construct a simple low-pass filter that returns a filtered version of both

the pixel location and the pixel velocity.

The pixel velocity is influenced by both the relative (translational)

motion between the target and the MAV, and the rotational motion of

the MAV-gimbal combination. In section 13.4.2 we derive an explicit

expression for pixel velocity and show how to compensate for the ap-

parent motion induced by the rotational rates of theMAV and gimbal.

13.4.1 Digital Low-pass Filter and Differentiation

Let ǭ = (ǭx, ǭy)
⊤ denote the raw pixel measurements, ǫ = (ǫx, ǫy)

⊤

denote the filtered pixel location, and
.
ǫ = (

.
ǫx,

.
ǫ y)

⊤ denote the

filtered pixel velocity. The basic idea is to low-pass filter the raw pixel

Vision-guided Navigation 235

measurements as

ǫ(s) =
1

τs + 1
ǭ, (13.20)

and to differentiate the raw pixel measurements as

.
ǫ(s) =

s

τs + 1
ǭ. (13.21)

Using the Tustin approximation [28],

s �→
2

Ts

z− 1

z+ 1
,

to convert to the z-domain gives

ǫ[z] =
1

2τ
Ts

z−1
z+1

+ 1
ǭ =

Ts
2τ+Ts

(z+ 1)

z−
2τ−Ts
2τ+Ts

ǭ

.
ǫ[z] =

2
Ts

z−1
z+1

2τ
Ts

z−1
z+1

+ 1
ǭ =

2
2τ+Ts

(z− 1)

z−
2τ−Ts
2τ+Ts

ǭ.

Taking the inverse z-transform gives the difference equations

ǫ[n] =

(

2τ − Ts

2τ + Ts

)

ǫ[n− 1] +

(

Ts

2τ + Ts

)

(ǭ[n] + ǭ[n− 1])

.
ǫ[n] =

(

2τ − Ts

2τ + Ts

)

.
ǫ[n− 1] +

(

2

2τ + Ts

)

(ǭ[n] − ǭ[n− 1]) ,

where ǫ[0] = ǭ[0] and
.
ǫ[0] = 0.

13.4.2 Apparent Motion Due to Rotation

Motion of the target on the image plane is induced by both relative

translational motion of the target with respect to the MAV, as well as

rotational motion of the MAV and gimbal platform. For most guidance

tasks, we are primarily interested in the relative translational motion

and desire to remove the apparent motion due to the rotation of the

MAV and gimbal platforms. Following the notation introduced in

section 13.1, let ℓ̌
△= ℓ/L = (pobj − pMAV)/‖pobj − pMAV‖ be the normal-

ized relative position vector between the target and theMAV. Using the

Coriolis formula in equation (2.17), we get

dℓ̌

dti
=

dℓ̌

dtc
+ ωc/ i × ℓ̌. (13.22)

236 Chapter 13

The expression on the left-hand side of equation (13.22) is the true

relative translational motion between the target and the MAV. The first

expression on the right-hand side of equation (13.22) is the motion of

the target on the image plane, which can be computed from camera

information. The second expression on the right-hand side of equa-

tion (13.22) is the apparent motion due to the rotation of the MAV

and gimbal platform. Equation (13.22) can be expressed in the camera

frame as

dℓ̌
c

dti
=

dℓ̌
c

dtc
+ ω

c
c/ i × ℓ̌

c
. (13.23)

The first expression on the right-hand side of equation (13.23) can be

computed as

dℓ̌
c

dtc
=

d

dtc





ǫx

ǫy

f





F
=

F





.
ǫx
.
ǫ y

0



−
.
F





ǫx

ǫy

f





F 2
=

F





.
ǫx
.
ǫ y

0



−
ǫx
.
ǫx+ǫy

.
ǫ y

F





ǫx

ǫy

f





F 2

=
1

F 3









F 2 − ǫ2x −ǫxǫy

−ǫxǫy F 2 − ǫ2
y

−ǫx f −ǫy f









(.
ǫx

.
ǫ y

)

=
1

F 3









ǫ2
y

+ f 2 −ǫxǫy

−ǫxǫy ǫ2x + f 2

−ǫx f −ǫy f









.
ǫ

= Z(ǫ)
.
ǫ, (13.24)

where

Z(ǫ)
△=

1

F 3









ǫ2
y

+ f 2 −ǫxǫy

−ǫxǫy ǫ2x + f 2

−ǫx f −ǫy f









.

To compute the second term on the right-hand side of equation

(13.23), we need an expression for ω
c
c/ i , which can be decomposed as

ω
c
c/ i = ω

c
c/g + ω

c
g/b + ω

c
b/ i . (13.25)

Since the camera is fixed in the gimbal frame, we have that ω
c
c/g = 0.

Letting p, q, and r denote the angular body rates of the platform, as

measured by onboard rate gyros that are aligned with the body frame

Vision-guided Navigation 237

axes, gives ωb
b/ i = (p, q, r)⊤. Expressing ωb/ i in the camera frame gives

ωc
b/ i = Rc

gR
g
bω

b
b/ i = Rc

gR
g
b





p

q

r



 . (13.26)

To derive an expression for ωg/b in terms of the measured gimbal

angle rates
.
αel and

.
αaz, recall that the azimuth angle αaz is defined with

respect to the body frame, and that the elevation angle αel is defined

with respect to the gimbal-1 frame. The gimbal frame is obtained by

rotating the gimbal-1 frame about its y-axis by αel. Therefore,
.
αaz is

defined with respect to the gimbal-1 frame, and
.
αel is defined with

respect to the gimbal frame. This implies that

ωb
g/b = Rb

g1(αaz)R
g1
g (αel)





0
.
αel

0





g

+Rb
g1(αaz)





0

0
.
αaz





g1

.

Noting thatRg1
g is a y-axis rotation, we get

ωb
g/b = Rb

g1(αaz)





0
.
αel
.
αaz





=





cos αaz −sin αaz 0

sin αaz cos αaz 0

0 0 1









0
.
αel
.
αaz



 =





−sin(αaz)
.
αel

cos(αaz)
.
αel

.
αaz



 ,

and it follows that

ωc
g/b = Rc

gR
g
bω

b
g/b = Rc

gR
g
b





−sin(αaz)
.
αel

cos(αaz)
.
αel

.
αaz



 . (13.27)

Drawing on equations (13.24) and (13.27), equation (13.23) can be

expressed as

dℓ̌
c

dti
= Z(ǫ)

.
ǫ +

.
ℓ̌

c

app, (13.28)

where

.
ℓ̌

c

app

△=
1

F



Rc
gR

g
b





p − sin(αaz)
.
αel

q + cos(αaz)
.
αel

r + .
αaz







×





ǫx

ǫy

f



 (13.29)

238 Chapter 13

Figure 13.5 The size and growth of the target in the image frame can be used to

estimate the time to collision.

is the apparent motion of the normalized line-of-sight vector in the

camera frame due to the rotation of the gimbal and the aircraft.

13.5 Time to Collision
For collision avoidance algorithms and for the precision landing algo-

rithm described in section 13.6, it is important to estimate the time to

collision for objects in the camera field of view. If L is the length of the

line-of-sight vector between the MAV and an object, then the time to

collision is given by

tc
△=
L
.
L

.

It is not possible to accurately calculate time to collision using only a

monocular camera because of scale ambiguity. However, if additional

side information is known, then tc can be estimated. In section 13.5.1

we assume that the target size in the image plane can be computed and

then use that information to estimate tc. Alternatively, in section 13.5.2

we assume that the target is stationary on a flat earth and then use that

information to estimate tc.

13.5.1 Computing Time to Collision from Target Size

In this section we assume that the computer vision algorithm can esti-

mate the size of the target in the image frame. Consider the geometry

shown in figure 13.5. Using similar triangles, we obtain the relationship

Sobj

L
=

Pǫs

P F
=

ǫs

F
, (13.30)

where the size of the target in meters is Sobj, and the size of the target

in pixels is given by ǫs. We assume that the size of the target Sobj is not

changing in time. Differentiating equation (13.30) and solving for
.
L/L,

Vision-guided Navigation 239

we obtain
.
L

L
=
L

Sobj

[

ǫs

F

.
F

F
−

.
ǫs

F

]

=
F

ǫs

[

ǫs

F

.
F

F
−

.
ǫs

F

]

=

.
F

F
−

.
ǫs

ǫs

=
ǫx

.
ǫx + ǫy

.
ǫ y

F
−

.
ǫs

ǫs
, (13.31)

the inverse of which is the time to collision tc.

13.5.2 Computing Time to Collision from the Flat-earth Model

A popular computer vision algorithm for target tracking is to track

features on the target [97]. If a feature tracking algorithm is used, then

target size information may not be available and the method described

in the previous section cannot be applied. In this section we describe

an alternative method for computing tc, where we assume a flat-earth

model. Referring to figure 13.3, we have

L =
h

cos ϕ
,

where h = −pd is the altitude. Differentiating in the inertial frame gives

.
L

L
=

1

L

(

cos ϕ
.
h+ h

.
ϕ sin ϕ

cos2 ϕ

)

=
cos ϕ

h

(

cos ϕ
.
h+ h

.
ϕ sin ϕ

cos2 ϕ

)

=

.
h

h
+

.
ϕ tan ϕ. (13.32)

In the inertial frame, we have that

cos ϕ = ℓ̌
i
· ki , (13.33)

where ki = (0, 0, 1)⊤, and therefore

cos ϕ = ℓ̌iz. (13.34)

240 Chapter 13

Differentiating equation (13.34) and solving for
.
ϕ gives

.
ϕ = −

1

sin ϕ

d

dti
ℓ̌iz. (13.35)

Therefore,

.
ϕ tan ϕ = −

1

cos ϕ

d

dti
ℓ̌iz = −

1

ℓ̌iz

d

dti
ℓ̌iz, (13.36)

where dℓ̌iz/dti can be determined by rotating the right-hand side of

equation (13.28) into the inertial frame.

13.6 Precision Landing
Our objective in this section is to use the camera to guide the MAV to

land precisely on a visually distinct target. The problem of guiding an

aerial vehicle to intercept a moving target has been well studied. Pro-

portional navigation (PN), in particular, has been an effective guidance

strategy against maneuvering targets [98]. In this section, we present a

method for implementing a 3-Dpure PNguidance lawusing only vision

information provided by a two-dimensional array of camera pixels.

PN generates acceleration commands that are proportional to the

(pursuer-evader) line-of-sight (LOS) rates multiplied by the closing

velocity. PN is often implemented as two 2-D algorithms implemented

in the horizontal and vertical planes. The LOS rate is computed in the

plane of interest and PN produces a commanded acceleration in that

plane. While this approach works well for roll-stabilized skid-to-turn

missiles, it is not appropriate for MAV dynamics. In this section we

develop 3-D algorithms, and we show how to map the commanded

body-frame accelerations to roll angle and pitch rate commands.

To derive the precision-landing algorithm, we will use the six-state

navigationmodel given by

.
pn = Vg cos χ cos γ (13.37)
.
pe = Vg sin χ cos γ (13.38)
.
pd = −Vg sin γ (13.39)

.
χ =

g

Vg
tan φ cos (χ − ψ) (13.40)

.
φ = u1 (13.41)
.
γ = u2, (13.42)

Vision-guided Navigation 241

where (pn, pe, pd) are the north-east-down position of the MAV, Vg is

the ground speed (assumed constant), χ is the course angle, γ is the

flight path angle, φ is the roll angle, g is the gravitational constant,

and u1 and u2 are control variables. Although equations (13.37)–(13.42)

are valid for non-zero wind conditions, we will assume zero wind

conditions in the foregoing discussion of precision landing.

The objective of this section is to design a vision-based guidance

law that causes a MAV to intercept a ground-based target that may be

moving. The position of the target is given by pobj. Similarly, let pMAV,

vMAV, aMAV denote the position, velocity, and acceleration of the MAV,

respectively.

In the inertial frame, the position and velocity of the MAV can be

expressed as

pi
MAV =

(

pn, pe, pd
)⊤

and

vi
MAV =

(

Vg cos χ cos γ, Vg sin χ cos γ, −Vg sin γ
)⊤

.

In the vehicle-2 frame, however, the velocity vector of the MAV is

given by

vv2
MAV =

(

Vg , 0, 0
)⊤

.

Define ℓ = pobj − pMAV and
.
ℓ = vobj − vMAV, and let L = ‖ℓ‖. The

geometry associated with the precision landing problem is shown in

figure 13.6. The proportional navigation strategy is to maneuver the

MAV so that the line-of-sight rate
.
ℓ is aligned with the negative line-

of-sight vector −ℓ. Since ℓ ×
.
ℓ is zero when

.
ℓ and ℓ are aligned, the

acceleration will be proportional to the cross product. However, since ℓ

and
.
ℓ cannot be directly computed from vision data, we normalize both

quantities and define

�⊥ = ℓ̌ ×

.
ℓ

L
. (13.43)

With reference to figure 13.6, note that �⊥ is directed into the page.

Since the ground speed is not directly controllable, we will require that

the commanded acceleration is perpendicular to the velocity vector of

the MAV. Accordingly, let the commanded acceleration of the MAV be

given by [99]

aMAV = N�⊥ × vMAV, (13.44)

where N > 0 is a tunable gain and is called the navigation constant.

242 Chapter 13

Figure 13.6 The geometry associated with precision landing.

The acceleration commands must be converted to control inputs u1
and u2, where the commanded acceleration is produced in the unrolled

body frame, or the vehicle-2 frame. Therefore, the commanded acceler-

ation aMAV must be resolved in the vehicle-2 frame as

av2
MAV = µN�v2

⊥ × vv2
MAV

= µN









v2
⊥,x

v2
⊥,y

v2
⊥,z









×









Vg

0

0









=









0

µNV
v2
⊥,z

−µNV
v2
⊥,y









. (13.45)

It is important to note that the commanded acceleration is perpendic-

ular (by design) to the direction of motion, which is consistent with a

constant-airspeedmodel.

The critical quantity�⊥ = ℓ̌×
.
ℓ

L
must be estimated fromvideo camera

data. Our basic approach will be to estimate �⊥ in the camera frame,

and then transform to the vehicle-2 frame using the expression

�
v2
⊥ = Rv2

b R
b
gR

g
c�

c
⊥. (13.46)

Vision-guided Navigation 243

Figure 13.7 Polar converting logic that transforms an acceleration command av2

to a commanded roll angle φc and a commanded normal acceleration Vg

.
γ
c
.

The normalized line-of-sight vector ℓ̌
c
can be estimated directly from

camera data using equation (13.9). Differentiating ℓ
c/L gives

d

dti

ℓ
c

L
=
L
.
ℓ
c
−

.
Lℓ

c

L2
=

.
ℓ
c

L
−

.
L

L
ℓ̌
c
, (13.47)

which, when combinedwith equation (13.28), results in the expression

.
ℓ
c

L
=

.
L

L
ℓ̌
c
+ Z(ǫ)

.
ǫ +

.
ℓ̌

c

app, (13.48)

where the inverse of time to collision
.
L/L can be estimated using one of

the techniques discussed in section 13.5.

Equation (13.45) gives an acceleration command in the vehicle-2

frame. In this section, we will describe how the acceleration command

is converted into a roll command and a pitch rate command. The

standard approach is to use polar control logic [100], which is shown

in figure 13.7. From figure 13.7 it is clear that for av2
z < 0, we have

φc = tan−1

(

av2
y

−av2
z

)

Vg
.
γ
c
=
√

(av2
y
)2 + (av2

z)2.

Similarly, when av2
z > 0, we have

φc = tan−1

(

av2
y

av2
z

)

Vg
.
γ
c
= −
√

(av2
y
)2 + (av2

z)2.

244 Chapter 13

Therefore, the general rule is

φc = tan−1

(

av2
y
∣

∣av2
z

∣

∣

)

(13.49)

.
γ
c
= −sign(av2

z)
1

Vg

√

(av2
y
)2 + (av2

z)2. (13.50)

Unfortunately, equation (13.49) has a discontinuity at (av2
y

, av2
z) =

(0, 0). For example,when av2
z = 0, the commanded roll angle isφc = π/2

when av2
y

> 0 and φc = −π/2 when av2
y

< 0. The discontinuity can

be removed by multiplying equation (13.49) by the signed-sigmoidal

function

σ (av2
y
) = sign(av2

y
)
1 − e−kav2

y

1 + e−kav2
y

, (13.51)

where k is a positive control gain. The gain k adjusts the rate of the

transition.

13.7 Chapter Summary
This chapter has provided a brief introduction to the rich topic of

vision-based guidance of MAVs.We have focused on three basic scenar-

ios: gimbal pointing, geolocation, and precision landing.

Notes and References

Vision-based guidance and control of MAVs is currently an active re-

search topic (see, for example [51, 101, 102, 103, 104, 105, 106, 96, 107,

108, 109, 110]). The gimbal-pointing algorithm described in this chap-

ter was presented in [111]. Geolocation algorithms using small MAV

are described in [96, 112, 113, 114, 105, 110]. The removal of apparent

motion, or egomotion, in the image plane is discussed in [115, 116, 104].

Time to collision can be estimated using structure from motion [117],

ground-plane methods [118, 119], flow divergence [120], and insect-

inspired methods [121]. Section 13.6 is taken primarily from [122].

Proportional navigation has been extensively analyzed in the literature.

It has been shown to be optimal under certain conditions [123] and to

produce zero-miss distances for a constant target acceleration [124]. If

rich information regarding the time to go is available, augmented pro-

portional navigation [125] improves the performance by adding terms

that account for target and pursuer accelerations. A three-dimensional

expression of PN can be found in [99, 126].

Vision-guided Navigation 245

13.8 Design Project
13.1 Implement the gimbal pointing algorithm described in

section 13.2. Download the files from the website that are

associated with this chapter. Modify param.m so that the

buildings have a maximum height of onemeter, andmodify

the path planner so that theMAVmoves between two fixed

locations. Use the Simulinkmodel

mavsim_chap13_gimbal.mdl andmodify the file

point_gimbal.m to implement the gimbal pointing

algorithm given by equations (13.13) and (13.14).

13.2 Implement the geolocation algorithms described in

section 13.3. Use the gimbal-pointing routine developed in the

previous problem to point the gimbal at the target. Use the

Simulinkmodel mavsim_chap13_geolocation.mdl and

modify the file geolocation.m to implement the geolocation

algorithm described in section 13.3.

This page intentionally left blank

APPENDIX A

Nomenclature and Notation

Nomenclature
• Unit vectors along the x, y, and z axes are denoted as i, j, and k,

respectively.

• A coordinate frame is denoted by F , and a superscript denotes

the label of the frame. For example, F i is the inertial coordinate

frame.

• Given a vector p ∈ R3, the expression of p in the coordinates of

frame Fa is denoted as pa.

• Given a vector p ∈ R3, the first, second, and third components

of p expressed with respect to the coordinates of Fa are denoted

as pax, p
a
y
, and paz , respectively.

• A rotationmatrix from frame Fa to Fb is denoted asRb
a.

• The transpose of a matrix M is denoted as M⊤.

• Differentiation of a scalar with respect to time is denoted by a

“dot” (e.g.,
.
x). Differentiation of a vector with respect to frame

Fa is denoted by d
dta

.

• Trim conditions are denoted with a star superscript. For

example, x∗ is the trim state. Deviations from trim are denoted

by an overbar (e.g., x̄ = x − x∗).

• Commanded signals will be denoted by a superscript ‘c’. For

example, the commanded course angle is χ c and the

commanded altitude is hc.

• Zero-mean white Gaussian noise on the sensors is denoted by

η(t). The standard deviation is denoted by σ .

• A hat over a variable represents an estimate of the variable. For

example, x̂ could be the estimate of x from an extended Kalman

filter.

• Tracking error signals are denoted by e∗.

• In chapter 11 we use the notationwawb to denote the line in R3

between waypointswa andwb.

248 Appendix A

Notation
The notation is listed in alphabetical order, where we have used the

romanized names of Greek letters. For example, ω is listed as if it were

spelled “omega.” A “∗” is used as a wild card when the same symbol is

used formultiple quantitieswithdifferent superscripts or subscripts. For

example, aβ∗ is used to denote aβ1
and aβ2

.

aβ∗ Constants for transfer function associated with side slip

dynamics (chapter 5)

aφ∗ Constants for transfer function associated with roll

dynamics (chapter 5)

aθ∗ Constants for transfer function associated with pitch

dynamics (chapter 5)

aV∗ Constants for transfer function associated with airspeed

dynamics (chapter 5)

α Angle of attack (chapter 2)

αaz Gimbal azimuth angle (chapter 13)

αel Gimbal elevation angle (chapter 13)

b Wing span (chapter 4)

b∗ Coefficients for reduced order model of the autopilot

(chapter 9)

β Side slip angle (chapter 2)

c Mean aerodynamic chord of the wing (chapter 4)

CD Aerodynamic drag coefficient (chapter 4)

Cℓ∗ Aerodynamic moment coefficient along the body frame

x-axis (chapter 4)

CL Aerodynamic lift coefficient (chapter 4)

Cm Aerodynamic pitchingmoment coefficient (chapter 4)

Cn∗ Aerodynamic moment coefficient along the body frame

z-axis (chapter 4)

Cp∗ Aerodynamic moment coefficient along the body frame

x-axis (chapter 5)

Cprop Aerodynamic coefficient for the propeller (chapter 4)

Cq∗ Aerodynamic moment coefficient along the body frame

y-axis (chapter 5)

Cr∗ Aerodynamic moment coefficient along the body frame

z-axis (chapters 4, 5)

CX∗ Aerodynamic force coefficient along the body frame

x-axis (chapters 4, 5)

CY∗ Aerodynamic force coefficient along the body frame

y-axis (chapter 4)

CZ∗ Aerodynamic force coefficient along the body frame

z-axis (chapters 4, 5)

Nomenclature and Notation 249

χ Course angle (chapter 2)

χc Crab angle: χc = χ − ψ (chapter 2)

χd(epy) Desired course to track straight line path

(chapter 10)

χ∞ Desired approach angle for tracking a straight line path

(chapter 10)

χo Course angle of the orbit path Porbit (chapter 10)

χq Course angle of the straight line path Pline (chapter 10)

d Distance between center of orbit and theMAV (chapter 10)

dβ Disturbance signal associated with reduced side slip model

(chapter 5)

dχ Disturbance signal associated with reduced course model

(chapter 5)

dh Disturbance signal associated with reduced altitude model

(chapter 5)

dφ∗ Disturbance signals associated with reduced roll model

(chapter 5)

dθ∗ Disturbance signals associated with reduced pitchmodel

(chapter 5)

dV∗ Disturbance signals associated with reduced airspeed

model (chapter 5)

δa Control signal denoting the aileron deflection (chapter 4)

δe Control signal denoting the elevator deflection (chapter 4)

δr Control signal denoting the rudder deflection (chapter 4)

δt Control signal denoting the throttle deflection (chapter 4)

ep Path error for straight line path following (chapter 10)

ǫs Pixel size (chapter 13)

ǫx Pixel location along the camera x-axis (chapter 13)

ǫy Pixel location along the camera y-axis (chapter 13)

η∗ Zero-mean Gaussian sensor noise (chapter 7)

f Camera focal length (chapter 13)

f External force applied to the airframe, body frame

components are denoted as fx, fy , and fz (chapter 3, 4)

F =
√

f 2 + ǫ2x + ǫ2
y
, the distance to pixel location (ǫx, ǫy)

in pixels (chapter 13)

Fdrag Force due to aerodynamic drag (chapter 4, 9)

Flift Force due to aerodynamic lift (chapter 4, 9)

Fthrust Force due to thrust (chapter 9)

Fb Body coordinate frame (chapter 2)

F i Inertial coordinate frame (chapter 2)

F s Stability coordinate frame (chapter 2)

Fv Vehicle coordinate frame (chapter 2)

Fw Wind coordinate frame (chapter 2)

250 Appendix A

Fv1 Vehicle-1 frame (chapter 2)

Fv2 Vehicle-2 frame (chapter 2)

g Gravitational acceleration (9.81m/s2) (chapter 4)

γ Inertial-referenced flight path angle (chapter 2)

γa Air-mass-referenced flight path angle: γa = θ − α

(chapter 2)

Ŵ∗ Products of the inertia matrix, equation (3.13)

(chapter 3)

h Altitude: h = −pd (chapter 5)

hAGL Altitude above ground level (chapter 7)

H(r, n) Half plane defined at positionw, with normal vector n

(chapter 11)

(ib, jb, kb) Unit vectors defining the body frame

ib points out the nose of the airframe, jb points out the

right wing, and kb points through the bottom of the

airframe (chapter 2)

(ii , ji , ki) Unit vectors defining the inertial frame

ii points north, ji points east, and ki points down

(chapter 2)

(iv, jv, kv) Unit vectors defining the vehicle frame

iv points north, jv points east, and kv points down

(chapter 2)

J The inertia matrix

Elements of the inertia matrix are denoted as J x, J y , J z,

and J xz (chapter 3)

kd∗ PID derivative gain (chapter 6)

kGPS Inverse of the time constant for GPS bias (chapter 7)

ki∗ PID integral gain (chapter 6)

kmotor Constant that specifies the efficiency of the motor

(chapter 4)

korbit Control gain for tracking orbital path (chapter 10)

kp∗ PID proportional gain (chapter 6)

kpath Control gain for tracking straight line path (chapter 10)

KθDC
DC gain of the transfer function from the elevator to

the pitch angle (chapter 6)

ℓ External moment applied to the airframe about the

body frame x-axis (chapter 3)

ℓ Line-of-sight vector from theMAV to a target location.

ℓ = (ℓx, ℓy, ℓz)
⊤ (chapter 13)

ℓ̌ Unit vector in the direction of the line of sight:

ℓ̌ = ℓ/L (chapter 13)

L∗ State-space coefficients associated with lateral

dynamics (chapter 5)

Nomenclature and Notation 251

L Length of the line line of sight vector: L = ‖ℓ‖

(chapter 13)

LPF (x) Low-pass filtered version of x (chapter 8)

λ Direction of orbital path

λ = +1 specifies a clockwise orbit; λ = −1 specifies

a counter clockwise orbit (chapter 10)

λdutch roll Poles of the Dutch roll mode (chapter 5)

λphugoid Poles of the phugoid mode (chapter 5)

λrolling Pole of the rolling mode (chapter 5)

λshort Pole of the short periodmode (chapter 5)

λspiral Pole of the spiral mode (chapter 5)

m Mass of the airframe (chapter 3)

m External moment applied to the airframe about the

body frame y-axis (chapter 3)

m External moments applied to the airframe

The body frame components are denoted as ℓ,m, and n

(chapters 3, 4)

M Width of the camera pixel array (chapter 13)

M∗ State-space coefficients associated with longitudinal

dynamics (chapter 5)

n External moment applied to the airframe about the

body frame z-axis (chapter 3)

nl f Load factor (chapter 9)

N∗ State-space coefficients associated with lateral

dynamics (chapter 5)

ν∗ Gauss-Markov process that models GPS bias (chapter 7)

ωn∗
Natural frequency (chapter 6)

ωb/ i Angular velocity of the body frame with respect to the

inertial frame (chapter 2)

p Roll rate of theMAV along the body frame x-axis

(chapter 3)

pd Inertial down position of theMAV (chapter 3)

pe Inertial east position of theMAV (chapter 3)

Pline Set defining a straight line (chapter 10)

pMAV Position of theMAV (chapter 13)

pn Inertial north position of theMAV (chapter 3)

pobj Position of the object of interest (chapter 13)

P Covariance of the estimation error associated with the

Kalman filter (chapter 8)

Porbit Set defining an orbit (Chapter 10)

φ Roll angle (chapter 2, 3)

ϕ Angle of theMAV relative to a desired orbit (chapter 10)

ψ Heading angle (chapters 2, 3)

252 Appendix A

q Pitch rate of theMAV along the body frame y-axis

(chapter 3)

Q∗ Process covariance noise. Typically used to tune

a Kalman filter (chapter 8)

r Yaw rate of theMAV along the body frame z-axis

(chapter 3)

ρ Density of air (chapter 4)

̺ Angle between waypoint path segments (chapter 11)

R Turning radius (chapter 5)

R∗ Covariancematrix for sensormeasurement noise (chapter 8)

Rb
a Rotationmatrix from frame a to frame b (chapters 2, 13)

S Surface area of the wing (chapter 4)

Sprop Area of the propeller (chapter 4)

σ∗ Standard deviation of zero-mean white Gaussian noise

(chapter 7)

tc Time to collision: tc = L/
.
L (chapter 13)

Ts Sample rate of the autopilot (chapters 6, 7, 8)

τ Bandwidth of dirty differentiator (chapter 13)

T Terrain map (chapter 12)

θ Pitch angle (chapter 2, 3)

u Inertial velocity of the airframe projected onto ib, the body

frame x-axis (chapter 2, 3)

ulat Input vector associated with lateral dynamics: ulat = (δa, δr)
⊤

(chapter 5)

ulon Input vector associated with longitudinal dynamics:

ulon = (δe, δt)
⊤ (chapter 5)

ur Relative wind projected onto the body frame x-axis:

ur = u − uw (chapters 2, 4)

uw Inertial wind velocity projected onto ib, the body frame

x-axis (chapters 2, 4)

υ Camera field of view (chapter 13)

ϒ Returnmap used for path planning

The returnmap at position i is given by ϒi (chapter 12)

v Inertial velocity of the airframe projected onto jb, the body

frame y-axis (chapters 2, 3)

vr Relative wind projected onto the body frame y-axis:

vr = v − vw (chapters 2, 4)

vw Inertial wind velocity projected onto jb, the body frame

y-axis (chapters 2, 4)

Va Airspeed vector defined as the velocity of the airframe with

respect to the air mass (chapter 2)

Va Airspeed where Va = ‖Va‖ (chapter 2)

Nomenclature and Notation 253

Vg Ground speed vector defined as the velocity of the

airframe with respect to the inertial frame (chapter 2)

Vg Ground speed where Vg =
∥

∥Vg

∥

∥ (chapter 2)

Vw Wind speed vector defined as the velocity of the wind

with respect to the inertial frame (chapter 2)

Vw Wind speed where Vw = ‖Vw‖ (chapter 2)

w Inertial velocity of the airframe projected onto kb, the

body frame z-axis (chapters 2, 3)

wd Component of the wind in the down directions

(chapter 2)

we Component of the wind in the east directions (chapter 2)

wn Component of the wind in the north directions

(chapter 2)

wi Waypoint in R3 (chapter 11)

wr Relative wind projected onto the body frame z-axis:

wr = w − ww (chapters 2, 4)

ww Inertial wind velocity projected onto kb, the body frame

z-axis (chapters 2, 4)

W∗ Bandwidth separation (chapter 6)

W Set of waypoints (chapter 11)

x State variables (chapter 5)

xlat State variables associated with lateral dynamics:

xlat = (v, p, r, φ, ψ)⊤ (chapter 5)

xlon State variables associated with longitudinal dynamics:

xlon = (u, w, q, θ, h)⊤ (chapter 5)

X∗ State-space coefficients associated with longitudinal

dynamics (chapter 5)

yabs pres Absolute pressure measurement signal (chapter 7)

yaccel,∗ Accelerometer measurement signal (chapter 7)

ydiff pres Differential pressure measurement signal (chapter 7)

yGPS,∗ GPSmeasurement signal

GPSmeasurements are available for north, east,

altitude, course, and groundspeed (chapter 7)

ygyro,∗ Rate gyro measurement signal (chapter 7)

ymag Magnetometer measurement signal (chapter 7)

Y∗ State-space coefficients associated with lateral

dynamics (chapter 5)

Z∗ State-space coefficients associated with longitudinal

dynamics (chapter 5)

Z(ǫ) Transformation from pixel motion tomotion of the line

of sight vector in the camera frame (chapter 13)

ζ∗ Damping coefficient (chapter 6)

APPENDIX B

Quaternions

B.1 Quaternion Rotations
Quaternions provide an alternative way to represent the attitude of an

aircraft.While it could be argued that it is more difficult to visualize the

angular motion of a vehicle specified by quaternions instead of Euler

angles, there are mathematical advantages to the quaternion represen-

tation that make it the method of choice for many aircraft simulations.

Most significantly, the Euler angle representation has a singularity

when the pitch angle θ is ±90 deg. Physically, when the pitch angle is

90 deg, the roll and yaw angles are indistinguishable. Mathematically,

the attitude kinematics specified by equation (3.3) are indeterminate

since cos θ = 0 when θ = 90 deg. The quaternion representation of

attitude has no such singularity. While this singularity is not an issue

for the vast majority of flight conditions, it is an issue for simulating

aerobatic flight and other extreme maneuvers, some of which may not

be intentional. The other advantage that the quaternion formulation

provides is that it is more computationally efficient. The Euler angle

formulationof the aircraft kinematics involves nonlinear trigonometric

functions, whereas the quaternion formulation results inmuch simpler

linear and algebraic equations. A thorough introduction to quaternions

and rotation sequences is given by Kuipers [127]. An in-depth treatment

to the use of quaternions specific to aircraft applications is given by

Phillips [25].

In its most general form, a quaternion is an ordered list of four real

numbers. We can represent the quaternion e as a vector inR4 as

e =









e0
e1
e2
e3









,

where e0, e1, e2, and e3 are scalars. When a quaternion is used to

represent a rotation, we require that it be a unit quaternion, or in other

words, ‖e‖ = 1.

It is common to refer e0 as the scalar part of the unit quaternion and

the vector defined by

e = e1i
i + e2j

i + e3k
i

Quaternions 255

Figure B.1 Rotation represented by a unit quaternion. The aircraft on the left is

shown with the body axes aligned with the inertial frame axes. The aircraft on the

left has been rotated about the vector v by � = 86 deg. This particular rotation

corresponds to the Euler sequence ψ = −90 deg, θ = 15 deg, φ = −30 deg.

as the vector part. The unit quaternion can be interpreted as a single

rotation about an axis in three-dimensional space. For a rotation

through the angle � about the axis specified by the unit vector v, the

scalar part of the unit quaternion is related to the magnitude of the

rotation by

e0 = cos

(

�

2

)

.

The vector part of the unit quaternion is related to the axis of

rotation by

v sin

(

�

2

)

=





e1
e2
e3



.

With this brief description of the quaternion, we can see how the

attitude of a MAV can be represented with a unit quaternion. The

rotation from the inertial frame to the body frame is simply specified

as a single rotation about a specified axis, instead of a sequence of three

rotations as required by the Euler angle representation.

B.2 Aircraft Kinematic and Dynamic Equations
Using a unit quaternion to represent the aircraft attitude, equa-

tions (3.14) through (3.17), which describe the MAV kinematics and

256 Appendix B

dynamics, can be reformulated as









.
pn
.
pe
.
pd









=









e21 + e20 − e22 − e23 2(e1e2 − e3e0) 2(e1e3 + e2e0)

2(e1e2 + e3e0) e22 + e20 − e21 − e23 2(e2e3 − e1e0)

2(e1e3 − e2e0) 2(e2e3 + e1e0) e23 + e20 − e21 − e22















u

v

w







(B.1)






.
u
.
v
.
w






=







rv − qw

pw − r u

qu − pv






+

1

m







fx

fy

fz






, (B.2)













.
e0
.
e1
.
e2
.
e3













=
1

2















0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0





























e0

e1

e2

e3















(B.3)









.
p
.
q

.
r









=









Ŵ1 pq − Ŵ2qr

Ŵ5 pr − Ŵ6(p
2 − r 2)

Ŵ7 pq − Ŵ1qr









+









Ŵ3l + Ŵ4n

1
J y

m

Ŵ4l + Ŵ8n









. (B.4)

Note that the dynamic equations given by equations (B.2) and (B.4) are

unchanged from equations (3.15) and (3.17) presented in the summary

of chapter 3. However, care must be taken when propagating equa-

tion (B.3) to ensure that e remains a unit quaternion. If the dynamics

are implemented using a Simulink s-function, then one possibility for

maintaining ‖e‖ = 1 is to modify equation (B.3) so that in addition to

the normal dynamics, there is also a term that seeks to minimize the

cost function J = 1
8
(1− ‖e‖2)2. Since J is quadratic, we can use gradient

descent to minimize J , and equation (B.3) becomes















.
e0
.
e1
.
e2
.
e3















=
1

2















0 −p −q −r

p 0 r −q

q −r 0 p

r q −p 0



























e0

e1

e2

e3













− λ
∂ J

∂e

=
1

2















λ(1 − ‖e‖2) −p −q −r

p λ(1 − ‖e‖2) r −q

q −r λ(1 − ‖e‖2) p

r q −p λ(1 − ‖e‖2)























e0
e1
e2
e3









,

Quaternions 257

where λ > 0 is a positive gain that specifies the strength of the gradient

descent. In our experience, a value of λ = 1000 seems to work well, but

in Simulink, a stiff solver like ODE15s must be used. This method for

maintaining the orthogonality of the quaternion during integration is

calledCorbett-Wright orthogonality control andwas first introduced in

the 1950’s for use with analog computers [25, 128].

With the exception of the gravity forces acting on the aircraft, all the

external forces and moments act in the body frame of the aircraft and

do not depend on the aircraft attitude relative to the inertial reference

frame. The gravity force acts in the ki direction, which can be expressed

in the body frame using unit quaternions as

fbg = mg





2(e1e3 − e2e0)

2(e2e3 + e1e0)

e23 + e20 − e21 − e22



.

B.2.1 12-state, 6-DOF Dynamic Model With Unit Quaternion Attitude

Representation

The equations of motion for a MAV presented in section 5.1 utilized

Euler angles to represent the attitude of the MAV. If we instead choose

to take advantage of the superior numerical stability and efficiency of

the unit quaternion attitude representation, the dynamic behavior of

theMAV is described by the following equations:

.
pn = (e21 + e20 − e22 − e23)u + 2(e1e2 − e3e0)v + 2(e1e3 + e2e0)w (B.5)

.
pe = 2(e1e2 + e3e0)u + (e22 + e20 − e21 − e23)v + 2(e2e3 − e1e0)w (B.6)
.
h = −2(e1e3 − e2e0)u − 2(e2e3 + e1e0)v − (e23 + e20 − e21 − e22)w (B.7)

.
u = rv − qw + 2g(e1e3 − e2e0)

+
ρV2

a S

2m

[

CX(α) + CXq
(α)

cq

2Va
+ CXδe

(α)δe

]

+
ρSpropCprop

2m

[

(kmotorδt)
2 − V2

a

]

(B.8)

.
v = pw − r u + 2g(e2e3 + e1e0)

+
ρV2

a S

2m

[

CY0 + CYβ
β + CYp

bp

2Va
+ CYr

br

2Va
+ CYδa

δa + CYδr
δr

]

(B.9)

.
w = qu − pv + g(e23 + e20 − e21 − e22)

+
ρV2

a S

2m

[

CZ(α) + CZq
(α)

cq

2Va
+ CZδe

(α)δe

]

(B.10)

.
e0 = −

1

2
(pe1 + qe2 + r e3) (B.11)

258 Appendix B

.
e1 =

1

2
(pe0 + r e2 − qe3) (B.12)

.
e2 =

1

2
(qe0 − r e1 + pe3) (B.13)

.
e3 =

1

2
(r e0 + qe1 − pe2) (B.14)

.
p = Ŵ1 pq − Ŵ2qr

+
1

2
ρV2

a Sb

[

Cp0 + Cpβ
β + Cpp

bp

2Va
+ Cpr

br

2Va
+ Cpδa

δa + Cpδr
δr

]

(B.15)

.
q = Ŵ5 pr − Ŵ6(p

2 − r 2)

+
ρV2

a Sc

2J y

[

Cm0
+ Cmα

α + Cmq

cq

2Va
+ Cmδe

δe

]

(B.16)

.
r = Ŵ7 pq − Ŵ1qr

+
1

2
ρV2

a Sb

[

Cr0 + Crβ β + Cr p

bp

2Va
+ Crr

br

2Va
+ Crδa δa + Crδr δr

]

.

(B.17)

The aerodynamic coefficients describing contributions of the roll and

yawmoments are given by

Cp0 = Ŵ3Cl0 + Ŵ4Cn0

Cpβ
= Ŵ3Clβ + Ŵ4Cnβ

Cpp
= Ŵ3Clp + Ŵ4Cnp

Cpr = Ŵ3Clr + Ŵ4Cnr

Cpδa
= Ŵ3Clδa + Ŵ4Cnδa

Cpδr
= Ŵ3Clδr + Ŵ4Cnδr

Cr0 = Ŵ4Cl0 + Ŵ8Cn0

Crβ = Ŵ4Clβ + Ŵ8Cnβ

Cr p = Ŵ4Clp + Ŵ8Cnp

Crr = Ŵ4Clr + Ŵ8Cnr

Crδa = Ŵ4Clδa + Ŵ8Cnδa

Crδr = Ŵ4Clδr + Ŵ8Cnδr
.

Quaternions 259

The inertia parameters specified by Ŵ1, Ŵ2, . . . , Ŵ8 are defined in equa-

tion (3.13). Angle of attack α, sideslip angle β, and airspeed Va are cal-

culated from the velocity components (u, v, w) and the wind velocity

components (uw, vw, ww) using the relations found in equation (2.8).

B.3 Conversion Between Euler Angles and Quaternions
Although not explicitly necessary for simulation purposes, we can cal-

culate Euler angles from the attitude quaternion, and vice versa. For a

quaternion representation of a rotation, the corresponding Euler angles

can be calculated as

φ = atan2(2(e0e1 + e2e3), (e
2
0 + e23 − e21 − e22))

θ = asin(2(e0e2 − e1e3))

ψ = atan2(2(e0e3 + e1e2), (e
2
0 + e21 − e22 − e23)),

where atan2(y, x) is the two-argument arctangent operator that returns

the arctangent of y/x in the range [−π, π] using the signs of both

arguments to determine the quadrant of the return value. Only a single

argument is required for the asin operator since the pitch angle is only

defined in the range [π/2, π/2].

From the yaw, pitch, and roll Euler angles (ψ , φ, θ), the corresponding

quaternion elements are

e0 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2

e1 = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2

e2 = cos
ψ

2
sin

θ

2
cos

φ

2
+ sin

ψ

2
cos

θ

2
sin

φ

2

e3 = sin
ψ

2
cos

θ

2
cos

φ

2
− cos

ψ

2
sin

θ

2
sin

φ

2
.

APPENDIX C

Animations in Simulink

In the study of aircraft dynamics and control, it is essential to be able to

visualize the motion of the airframe. In this section we describe how to

create animations inMatlab/Simulink.

C.1 Handle Graphics in Matlab
When a graphics function like plot is called in Matlab, the function

returns a handle to the plot. A graphics handle is similar to a pointer in

C/C++ in the sense that all of the properties of the plot can be accessed

through the handle. For example, the Matlab command

1 >> plot_handle=plot(t,sin(t))

returns a pointer, or handle, to the plot of sin(t). Properties of the plot

can be changed by using the handle, rather than reissuing the plot

command. For example, the Matlab command

1 >> set(plot_handle, `YData', cos(t))

changes the plot to cos(t) without redrawing the axes, title, label, or

other objects that may be associated with the plot. If the plot contains

drawings of several objects, a handle can be associatedwith each object.

For example,

1 >> plot_handle1 = plot(t,sin(t))

2 >> hold on

3 >> plot_handle2 = plot(t,cos(t))

draws both sin(t) and cos(t) on the same plot, with a handle

associated with each object. The objects can be manipulated separately

without redrawing the other object. For example, to change cos(t) to

cos(2t), issue the command

1 >> set(plot_handle2, `YData', cos(2*t))

Animations in Simulink 261

Figure C.1 Drawing for inverted pendulum. The first step in developing an

animation is to draw a figure of the object to be animated and identify all of the

physical parameters.

We can exploit this property to animate simulations in Simulink

by redrawing only the parts of the animation that change in time,

and thereby significantly reducing the simulation time. To show how

handle graphics can be used to produce animations in Simulink, we

will provide three detailed examples. In section C.2 we illustrate a

2-D animation of an inverted pendulum using the fill command. In

section C.3 we illustrate a 3-D animation of a spacecraft using lines

to produce a stick figure. In section C.4 we modify the spacecraft

animation to use the vertices-faces data construction inMatlab.

C.2 Animation Example: Inverted Pendulum
Consider the image of the inverted pendulum shown in figure C.1,

where the configuration is completely specified by the position of

the cart y, and the angle of the rod from vertical θ . The physical

parameters of the system are the rod length L, the base width w, the

base height h, and the gap between the base and the track g. The first

step in developing the animation is to determine the position of points

that define the animation. For example, for the inverted pendulum in

figure C.1, the four corners of the base are

(y + w/2, g), (y + w/2, g + h), (y − w/2, g + h), and (y − w/2, g),

and the two ends of the rod are given by

(y, g + h) and (y + L sin θ, g + h+ L cos θ).

Since the base and the rod can move independently, each will need

its own figure handle. The drawBase command can be implemented

with the followingMatlab code.

262 Appendix C

1 function handle

2 = drawBase(y, width, height, gap, handle, mode)

3 X = [y−width/2, y+width/2, y+width/2, y−width/2];

4 Y = [gap, gap, gap+height, gap+height];

5 if isempty(handle),

6 handle = fill(X,Y,`m',`EraseMode', mode);

7 else

8 set(handle,`XData',X,`YData',Y);

9 end

Lines 3 and 4 define the X and Y locations of the corners of the base.

Note that in lines 1 and 2, handle is both an input and an output. If

an empty array is passed into the function, then the fill command

is used to plot the base in line 6. On the other hand, if a valid handle

is passed into the function, then the base is redrawn using the set

command in line 8.

TheMatlab code for drawing the rod is similar and is listed below.

1 function handle

2 =drawRod(y, theta, L, gap, height, handle, mode)

3 X = [y, y+L*sin(theta)];

4 Y = [gap+height, gap + height + L*cos(theta)];

5 if isempty(handle),

6 handle = plot(X, Y, `g', `EraseMode', mode);

7 else

8 set(handle,`XData',X,`YData',Y);

9 end

The input mode is used to specify the EraseMode in Matlab. The

EraseMode can be set to normal, none, xor, or background. A

description of these different modes can be found by looking under

Image Properties in theMatlab Helpdesk.

Themain routine for the pendulum animation is listed below.

1 function drawPendulum(u)

2 % process inputs to function

3 y = u(1);

4 theta = u(2);

5 t = u(3);

6

7 % drawing parameters

8 L = 1;

9 gap = 0.01;

10 width = 1.0;

11 height = 0.1;

12

13 % define persistent variables

Animations in Simulink 263

14 persistent base_handle

15 persistent rod_handle

16

17 % first time function is called, initialize plot

18 %and persistent vars

19 if t==0,

20 figure(1), clf

21 track_width=3;

22 plot([−track_width,track_width],[0,0],`k');

23 hold on

24 base_handle

25 = drawBase(y, width, height, gap, [], `normal');

26 rod_handle

27 = drawRod(y, theta, L, gap, height, [], `normal');

28 axis([−track_width, track_width,

29 −L, 2*track_width−L]);

30

31 % at every other time step, redraw base and rod

32 else

33 drawBase(y, width, height, gap, base_handle);

34 drawRod(y, theta, L, gap, height, rod_handle);

35 end

The routine drawPendulum is called from the Simulink file shown in

figure C.2, where there are three inputs: the position y, the angle θ , and

the time t. Lines 3–5 rename the inputs to y, θ , and t. Lines 8–11 define

the drawing parameters. We require that the handle graphics persist

between function calls to drawPendulum. Since a handle is needed for

both the base and the rod, we define two persistent variables in lines 14

and 15. The if statement in lines 19–34 is used to produce the anima-

tion. lines 20-28 are called once at the beginning of the simulation,

and draw the initial animation. Line 20 brings the figure 1 window to

the front and clears it. Lines 21 and 22 draw the ground along which

the pendulum will move. Lines 24 and 25 calls the drawBase routine

with an empty handle as input, and returns the handle base_handle

to the base. The EraseMode is set to normal. Lines 26 and 27 calls the

drawRod routine, and Lines 28 and 29 sets the axes of the figure. After

the initial time step, all that needs to be changed are the locations of the

base and rod. Therefore, in lines 32 and 33, the drawBase and drawRod

routines are called with the figure handles as inputs.

C.3 Animation Example: Spacecraft Using Lines
The previous section described a simple 2-D animation. In this section

we discuss a 3-D animation of a spacecraft with six degrees of freedom.

Figure C.3 shows a simple line drawing of a spacecraft, where the

bottom is meant to denote a solar panel that should be oriented toward

the sun.

264 Appendix C

Figure C.2 Simulink file for debugging the pendulum simulation. There are three

inputs to the Matlab m-file drawPendulum: the position y, the angle θ , and the

time t. Slider gains for y and θ are used to verify the animation.

Figure C.3 Drawing used to create spacecraft animation. Standard aeronautics

body axes are used, where the x-axis points out the front of the spacecraft, the

y-axis points to the right, and the z-axis point out the bottom of the body.

The first step in the animation process is to label the points on the

spacecraft and to determine their coordinates in a body-fixed coordi-

nate system. We will use standard aeronautics axes with X pointing

out the front of the spacecraft, Y pointing to the right, and Z pointing

out the bottom. The points 1 through 12 are labeled in figure C.3 and

Animations in Simulink 265

specify how coordinates are assigned to each label. To create a line

drawing, we need to connect the points in a way that draws each of

the desired line segments. To do this as one continuous line, some of

the segments will need to be repeated. To draw the spacecraft shown in

figure C.3, we will transition through the following nodes: 1 − 2 − 3 −

4−1−5−6−2−6−7−3−7−8−4−8−5−1−9−10−2−10−11−

3− 11− 12− 4− 12− 9. Matlab code that defines the local coordinates

of the spacecraft is given below.

1 function XYZ=spacecraftPoints

2 % define points on the spacecraft in local NED

3 coordinates

4 XYZ = [...

5 1 1 0;... % point 1

6 1 −1 0;... % point 2

7 −1 −1 0;... % point 3

8 −1 1 0;... % point 4

9 1 1 0;... % point 1

10 1 1 −2;... % point 5

11 1 −1 −2;... % point 6

12 1 −1 0;... % point 2

13 1 −1 −2;... % point 6

14 −1 −1 −2;... % point 7

15 −1 −1 0;... % point 3

16 −1 −1 −2;... % point 7

17 −1 1 −2;... % point 8

18 −1 1 0;... % point 4

19 −1 1 −2;... % point 8

20 1 1 −2;... % point 5

21 1 1 0;... % point 1

22 1.5 1.5 0;... % point 9

23 1.5 −1.5 0;... % point 10

24 1 −1 0;... % point 2

25 1.5 −1.5 0;... % point 10

26 −1.5 −1.5 0;... % point 11

27 −1 −1 0;... % point 3

28 −1.5 −1.5 0;... % point 11

29 −1.5 1.5 0;... % point 12

30 −1 1 0;... % point 4

31 −1.5 1.5 0;... % point 12

32 1.5 1.5 0;... % point 9

33]';

The configuration of the spacecraft is given by the Euler angles φ, θ ,

and ψ , which represent the roll, pitch, and yaw angles, respectively,

and pn, pe, pd, which represent the north, east, and down positions,

respectively. The points on the spacecraft can be rotated and translated

using theMatlab code listed below.

266 Appendix C

1 function XYZ=rotate(XYZ,phi,theta,psi)

2 % define rotation matrix

3 R_roll = [...

4 1, 0, 0;...

5 0, cos(phi), −sin(phi);...

6 0, sin(phi), cos(phi)];

7 R_pitch = [...

8 cos(theta), 0, sin(theta);...

9 0, 1, 0;...

10 −sin(theta), 0, cos(theta)];

11 R_yaw = [...

12 cos(psi), −sin(psi), 0;...

13 sin(psi), cos(psi), 0;...

14 0, 0, 1];

15 R = R_roll*R_pitch*R_yaw;

16 % rotate vertices

17 XYZ = R*XYZ;

1 function XYZ = translate(XYZ,pn,pe,pd)

2 XYZ = XYZ + repmat([pn;pe;pd],1,size(XYZ,2));

Drawing the spacecraft at the desired location is accomplished using

the followingMatlab code:

1 function handle

2 = drawSpacecraftBody(pn,pe,pd,phi,theta,psi, handle, mode)

3 % define points on spacecraft in local NED

4 %coordinates

5 NED = spacecraftPoints;

6 % rotate spacecraft by phi, theta, psi

7 NED = rotate(NED,phi,theta,psi);

8 % translate spacecraft to [pn; pe; pd]

9 NED = translate(NED,pn,pe,pd);

10 % transform vertices from NED to XYZ

11 R = [...

12 0, 1, 0;...

13 1, 0, 0;...

14 0, 0, −1;...

15];

16 XYZ = R*NED;

17 % plot spacecraft

18 if isempty(handle),

19 handle

20 = plot3(XYZ(1,:),XYZ(2,:),XYZ(3,:), `EraseMode', mode);

21 else

22 set(handle,`XData',XYZ(1,:),`YData',XYZ(2,:),

23 `ZData',XYZ(3,:));

24 drawnow

25 end

Animations in Simulink 267

Figure C.4 Rendering of the spacecraft using lines

and the plot3 command.

Figure C.5 The mask function in Simulink allows the spacecraft points to be

initialized at the beginning of the simulation.

Lines 11–16 are used to transform the coordinates from the north-east-

down (NED) coordinate frame to the drawing frame used by Matlab

which has the x-axis to the viewer’s right, the y-axis into the screen,

and the z-axis up. The plot3 command is used in lines 19 and 20 to

render the original drawing, and the set command is used to change

the XData, YData, and ZData in lines 22 and 23. A Simulink file that

can be used to debug the animation is on the book website. A rendering

of the spacecraft is shown in figure C.4.

The disadvantage of implementing the animationusing the function

spacecraftPoints to define the spacecraft points is that this function

is called each time the animation is updated. Since the points are

static, they only need to be defined once. The Simulink mask function

can be used to define the points at the beginning of the simulation.

Masking thedrawSpacecraftm-file in Simulink, and then clicking on

Edit Mask brings up a window like the one shown in figure C.5. The

268 Appendix C

spacecraft points can be defined in the initialization window, as shown

in figure C.5, and passed to the drawSpacecraftm-file as a parameter.

C.4 Animation Example: Spacecraft Using Vertices and Faces
The stick-figure drawing shown in figure C.4 can be improved visu-

ally by using the vertex-face structure in Matlab. Instead of using the

plot3 command to draw a continuous line, we will use the patch

command to draw faces defined by vertices and colors. The vertices,

faces, and colors for the spacecraft are defined in theMatlab code listed

below.

1 function [V, F, patchcolors]=spacecraftVFC

2 % Define the vertices (physical location of vertices

3 V = [...

4 1 1 0;... % point 1

5 1 −1 0;... % point 2

6 −1 −1 0;... % point 3

7 −1 1 0;... % point 4

8 1 1 −2;... % point 5

9 1 −1 −2;... % point 6

10 −1 −1 −2;... % point 7

11 −1 1 −2;... % point 8

12 1.5 1.5 0;... % point 9

13 1.5 −1.5 0;... % point 10

14 −1.5 −1.5 0;... % point 11

15 −1.5 1.5 0;... % point 12

16];

17 % define faces as a list of vertices numbered above

18 F = [...

19 1, 2, 6, 5;... % front

20 4, 3, 7, 8;... % back

21 1, 5, 8, 4;... % right

22 2, 6, 7, 3;... % left

23 5, 6, 7, 8;... % top

24 9, 10, 11, 12;... % bottom

25];

26 % define colors for each face

27 myred = [1, 0, 0];

28 mygreen = [0, 1, 0];

29 myblue = [0, 0, 1];

30 myyellow = [1, 1, 0];

31 mycyan = [0, 1, 1];

32 patchcolors = [...

33 myred;... % front

34 mygreen;... % back

35 myblue;... % right

36 myyellow;... % left

37 mycyan;... % top

38 mycyan;... % bottom

39];

Animations in Simulink 269

Figure C.6 Rendering of the spacecraft using

vertices and faces.

The vertices are shown in figure C.3 and are defined in lines 3–16. The

faces are defined by listing the indices of the points that define the

face. For example, the front face, defined in line 19, consists of points

1 − 2 − 6 − 5. Faces can be defined by N-points, where the matrix that

defines the faces has N columns, and the number of rows is the number

of faces. The color for each face is defined in lines 32–39. Matlab code

that draws the spacecraft body is listed below.

1 function handle

2 = drawSpacecraftBody(pn,pe,pd,phi,theta,psi, handle, mode)

3 [V, F, patchcolors] = spacecraftVFC;

4 % define points on spacecraft

5 V = rotate(V', phi, theta, psi)';}

6 % rotate spacecraft

7 V = translate(V', pn, pe, pd)';}

8 % translate spacecraft

9 R = [...

10 0, 1, 0;...

11 1, 0, 0;...

12 0, 0, −1;...

13];

14 V = V*R; % transform vertices from NED to XYZ

15 if isempty(handle),

16 handle = patch(`Vertices', V, `Faces', F,...

17 `FaceVertexCData',patchcolors,...

18 `FaceColor',`flat',...

19 `EraseMode', mode);

20 else

21 set(handle,`Vertices',V,`Faces',F);

22 end

The transposes in lines 5–8 are used because the physical positions in

the vertices matrix V are along the rows instead of the columns. A

rendering of the spacecraft using vertices and faces is given infigureC.6.

Additional examples using the vertex-face format can be found at the

book website.

APPENDIX D

Modeling in Simulink Using S-functions

This chapter assumes basic familiarity with the Matlab/Simulink envi-

ronment. For additional information, please consult the Matlab/

Simulink documentation. Simulink is essentially a sophisticated tool

for solving interconnected hybrid ordinary differential and difference

equations. Each block in Simulink is assumed to have the structure

.
xc = f (t, xc, xd, u); xc(0) = xc0 (D.1)

xd[k + 1] = g(t, xc, xd, u); xd[0] = xd0 (D.2)

y = h(t, xc, xd, u), (D.3)

where xc ∈ Rnc is a continuous state with initial condition xc0, xd ∈ Rnd

is a discrete state with initial condition xd0, u ∈ Rm is the input to

the block, y ∈ R
p is the output of the block, and t is the elapsed

simulation time. An s-function is a Simulink tool for explicitly defining

the functions f , g, and h and the initial conditions xc0 and xd0. As

explained in the Matlab/Simulink documentation, there are a number

of methods for specifying an s-function. In this appendix, we will

overview two different methods: a level-1 m-file s-function and a C-file

s-function. The C-file s-function is compiled into C-code and executes

much faster thanm-file s-functions.

D.1 Example: Second-order Differential Equation
In this sectionwewill showhow to implement a system specified by the

standard second-order transfer function

Y(s) =
ω2
n

s2 + 2ζωns + ω2
n

U (s) (D.4)

using both a level-1 m-file s-function and a C-file s-function. The first

step in either case is to represent equation (D.4) in state space form.

Modeling in Simulink 271

Using control canonical form [30], we have

(.
x1
.
x2

)

=

(

−2ζωn −ω2
n

1 0

) (

x1
x2

)

+

(

1

0

)

u (D.5)

y =
(

0 ω2
n

)

(

x1
x2

)

. (D.6)

D.1.1 Level-1 M-file S-function

The code listing for an m-file s-function that implements the system

described by equations (D.5) and (D.6) is shown below. Line 1 defines

the main m-file function. The inputs to this function are always the

elapsed time t; the state x, which is a concatenation of the continuous

state anddiscrete state; the input u; and aflag, followedbyuser defined

input parameters, which in this case are ζ and ωn. The Simulink engine

calls the s-function and passes the parameters t, x, u, and flag. When

flag==0, the Simulink engine expects the s-function to return the

structure sys, which defines the block; initial conditions x0; an empty

string str; and an array ts that defines the sample times of the block.

When flag==1, the Simulink engine expects the s-function to return

the function f (t, x, u); when flag==2, the Simulink engine expects

the s-function to return g(t, x, u); and when flag==3 the Simulink

engine expects the s-function to return h(t, x, u). The switch statement

that calls the proper functions based on the value of flag is shown in

lines 2–11. The block setup and the definition of the initial conditions

are shown in lines 13–27. The number of continuous states, discrete

states, outputs, and inputs are defined in lines 16–19, respectively. The

direct feedthrough term on line 20 is set to one if the output depends

explicitly on the input u. For example, if D �= 0 in the linear state-space

output equation y = Cx + Du. The initial conditions are defined on

line 24. The sample times are defined on line 27. The format for this line

is ts = [period offset], where period defines the sample period

and is 0 for continuous time or −1 for inherited, and where offset is

the sample time offset, which is typically 0. The function f (t, x, u) is

defined in lines 30–32, and the output function h(t, x, u) is defined in

lines 35–36. A Simulink file that calls this m-file s-function is included

on the book website.

1 function [sys,x0,str,ts] = second_order_m(t,x,u,flag,

2 zeta,wn)

3 switch flag,

4 case 0,

5 [sys,x0,str,ts]=mdlInitializeSizes;

6 % initialize block

272 Appendix D

7 case 1,

8 sys=mdlDerivatives(t,x,u,zeta,wn);

9 % define xdot = f(t,x,u)

10 case 3,

11 sys=mdlOutputs(t,x,u,wn);

12 % define xup = g(t,x,u)

13 otherwise,

14 sys = [];

15 end

16

17 %==%

18 function [sys,x0,str,ts]=mdlInitializeSizes

19 sizes = simsizes;

20 sizes.NumContStates = 2;

21 sizes.NumDiscStates = 0;

22 sizes.NumOutputs = 1;

23 sizes.NumInputs = 1;

24 sizes.DirFeedthrough = 0;

25 sizes.NumSampleTimes = 1;

26 sys = simsizes(sizes);

27

28 x0 = [0; 0]; % define initial conditions

29 str = []; % str is always an empty matrix

30 % initialize the array of sample times

31 ts = [0 0]; % continuous sample time

32

33 %==%

34 function xdot=mdlDerivatives(t,x,u,zeta,wn)

35 xdot(1) = −2*zeta*wn*x(1) − wn^2*x(2) + u;

36 xdot(2) = x(1);

37

38 %==%

39 function y=mdlOutputs(t,x,u,wn)

40 y = wn^2*x(2);

D.1.2 C-file S-function

The code listing for a C-file s-function that implements the system

defined by equations (D.5) and (D.6) is shown below. The function

name must be specified as in line 3. The number of parameters that are

passed to the s-function is specified in line 17, and macros that access

the parameters are defined in lines 6 and 7. Line 8 defines a macro

that allows easy access to the input of the block. The block structure

is defined using mdlInitializeSizes in lines 15–36. The number

of continuous states, discrete states, inputs, and outputs is defined in

lines 21–27. The sample time and offset are specified in lines 41–46.

The initial conditions for the states are specified in lines 52–57. The

function f (t, x, u) is defined in lines 76–85, and the function h(t, x, u)

is defined in lines 62–69. The C-file s-function is compiled using the

Matlab command >> mex secondOrder_c.c. A Simulink file that

calls this C-file s-function is included on the book website.

Modeling in Simulink 273

1 /* File : secondOrder_c.c

2 */

3 #define S_FUNCTION_NAME secondOrder_c

4 #define S_FUNCTION_LEVEL 2

5 #include "simstruc.h"

6 #define zeta_PARAM(S) mxGetPr(ssGetSFcnParam(S,0))

7 #define wn_PARAM(S) mxGetPr(ssGetSFcnParam(S,1))

8 #define U(element) (*uPtrs[element])

9 /* Pointer to Input Port0 */

10

11 /* Function: mdlInitializeSizes

12 * Abstract:

13 * The sizes information is used by Simulink to

14 * determine the S−function blocks characteristics

15 (number of inputs, outputs, states, etc.).

16 */

17 static void mdlInitializeSizes(SimStruct *S)

18 {

19 ssSetNumSFcnParams(S, 2);

20 /* Number of expected parameters */

21 if (ssGetNumSFcnParams(S)

22 != ssGetSFcnParamsCount(S)) { return;

23 /* Parameter mismatch will be reported by Simulink */

24 }

25 ssSetNumContStates(S, 2);

26 ssSetNumDiscStates(S, 0);

27 if (!ssSetNumInputPorts(S, 1)) return;

28 ssSetInputPortWidth(S, 0, 1);

29 ssSetInputPortDirectFeedThrough(S, 0, 1);

30 if (!ssSetNumOutputPorts(S, 1)) return;

31 ssSetOutputPortWidth(S, 0, 1);

32 ssSetNumSampleTimes(S, 1);

33 ssSetNumRWork(S, 0);

34 ssSetNumIWork(S, 0);

35 ssSetNumPWork(S, 0);

36 ssSetNumModes(S, 0);

37 ssSetNumNonsampledZCs(S, 0);

38 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

39 }

40

41 /* Function: mdlInitializeSampleTimes */

42 static void mdlInitializeSampleTimes(SimStruct *S)

43 {

44 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

45 ssSetOffsetTime(S, 0, 0.0);

46 ssSetModelReferenceSampleTimeDefaultInheritance(S);

47 }

48

49 #define MDL_INITIALIZE_CONDITIONS

50 /* Function: mdlInitializeConditions

51 * Set initial conditions

52 */

53 static void mdlInitializeConditions(SimStruct *S)

54 {

274 Appendix D

55 real_T *x0 = ssGetContStates(S);

56 x0[0] = 0.0;

57 x0[1] = 0.0;

58 }

59

60 /* Function: mdlOutputs

61 * output function

62 */

63 static void mdlOutputs(SimStruct *S, int_T tid)

64 {

65 real_T*y = ssGetOutputPortRealSignal(S,0);

66 real_T*x = ssGetContStates(S);

67 InputRealPtrsType uPtrs

68 = ssGetInputPortRealSignalPtrs(S,0);

69

70 UNUSED_ARG(tid); /* not used */

71 const real_T *wn = wn_PARAM(S);

72 y[0] = wn[0]*wn[0]*x[1];

73 }

74

75 #define MDL_DERIVATIVES

76 /* Function: mdlDerivatives

77 * Calculate state−space derivatives

78 */

79 static void mdlDerivatives(SimStruct *S)

80 {

81 real_T *dx = ssGetdX(S);

82 real_T *x = ssGetContStates(S);

83 InputRealPtrsType uPtrs

84 = ssGetInputPortRealSignalPtrs(S,0);

85

86 const real_T *zeta = zeta_PARAM(S);

87 const real_T *wn = wn_PARAM(S);

88 dx[0] = −2*zeta[0]*wn[0]*x[0] − wn[0]*wn[0]*x[1] + U(0);

89 dx[1] = x[0];

90 }

91

92 /* Function: mdlTerminate

93 * No termination needed.

94 */

95 static void mdlTerminate(SimStruct *S)

96 {

97 UNUSED_ARG(S); /* unused input argument */

98 }

99

100 #ifdef MATLAB_MEX_FILE

101 #include "simulink.c"

102 #else

103 #include "cg_sfun.h"

104 #endif

APPENDIX E

Airframe Parameters

This appendix gives the physical parameters for two small unmanned

aircraft: a Zagi flying wing, shown in figure E.1(a), and the Aerosonde

UAV, shown in figure E.1(b). Mass, geometry, propulsion, and aerody-

namic parameters for the Zagi flying wing are given in table E.1. Mass,

geometry, propulsion, and aerodynamic parameters for the Aerosonde

are given in table E.2 [129].

Figure E.1 (a) The Zagi airframe. (b) The Aerosonde UAV.

E.1 Zagi Flying Wing

Table E.1

Parameters for a Zagi flying wing

Longitudinal

Parameter Value Coef. Value Lateral Coef. Value

m 1.56 kg CL0
0.09167 CY0 0

J x 0.1147 kg m2 CD0
0.01631 Cl0 0

J y 0.0576 kg m2 Cm0
−0.02338 Cn0 0

J z 0.1712 kg m2 CLα
3.5016 CYβ

−0.07359

J xz 0.0015 kg m2 CDα
0.2108 Clβ −0.02854

S 0.2589 m2 Cmα
−0.5675 Cnβ

−0.00040

b 1.4224 m CLq
2.8932 CYp

0

276 Appendix E

Table E.1

Continued.

Longitudinal

Parameter Value Coef. Value Lateral Coef. Value

c 0.3302 m CDq
0 Clp −0.3209

Sprop 0.0314 m2 Cmq
−1.3990 Cnp

−0.01297

ρ 1.2682 kg/m3 CLδe
0.2724 CYr 0

kmotor 20 CDδe
0.3045 Clr 0.03066

kTp
0 Cmδe

−0.3254 Cnr −0.00434

k� 0 Cprop 1.0 CYδa
0

e 0.9 M 50 Clδa 0.1682

α0 0.4712 Cnδa
−0.00328

ǫ 0.1592

CDp
0.0254

E.2 Aerosonde UAV

Table E.2

Aerodynamic coefficients for the Aerosonde UAV

Longitudinal Lateral

Parameter Value Coef. Value Coef. Value

m 13.5 kg CL0
0.28 CY0 0

J x 0.8244 kg-m2 CD0
0.03 Cl0 0

J y 1.135 kg-m2 Cm0
−0.02338 Cn0 0

J z 1.759 kg-m2 CLα
3.45 CYβ

−0.98

J xz 0.1204 kg-m2 CDα
0.30 Clβ −0.12

S 0.55 m2 Cmα
−0.38 Cnβ

0.25

b 2.8956 m CLq
0 CYp

0

c 0.18994 m CDq
0 Clp −0.26

Sprop 0.2027 m2 Cmq
−3.6 Cnp

0.022

ρ 1.2682 kg/m3 CLδe
−0.36 CYr 0

kmotor 80 CDδe
0 Clr 0.14

kTp
0 Cmδe

−0.5 Cnr −0.35

k� 0 Cprop 1.0 CYδa
0

e 0.9 M 50 Clδa 0.08

α0 0.4712 Cnδa
0.06

ǫ 0.1592 CYδr
−0.17

CDp
0.0437 Clδr 0.105

Cnδr
−0.032

APPENDIX F

Trim and Linearization in Simulink

F.1 Using the Simulink trim Command
Simulink provides a built-in routine for computing trim conditions for

general Simulink diagrams. Useful instructions for using this command

can be obtained by typing help trim at the Matlab prompt. As de-

scribed in section 5.3, given the parametersV∗
a , γ

∗, and R∗, the objective

is to find x∗ and u∗ such that
.
x∗

= f (x∗, u∗) where x and u are defined in

equations (5.17) and (5.18),
.
x∗

is given by equation (5.21), and where

f (x, u) is defined by the right-hand side of equations (5.1)–(5.12).

The format for the Simulink trim command is

[X,U,Y,DX]=TRIM(’SYS’,X0,U0,Y0,IX,IU,IY,DX0,IDX),

where X is the computed trim state x∗, U is the computed trim input u∗,

Y is the computed trim output y
∗, and DX is the computed derivative of

the state
.
x∗
. The system is specified by the Simulink model SYS.mdl,

where the state of the model is defined by the union of all of the

states in the subsystems of SYS.mdl and the inputs and outputs are

defined by Simulink Inports and Outports respectively. Figure F.1

shows a Simulink model that could be used to compute aircraft trim.

The inputs to the system as specified by the four Inports are the servo

commands delta_e, delta_a, delta_r, and delta_t. The states of

this block are the states of the Simulink model, which in our case are

ξ = (pn, pe, pd, u, v, w, φ, θ, ψ, p, q, r)⊤, and the outputs are specified

by the three Outports as the airspeed Va, the angle of attack α, and

the sideslip angle β. Our purpose in specifying Va, α, and β as outputs is

that wewish to force the Simulink trim command tomaintain Va = V∗
a

and α∗ is often a quantity of interest. If we have access to a rudder, then

we can enforce a coordinated turn by forcing the trim command to

maintain β∗ = 0. If a rudder is not available, then β will not necessarily

be zero in a turn.

Since the trim calculation problem reduces to solving a system of

nonlinear algebraic equations, which may have many solutions, the

Simulink trim command requires that initial guesses for the state X0,

input U0, output Y0, and derivative of the state DX0 be specified. If

we know from the outset, that some of the states, inputs, outputs, or

derivatives of states are fixed and specified by their initial conditions,

then those constraints are indicated by the index vectors IX, IU, IY,

and IDX.

278 Appendix F

Figure F.1 Simulink diagram used to to compute trim and linear state space

models.

For our situation we know that

.
x∗

= ([don’t care], [don’t care], −V∗

a sin γ ∗, 0, 0, 0, 0, 0, V∗

a /R∗, 0, 0, 0)⊤,

therefore we let

DX = [0; 0; −Va*sin(gamma); 0; 0; 0; 0; 0;

Va/R; 0; 0; 0]

IDX = [3; 4; 5; 6; 7; 8; 9; 10; 11; 12] .

Similarly, the initial state, inputs, and outputs can be specified as

X0 = [0; 0; 0; Va; 0; 0; 0; gamma; 0; 0; 0; 0]

IX0 = []

U0 = [0; 0; 0; 1]

IU0 = []

Y0 = [Va; gamma; 0]

IY0 = [1,3] .

F.2 Numerical Computation of Trim
If simulation is developed in an environment other than Simulink,

it may be necessary to write a stand-alone trim routine. This section

briefly describes how this might be done. The parameters V∗
a , γ ∗, and

R∗ fully describe the climbing-turn trimmaneuver and therefore will be

inputs to the trim-finding algorithm. In the calculations that follow, we

will show that the variables α, β, and φ, alongwith the input parameters

V∗
a , γ ∗, and R∗, fully define the trim states and inputs. Thus, if we can

find trim values α∗, β∗, and φ∗ for the specified V∗
a , γ ∗, and R∗, we will

be able to solve analytically for the trim states and trim inputs. The first

Trim and Linearization in Simulink 279

step is to show that the state variables and the input commands can

be expressed in terms of V∗
a , γ ∗, R∗, α∗, β∗, and φ∗. Since V∗

a , γ ∗, and

R∗ are user-specified inputs to the algorithm, computing the trim states

will then consist of an optimization algorithm over α, β, and φ to find

α∗, β∗, and φ∗. These values will then be used to find the trim states x∗

and u∗.

Body frame velocities u∗, v∗, w∗

Fromequation (2.7), the body framevelocities canbe expressed in terms

of V∗
a , α

∗, and β∗ as





u∗

v∗

w∗



 = V∗

a





cos α∗ cos β∗

sin β∗

sin α∗ cos β∗



 .

Pitch angle θ∗

By definition of the flight path angle (with Vw = 0), we have

θ∗
= α∗

+ γ ∗.

Angular rates p, q, r

The angular rates can be expressed in terms of the Euler angles by using

equation (3.2). Therefore,





p∗

q∗

r ∗



 =





1 0 − sin θ∗

0 cos φ∗ sin φ∗ cos θ∗

0 − sin φ∗ cos φ∗ cos θ∗













.
φ∗ = 0
.

θ∗ = 0
.

ψ∗ =
V∗
a

R∗









=
V∗
a

R∗





− sin θ∗

sin φ∗ cos θ∗

cos φ∗ cos θ∗



 ,

where θ∗ has already been expressed in terms of γ ∗ and α∗.

Elevator δe

Given p∗, q∗, and r ∗, we can solve equation (5.11) for δ∗
e , giving

δ∗

e =

[

J xz(p
∗2−r ∗2)+(J x−J z)p

∗r ∗)
1
2 ρ(V∗

a)
2cS

]

− Cm0
− Cmα

α∗ − Cmq

cq∗

2V∗
a

Cmδe

. (F.1)

280 Appendix F

Throttle δt

Equation (5.4) can be solved for δ∗
t , giving

δ∗

t =

√

√

√

√

√

√

√

2m (−r ∗v∗ + q∗w∗ + g sin θ∗)

−ρ(V∗
a)

2S

[

CX(α
∗) + CXq

(α∗)
cq∗

2V∗
a

+ CXδe
(α∗)δ∗

e

]

ρSpropCpropk
2
motor

+
(V∗

a)
2

k2motor

. (F.2)

Aileron δa and Rudder δr

The aileron and rudder commands are found by solving equa-

tions (5.10) and (5.12):

(

δ∗
a

δ∗
r

)

=

(

Cpδa
Cpδr

Crδa Crδr

)−1

×



















−Ŵ1 p
∗q∗ + Ŵ2q

∗r ∗

1

2
ρ(V∗

a)
2Sb

− Cp0 − Cpβ
β∗ − Cpp

bp∗

2V∗
a

− Cpr

br ∗

2V∗
a

−Ŵ7 p
∗q∗ + Ŵ1q

∗r ∗

1

2
ρ(V∗

a)
2Sb

− Cr0 − Crβ β
∗ − Cr p

bp∗

2V∗
a

− Crr

br ∗

2V∗
a



















.

(F.3)

F.2.1 Trim Algorithm

All of the state variables of interest and the control inputs have been

expressed in terms of V∗
a , γ ∗, R∗, α∗, β∗ and φ∗. The inputs to the trim

algorithm are V∗, γ ∗, and R∗. To find α∗, β∗, and φ∗, we need to solve the

following optimization problem:

(α∗, φ∗, β∗) = arg min
∥

∥

.
x∗

− f (x∗, u∗)
∥

∥

2
.

This can be performed numerically using a gradient descent algorithm

thatwill be described in the next section. The trim algorithm is summa-

rized in algorithm 13.

F.2.2 Numerical Implementation of Gradient Descent

The objective of this section is to describe a simple gradient descent

algorithm that solves the optimization problem

min
ξ

J (ξ),

Trim and Linearization in Simulink 281

Algorithm 13 Trim

1: Input: Desired airspeed V∗
a , desired flight path angle γ ∗, and desired

turn radius R∗

2: Compute: (α∗, β∗, φ∗) = arg min
∥

∥

.
x∗

− f (x∗, u∗)
∥

∥

2

3: Compute trimmed states:













































u∗ = V∗
a cos α∗ cos β∗

v∗ = V∗
a sin β∗

w∗ = V∗
a sin α∗ cos β∗

θ∗ = α∗ + γ ∗

p∗ = −
V∗
a

R∗
sin θ∗

q∗ =
V∗
a

R∗
sin φ∗ cos θ∗

r ∗ =
V∗
a

R∗
cos φ∗ cos θ∗













































4: Compute trimmed input:

















δ∗
e = [Equation (F.1)]

δ∗
t = [Equation (F.2)]

(

δ∗
a

δ∗
r

)

= [Equation (F.3)]

















where J : Rm → R is assumed to be continuously differentiable with

well-defined local minima. The basic idea is to follow the negative

gradient of the function given an initial starting location ξ (0). In other

words, we let

.
ξ = −κ

∂ J

∂ξ
(ξ), (F.4)

where κ is a positive constant that defines the descent rate. A discrete

approximation of equation (F.4) is given by

ξ (k+1)
= ξ (k)

− κd
∂ J

∂ξ
(ξ (k)),

where κd is κ divided by the discrete step size.

282 Appendix F

For the trim calculation, the partial derivative ∂ J
∂ξ

is difficult to deter-

mine analytically. However, it can be efficiently computed numerically.

By definition, we have

∂ J

∂ξ
=

















∂ J

∂ξ1
...

∂ J

∂ξm

















,

where

∂ J

∂ξi
= lim

ǫ→0

J (ξ1, · · · , ξi + ǫ, · · · , ξm) − J (ξ1, · · · , ξi , · · · , ξm)

ǫ
,

which can be numerically approximated as

∂ J

∂ξi
≈

J (ξ1, · · · , ξi + ǫ, · · · , ξm) − J (ξ1, · · · , ξi , · · · , ξm)

ǫ
,

where ǫ is a small constant.

For the trim algorithm, the objective J (α, β, φ) is equal to
∥

∥

.
x∗

− f (x∗, u∗)
∥

∥

2
, which is computed using algorithm 14. The gradient

descent optimization algorithm is summarized in algorithm 15.

F.3 Using the Simulink linmod Command to Generate a
State-space Model

Simulink also provides a built-in routine for computing a linear state-

space model for a general Simulink diagram. Helpful instruction can be

obtained by typing help linmod at theMatlab prompt. The format for

the linmod command is

[A,B,C,D]=LINMOD(’SYS’,X,U),

whereX andU are the state and input aboutwhich the Simulinkdiagram

is to be linearized, and [A,B,C,D] is the resulting state-space model.

If the linmod command is used on the Simulink diagram shown in

figure F.1, where there are twelve states and four inputs, the resulting

state space equations will include the models given in equations (5.43)

Trim and Linearization in Simulink 283

Algorithm 14 Computation of J =
∥

∥

.
x∗

− f (x∗, u∗)
∥

∥

2

1: Input: α∗, β∗, φ∗, V∗
a , R

∗, γ ∗

2: Compute
.
x∗
:

.
x∗

= [equation (5.21)]

3: Compute trimmed states:







































u∗ = V∗
a cos α∗ cos β∗

v∗ = V∗
a sin β∗

w∗ = V∗
a sin α∗ cos β∗

θ∗ = α∗ + γ ∗

p∗ = −
V∗
a

R∗
sin θ∗

q∗ =
V∗
a

R∗
sin φ∗ cos θ∗

r ∗ =
V∗
a

R∗
cos φ∗ cos θ∗







































4: Compute trimmed input:













δ∗
e = [equation (F.1)]

δ∗
t = [equation (F.2)]

(

δ∗
a

δ∗
r

)

= [equation (F.3)]













5: Compute f (x∗, u∗):

f (x∗, u∗) = [Equation (5.3)–(5.12)].

6: Compute J :

J =
∥

∥

.
x∗

− f (x∗, u∗)
∥

∥

2

and (5.50). To obtain equation (5.43) for example, you could use the

following steps:

[A,B,C,D]=linmod(filename,x_trim,u_trim)

E1 = [...

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0;...

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0;...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;...

284 Appendix F

Algorithm 15 Minimize J (ξ)

1: Input: α(0), β(0), φ(0), Va, R, γ

2: for k = 1 to N do

3: α+ = α(k−1) + ǫ

4: β+ = β(k−1) + ǫ

5: φ+ = φ(k−1) + ǫ

6:
∂ J
∂α

=
J (α+,β(k−1),φ(k−1))−J (α(k−1),β(k−1),phi (k−1))

ǫ

7:
∂ J
∂β

=
J (α(k−1),β+,φ(k−1))−J (α(k−1),β(k−1),phi (k−1))

ǫ

8:
∂ J
∂φ

=
J (α(k−1),β(k−1),φ+)−J (α(k−1),β(k−1),phi (k−1))

ǫ

9: α(k) = α(k−1) − κ ∂ J
∂α

10: β(k) = β(k−1) − κ ∂ J
∂β

11: φ(k) = φ(k−1) − κ ∂ J
∂φ

12: end for

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0;...

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0;...

]

E2 = [...

0, 1, 0, 0;...

0, 0, 1, 0;...

]

A_lat = E1 * A * E1’

B_lat = E1 * B * E2’

F.4 Numerical Computation of State-space Model
Another way to find A and B is to approximate ∂ f

∂x
and ∂ f

∂u
numerically.

The i th column of ∂ f
∂x

can be approximated as

























∂ f1

∂xi

∂ f2

∂xi
...

∂ fn

∂xi

























(x∗, u∗) ≈
f (x∗ + ǫei , u

∗) − f (x∗, u∗)

ǫ
,

Trim and Linearization in Simulink 285

where ei has a one in the i th element and zeros elsewhere. Similarly, the

i th column of ∂ f
∂u

can be approximated as





























∂ f1

∂ui

∂ f2

∂ui
...

∂ fn

∂ui





























(x∗, u∗) ≈
f (x∗, u∗ + ǫei) − f (x∗, u∗)

ǫ
.

These calculations can be conveniently done by taking advantage of

software functions created to calculate f (x, u), that were originally

developed for solving the aircraft nonlinear equations of motion or for

calculating trim states.

APPENDIX G

Essentials from Probability Theory

Let X = (x1, . . . , xn)
⊤ be a random vector whose elements are random

variables. Themean, or expected value of X, is denoted by

µ =











µ1

...

µn











=











E {x1}

...

E {xn}











= E {X},

where

E {xi} =

∫

ξ fi(ξ) dξ

and f (·) is the probability density function for xi . Given any pair of

components xi and x j of X, we denote their covariance as

cov(xi , x j) = �i j = E {(xi − µi)(x j − µ j)}.

The covariance of any component with itself is the variance, that is,

var(xi) = cov(xi , xi) = �ii = E {(xi − µi)(ξ − µi)}.

The standard deviation of xi is the square root of the variance:

stdev(xi) = σi =
√

�ii .

The covariances associatedwith a random vector X can be grouped into

a matrix known as the covariance matrix:

� =

















�11 �12 · · · �1n

�21 �22 · · · �2n

...
. . .

...

�n1 �n2 · · · �nn

















= E {(X− µ)(X− µ)⊤} = E {XX⊤} − µµ⊤.

Note that � = �⊤ so that � is both symmetric and positive semi-

definite, which implies that its eigenvalues are real and nonnegative.

Essentials from Probability Theory 287

Figure G.1 Level curves for the pdf of a 2-D Gaussian random variable.

The probability density function for a Gaussian random variable is

given by

fx(x) =
1

√
2πσx

e
− (x−µx)

2

σ2x ,

where µx is the mean of x and σx is the standard deviation. The vector

equivalent is given by

fX(X) =
1

√
2π det �

exp

[

−
1

2
(X− µ)⊤�−1(X− µ)

]

,

in which case we write

X ∼ N (µ, �)

and say that X is normally distributed withmean µ and covariance �.

Figure G.1 shows the level curves for a 2-D Gaussian random variable

with different covariance matrices.

APPENDIX H

Sensor Parameters

This appendix gives the noise and error parameters for several com-

mercially available sensors typical of what would be used in a MAV

autopilot. There are numerous error sources for each of the sensors.

Some are random, like electrical noise. Others, such as nonlinearity,

temperature sensitivity, and cross-axis sensitivity, are more determin-

istic in nature. We assume that these deterministic error sources can be

mitigated through careful calibration and compensation, as is done by

most autopilotmanufacturers, with themajority of the remaining error

having random characteristics.

Rate gyros, accelerometers, and pressure sensors are sampled each

time through the autopilot control loop. A common sample rate is in

the range of 50 to 100 Hz. We denote the control loop sample period

as Ts. Digital compasses and GPS receivers are both digital devices with

slower update rates that depend on the specificmodel of the sensor.We

denote these sample periods as Ts,compass and Ts,GPS and specify values for

typical sensors below.

H.1 Rate Gyros
An example of a MEMS rate gyro suitable for a MAV autopilot is the

AnalogDevices ADXRS450. It has a range of±350 deg/s, a bandwidth of

80 Hz, and a noise density of 0.015 deg/s/
√
Hz. The standard deviation

of the measurement error due to sensor noise is

σgyro,∗ = N
√
B,

where B is the bandwidth and N is the noise density. For the ADXRS540

this results in σgyro,∗ = 0.13 deg/s. Sources of deterministic error include

cross-axis sensitivity (±3 percent), nonlinearity (0.05 percent full-scale

range RMS), and acceleration sensitivity (0.03 deg/s/g).

H.2 Accelerometers
An example of aMEMS accelerometer that could be used in an autopilot

is the Analog Devices ADXL325. It has a range of ±6 g and a variable

Sensor Parameters 289

bandwidth of 0.5 to 550 Hz. For an autopilot, a typical bandwidth

would be 100 Hz. It has a noise density of 250 µg/
√
Hz. The standard

deviation of the measurement error due to sensor noise is

σaccel,∗ = N
√
B,

which for the ADXL325 results in σaccel,∗ = 0.0025 g. Sources of deter-

ministic error include cross-axis sensitivity (±1 percent) and nonlinear-

ity (±0.2 percent of full-scale range).

H.3 Pressure Sensors
An example of an absolute pressure sensor that can be used for altitude

measurement is the Freescale SemiconductorMP3H6115A. It has a range

of 15 to 115 kPa, and its maximum error is characterized as having a

bound of 1.5 percent of the full scale, or ±1.5 kPa. The accuracy of the

sensor, as indicated by the maximum error, is limited due to linearity

errors, temperature sensitivity, and pressure hysteresis. Practical expe-

rience with MEMS absolute pressure sensors has shown that careful

calibration can reduce these errors can be reduced to about 0.125 kPa

of temperature-related bias drift and about 0.01 kPa of sensor noise.

Therefore, we have βabs pres = 0.125 kPa and σabs pres = 0.01 kPa.

The Freescale Semiconductor MPXV5004G is an example of a differ-

ential pressure sensor appropriate for use as an airspeed sensor. It has a

range of 0 to 4 kPa, and its maximum error has a bound of 2.5 percent

of the full-scale range, or 0.1 kPa. The accuracy of the sensor is lim-

ited by linearity errors, temperature sensitivity, and pressure hysteresis.

Practical experience with this type of differential pressure sensor has

shown that careful calibration can reduce these errors to about 0.02 kPa

of temperature-related bias drift and about 0.002 kPa of sensor noise.

Therefore, we have βdiff pres = 0.020 kPa and σdiff pres = 0.002 kPa.

H.4 Digital Compass/Magnetometer
An example of a digital compass suitable for a small unmanned aircraft

is the Honeywell HMR3300. It is a three-axis, tilt-compensated device

with a built-in microcontroller for signal conditioning. When level

it has an accuracy of ±1 degree and ±3 degrees of accuracy up to

±30 degrees of tilt. It has a 0.5 degree repeatability and an 8 Hz update

rate (Ts,compass = 0.125 s). Assuming that a portion of the accuracy

and repeatability errors are due to uncertainty in the declination angle

and that a portion is due to electromagnetic interference, reasonable

290 Appendix H

parameters for the sensor noise standard deviation and bias error are

σmag = 0.3 degrees and βmag = 1 degree.

H.5 GPS
Sources of GPS measurement error and modeling of GPS measurement

error are discussed in detail in section 7.5. Sample periods for GPS can

vary between 0.2 and 2 seconds. For our purposes we will assume that

the sample period for GPS is given by Ts,GPS = 1.0 s.

Bibliography

[1] R. C. Nelson, Flight Stability and Automatic Control. Boston,MA:McGraw-

Hill, 2nd ed., 1998.

[2] J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls, Parts I

& II. Lawrence, KS: DARcorporation, 1998.

[3] J. H. Blakelock, Automatic Control of Aircraft and Missiles. New York: John

Wiley & Sons, 1965.

[4] J. H. Blakelock, Automatic Control of Aircraft and Missiles. New York: John

Wiley & Sons, 2nd ed., 1991.

[5] M. V. Cook, Flight Dynamics Principles. New York: John Wiley & Sons,

1997.

[6] B. Etkin andL.D. Reid,Dynamics of Flight: Stability andControl. NewYork:

JohnWiley & Sons, 1996.

[7] B. L. Stevens and F. L. Lewis,Aircraft Control and Simulation. Hoboken,NJ:

JohnWiley & Sons, Inc., 2nd ed., 2003.

[8] D. T. Greenwood, Principles of Dynamics. Englewood Cliffs, NJ: Prentice

Hall, 2nd ed., 1988.

[9] T. R. Kane and D. A. Levinson, Dynamics: Theory and Applications.

New York: McGraw Hill, 1985.

[10] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control. New York:

JohnWiley & Sons, Inc., 1989.

[11] M. D. Shuster, “A survey of attitude representations,” The Journal of the

Astronautical Sciences, vol. 41, pp. 439–517, October–December 1993.

[12] T. R. Yechout, S. L. Morris, D. E. Bossert, andW. F. Hallgren, Introduction

to Aircraft Flight Mechanics. AIAA Education Series, American Institute of

Aeronautics and Astronautics, 2003.

[13] M. Rauw, FDC 1.2 - A SIMULINK Toolbox for Flight Dynamics and Control

Analysis, February 1998. Available at http://dutchroll.sourceforge.

net/fdc.html.

[14] H. Goldstein, Classical Mechanics. Cambridge, MA: Addison-Wesley,

1951.

[15] A. V. Rao, Dynamics of Particles and Rigid Bodies: A Systematic Approach.

Cambridge: Cambridge University Press, 2006.

[16] M. J. Sidi, Spacecraft Dynamics and Control. Cambridge Aerospace Series.

New York: Cambridge University Press, 1997.

[17] S. S. Patankar, D. E. Schinstock, and R. M. Caplinger, “Application of

pendulummethod to UAVmomental ellipsoid estimation,” in 6th AIAA

Aviation Technology, Integration and Operations Conference (ATIO), AIAA

2006-7820, September 2006.

[18] M. R. Jardin and E. R. Mueller, “Optimized measurements of UAV mass

moment of inertia with a bifilar pendulum,” in Proceedings of the AIAA

Guidance, Navigation, and Control Conference and Exhibit, AIAA 2007-

6822, August 2007.

292 Bibliography

[19] J. B. Marion, Classical Dynamics of Particles and Systems. New York: Acad-

emic Press, 2nd ed., 1970.

[20] W. E. Wiesel, Spaceflight Dynamics. New York: McGraw Hill, 2nd ed.,

1997.

[21] J. R. Wertz, ed., Spacecraft Attitude Determination and Control. Dordrecht,

Neth.: Kluwer Academic Publishers, 1978.

[22] R. F. Stengel, Flight Dynamics. Princeton, NJ: Princeton University Press,

2004.

[23] K. S. Fu, R. C. Gonzalez, and C.S.G. Lee, Robotics: Control, Sensing, Vision,

and Intelligence. New York: McGraw-Hill, 1987.

[24] J. W. Langelaan, N. Alley, and J. Niedhoefer, “Wind field estimation

for small unmanned aerial vehicles,” in AIAA Guidance, Navigation, and

Control Conference, AIAA 2010-8177, August 2010.

[25] W. F. Phillips,Mechanics of Flight. New Jersey: Wiley, 2nd ed., 2010.

[26] R. Rysdyk, “UAV path following for constant line-of-sight observation,”

in AIAA Journal of Guidance, Control, and Dynamics, vol. 29, no. 5,

pp. 1092–1100, 2006.

[27] J. Osborne and R. Rysdyk, “Waypoint guidance for small UAVs in wind,”

in Proceedings of theAIAA Infotech@Aerospace Conference, September 2005.

[28] G. F. Franklin, J. D. Powell, and M.Workman,Digital Control of Dynamic

Systems. Menlo Park, CA: AddisonWesley, 3rd ed., 1998.

[29] R. W. Beard, “Embedded UAS autopilot and sensor systems,” in Encyclo-

pedia of Aerospace Engineering (R. Blockley and W. Shyy, eds.), pp. 4799–

4814. Chichester, UK: JohnWiley & Sons, Ltd, 2010.

[30] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of

Dynamic Systems. Menlo Park, CA: AddisonWesley, 4th ed., 2002.

[31] “U.S. standard atmosphere, 1976.” U.S. Government Printing Office,

Washington, D.C., 1976.

[32] National Oceanic and Atmospheric Administration, “The world mag-

netic model.” http://www.ngdc.noaa.gov/geomag/WMM/, 2011.

[33] J.-M. Zogg, GPS: Essentials of Satellite Navigation. http://zogg-jm.ch/

Dateien/GPS_Compendium(GPS-x-02007).pdf, u-blox AG, 2009.

[34] B.W. Parkinson, J. J. Spilker, P. Axelrad, and P. Enge, eds.,Global Position-

ing System: Theory and Applications. Reston, VA: American Institute for

Aeronautics and Astronautics, 1996.

[35] E. D. Kaplan, ed., Understanding GPS: Principles and Applications.

Norwood, MA: Artech House, 1996.

[36] M. S.Grewal, L. R.Weill, andA. P. Andrews,Global Positioning Systems, In-

ertial Navigation, and Integration. New Jersey: JohnWiley& Sons, 2nd ed.,

2007.

[37] J. Rankin, “GPS and differential GPS: An error model for sensor sim-

ulation,” in Position, Location, and Navigation Symposium, pp. 260–266,

1994.

[38] R. Figliola andD. Beasley,Theory andDesign forMechanicalMeasurements.

New York: JohnWiley & Sons, Inc., 2006.

[39] S. D. Senturia, Microsystem Design. Dordrecht, Neth.: Kluwer Academic

Publishers, 2001.

Bibliography 293

[40] J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors,

MEMS, and Smart Devices. New York: JohnWiley & Sons, 2001.

[41] V. Kaajakari, Practical MEMS: Design of Microsystems, Accelerometers, Gy-

roscopes, RF MEMS, Optical MEMS, and Microfluidic Systems. Small Gear

Publishing, 2009.

[42] R. E. Kalman, “A new approach to linear filtering and prediction prob-

lems,” Transactions of the ASME, Journal of Basic Engineering, vol. 82,

pp. 35–45, 1960.

[43] F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control

Theory. New York: JohnWiley & Sons, 1986.

[44] A. Gelb, ed., Applied Optimal Estimation. Cambridge, MA: MIT Press,

1974.

[45] B.D.O. Anderson and J. B. Moore, Linear Optimal Control. Englewood

Cliffs, NJ: Prentice Hall, 1971.

[46] R. G. Brown, Introduction to Random Signal Analysis and Kalman Filtering.

New York: JohnWiley & Sons, Inc., 1983.

[47] A. M. Eldredge, “Improved state estimation for miniature air vehicles,”

Master’s thesis, Brigham Young University, 2006.

[48] R. W. Beard, “State estimation for micro air vehicles,” in Innovations in

Intelligent Machines I, J. S. Chahl, L. C. Jain, A.Mizutani, andM. Sato-Ilic,

eds., pp. 173–199, Berlin Heidelberg: Springer Verlag, 2007.

[49] A. D.Wu, E. N. Johnson, andA. A. Proctor, “Vision-aided inertial naviga-

tion for flight control,” Journal of Aerospace Computing, Information, and

Communication, vol. 2, pp. 348–360, September 2005.

[50] T. P. Webb, R. J. Prazenica, A. J. Kurdila, and R. Lind, “Vision-based state

estimation for autonomousmicro air vehicles,”AIAA Journal ofGuidance,

Control, and Dynamics, vol. 30, May–June 2007.

[51] S. Ettinger, M. Nechyba, P. Ifju, and M. Waszak, “Vision-guided flight

stability and control for micro air vehicles,” Advanced Robotics, vol. 17,

no. 3, pp. 617–640, 2003.

[52] J. D. Anderson, Introduction to Flight. McGraw Hill, 1989.

[53] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field

path following for miniature air vehicles,” IEEE Transactions on Robotics,

vol. 37, pp. 519–529, June 2007.

[54] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field

path following for small unmanned air vehicles,” in American Control

Conference, (Minneapolis, MN), pp. 5788–5794, June 2006.

[55] D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov vector fields

for autonomous unmanned aircraft flight control,”AIAA Journal of Guid-

ance, Control, and Dynamics, vol. 31, pp. 1220–1229, September–October

2008.

[56] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Proceedings of the IEEE International Conference on Robotics and

Automation, vol. 2, pp. 500–505, April 1985.

[57] K. Sigurd and J. P. How, “UAV trajectory design using total field collision

avoidance,” in Proceedings of the AIAA Guidance, Navigation and Control

Conference, August 2003.

294 Bibliography

[58] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic for trajec-

tory tracking,” in Proceedings of the AIAAGuidance, Navigation andControl

Conference, AIAA 2004-4900, August 2004.

[59] I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, “Trajectory track-

ing for autonomous vehicles: An integrated approach to guidance and

control,” AIAA Journal of Guidance, Control and Dynamics, vol. 21, no. 1,

pp. 29–38, January–February 1998.

[60] T. W. McLain and R. W. Beard, “Coordination variables, coordination

functions, and cooperative timing missions,” AIAA Journal of Guidance,

Control and Dynamics, vol. 28, no. 1, pp. 150–161, January 2005.

[61] L. E. Dubins, “On curves ofminimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tan-

gents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–516, July

1957.

[62] E. P. Anderson, R. W. Beard, and T. W. McLain, “Real time dynamic

trajectory smoothing for uninhabited aerial vehicles,” IEEE Transactions

on Control Systems Technology, vol. 13, pp. 471–477, May 2005.

[63] G. Yang and V. Kapila, “Optimal path planning for unmanned air

vehicles with kinematic and tactical constraints,” in Proceedings of the

IEEE Conference on Decision and Control, (Las Vegas, NV), pp. 1301–1306,

December 2002.

[64] P. Chandler, S. Rasumussen, and M. Pachter, “UAV cooperative path

planning,” in Proceedings of the AIAA Guidance, Navigation, and Control

Conference, (Denver, CO), AIAA 2000-4370, August 2000.

[65] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-

namic motion planning with moving obstacles,” in Algorithmic and

Computational Robotics: New Directions, pp. 247–264f. Natick, MA: A. K.

Peters, 2001.

[66] F. Lamiraux, S. Sekhavat, and J.-P. Laumond, “Motion planning and

control for Hilare pulling a trailer,” IEEE Transactions on Robotics and

Automation, vol. 15, pp. 640–652, August 1999.

[67] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steer-

ing using sinusoids,” IEEE Transactions on Automatic Control, vol. 38,

pp. 700–716, May 1993.

[68] T. Balch and R. C. Arkin, “Behavior-based formation control for mul-

tirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14,

pp. 926–939, December 1998.

[69] R. C. Arkin, Behavior-based Robotics. Cambridge, MA: MIT Press, 1998.

[70] R. Sedgewick, Algorithms. Addison-Wesley, 2nd ed., 1988.

[71] F. Aurenhammer, “Voronoi diagrams – a survey of fundamental geomet-

ric data struct,”ACMComputing Surveys, vol. 23, pp. 345–405, September

1991.

[72] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

New York: McGraw-Hill, 2002.

[73] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms.

Englewood Cliffs, NJ: Prentice Hall, 2000.

Bibliography 295

[74] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotic Research, vol. 20, pp. 378–400, May 2001.

[75] J.-C. Latombe, Robot Motion Planning. Dordrecht, Neth.: Kluwer Acad-

emic Publishers, 1991.

[76] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. B. and Lydia

E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,

and Implementation. Cambridge, MA: MIT Press, 2005.

[77] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[78] T. McLain and R. Beard, “Cooperative rendezvous of multiple un-

manned air vehicles,” in Proceedings of the AIAAGuidance, Navigation and

Control Conference, (Denver, CO), AIAA 2000-4369, August 2000.

[79] T. W. McLain, P. R. Chandler, S. Rasmussen, and M. Pachter, “Cooper-

ative control of UAV rendezvous,” in Proceedings of the American Control

Conference, (Arlington, VA), pp. 2309–2314, June 2001.

[80] R. W. Beard, T. W. McLain, M. Goodrich, and E. P. Anderson, “Coordi-

nated target assignment and intercept for unmanned air vehicles,” IEEE

Transactions on Robotics and Automation, vol. 18, pp. 911–922, December

2002.

[81] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical

generalized Voronoi graph,” The International Journal of Robotic Research,

vol. 19, pp. 96–125, February 2000.

[82] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-based

exploration: Incremental construction of the hierarchical generalized

Voronoi graph,” The International Journal of Robotics Research, vol. 19,

pp. 126–148, February 2000.

[83] D. Eppstein, “Finding the k shortest paths,” SIAM Journal of Computing,

vol. 28, no. 2, pp. 652–673, 1999.

[84] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path

planning.” TR 98-11, Computer Science Dept., Iowa State University,

October 1998.

[85] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach

to single-query path planning,” in Proceedings of the IEEE International

Conference on Robotics and Automation, (San Francisco, CA), pp. 995–

1001, April 2000.

[86] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid

replanning in dynamic environments,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, (Rome, Italy), April 2007.

[87] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms

for optimal motion planning,” International Journal of Robotic Research,

(in review).

[88] A. Ladd and L. E. Kavraki, “Generalizing the analysis of PRM,” in Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

(Washington, DC), pp. 2120–2125, May 2002.

[89] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for

agile autonomous vehicles,” Journal of Guidance, Control, and Dynamics,

vol. 25, pp. 116–129, January–February 2002.

296 Bibliography

[90] E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with

extended range detectors,” IEEE Transactions on Robotics, vol. 22,

pp. 189–198, February 2006.

[91] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet, “A solution to vicin-

ity problem of obstacles in complete coverage path planning,” in Pro-

ceedings of the IEEE International Conference on Robotics and Automation,

(Washington DC), pp. 612–617, May 2002.

[92] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Cooperative coverage of rectilin-

ear environments,” in Proceedings of the IEEE International Conference on

Robotics and Automation, (San Francisco, CA), pp. 2722–2727, April 2000.

[93] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control

for mobile sensing networks,” in Proceedings of the IEEE International

Conference on Robotics and Automation, (Washington, DC), pp. 1327–

1332, May 2002.

[94] M. Schwager, J.-J. Slotine, and J. J. Daniela Russell, “Consensus learn-

ing for distributed coverage control,” in Proceedings of the International

Conference on Robotics and Automation, (Pasadena, CA), pp. 1042–1048,

May 2008.

[95] J. H. Evers, “Biological inspiration for agile autonomous air vehicles,” in

Symposium on Platform Innovations and System Integration for Unmanned

Air, Land, and Sea Vehicles, (Florence, Italy), NATO Research and Tech-

nology Organization AVT-146, paper no. 15, May 2007.

[96] D. B. Barber, J. D. Redding, T. W. McLain, R. W. Beard, and C. N.

Taylor, “Vision-based target geo-location using a fixed-wing miniature

air vehicle,” Journal of Intelligent and Robotic Systems, vol. 47, pp. 361–382,

December 2006.

[97] Y.Ma, S. Soatto, J. Kosecka, and S. Sastry,An Invitation to 3-DVision: From

Images to Geometric Models. New York: Springer-Verlag, 2003.

[98] P. Zarchan, Tactical and Strategic Missile Guidance, vol. 124 of Progress

in Astronautics and Aeronautics. Washington, DC: American Institute of

Aeronautics and Astronautics, 1990.

[99] M. Guelman, M. Idan, and O. M. Golan, “Three-dimensional minimum

energy guidance,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 31, pp. 835–841, April 1995.

[100] J. G. Lee, H. S. Han, and Y. J. Kim, “Guidance performance analysis

of bank-to-turn (BTT) missiles,” in Proceedings of the IEEE International

Conference on Control Applications, (Kohala, HI), pp. 991–996, August

1999.

[101] E. Frew and S. Rock, “Trajectory generation for monocular-vision based

tracking of a constant-velocity target,” in Proceedings of the 2003 IEEE

International Conference on Robotics and Automation, (Taipei, Taiwan),

September 2003.

[102] R. Kumar, S. Samarasekera, S. Hsu, andK.Hanna, “Registrationof highly-

oblique and zoomed in aerial video to reference imagery,” in Proceedings

of the IEEE Computer Society Computer Vision and Pattern Recognition Con-

ference, (Barcelona, Spain), June 2000.

Bibliography 297

[103] D. Lee, K. Lillywhite, S. Fowers, B. Nelson, and J. Archibald, “An embed-

ded vision system for an unmanned four-rotor helicopter,” in SPIE Optics

East, Intelligent Robots and Computer Vision XXIV: Algorithms, Techniques,

and Active Vision, vol. 6382-24, 63840G, (Boston, MA), October 2006.

[104] J. Lopez, M. Markel, N. Siddiqi, G. Gebert, and J. Evers, “Performance of

passive ranging from image flow,” in Proceedings of the IEEE International

Conference on Image Processing, vol. 1, pp. 929–932, September 2003.

[105] M. Pachter, N. Ceccarelli, and P. R. Chandler, “Vision-based target geo-

location using camera equippedMAVs,” in Proceedings of the IEEE Confer-

ence on Decision and Control, (NewOrleans, LA), December 2007.

[106] R. J. Prazenica, A. J. Kurdila, R. C. Sharpley, P. Binev, M. H. Hielsberg,

J. Lane, and J. Evers, “Vision-based receding horizon control for micro

air vehicles inurban environments,”AIAA Journal ofGuidance,Dynamics,

and Control, (in review).

[107] I. Wang, V. Dobrokhodov, I. Kaminer, and K. Jones, “On vision-based

target tracking and range estimation for small UAVs,” in AIAA Guidance,

Navigation, and Control Conference and Exhibit, pp. 1–11, August 2005.

[108] Y. Watanabe, A. J. Calise, E. N. Johnson, and J. H. Evers, “Minimum-

effort guidance for vision-based collision avoidance,” in Proceedings of

the AIAA Atmospheric Flight Mechanics Conference and Exhibit, (Keystone,

Co), American Institute of Aeronautics and Astronautics, AIAA 2006-

6608, August 2006.

[109] Y. Watanabe, E. N. Johnson, and A. J. Calise, “Optimal 3-D guidance

froma2-Dvision sensor,” in Proceedings of the AIAAGuidance, Navigation,

and Control Conference, (Providence, RI), American Institute of Aeronau-

tics and Astronautics, AIAA 2004-4779, August 2004.

[110] I. H. Whang, V. N. Dobrokhodov, I. I. Kaminer, and K. D. Jones, “On

vision-based tracking and range estimation for small UAVs,” in Proceed-

ings of the AIAA Guidance, Navigation, and Control Conference and Exhibit,

(San Francisco, CA), August 2005.

[111] R. W. Beard, D. Lee, M. Quigley, S. Thakoor, and S. Zornetzer, “A new

approach to observation of descent and landing of future Mars mission

using bioinspired technology innovations,” AIAA Journal of Aerospace

Computing, Information, and Communication, vol. 2, no. 1, pp. 65–91,

January 2005.

[112] M. E. Campbell and M. Wheeler, “A vision-based geolocation tracking

system for UAVs,” in Proceedings of the AIAA Guidance, Navigation, and

Control Conference and Exhibit, (Keystone, Co), AIAA 2006-6246, August

2006.

[113] V. N. Dobrokhodov, I. I. Kaminer, and K. D. Jones, “Vision-based track-

ing and motion estimation for moving targets using small UAVs,” in

Proceedings of the AIAA Guidance, Navigation, and Control Conference and

Exhibit, (Keystone, Co), AIAA 2006-6606, August 2006.

[114] E. W. Frew, “Sensitivity of cooperative target geolocation to orbit coor-

dination,” Journal of Guidance, Control, and Dynamics, vol. 31, pp. 1028–

1040, July–August 2008.

298 Bibliography

[115] D. Murray and A. Basu, “Motion tracking with an active camera,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 449–

459, May 1994.

[116] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo

control,” IEEE Transactions on Robotics and Automation, vol. 12, pp. 651–

670, October 1996.

[117] J. Oliensis, “A critique of structure-from-motion algorithms,” Computer

Vision and Image Understanding (CVIU), vol. 80, no. 2, pp. 172–214, 2000.

[118] J. Santos-Victor and G. Sandini, “Uncalibrated obstacle detection using

normal flow,”Machine Vision and Applications, vol. 9, no. 3, pp. 130–137,

1996.

[119] L. Lorigo, R. Brooks, and W. Grimson, “Visually guided obstacle

avoidance in unstructured environments,” in Proceedings of IROS ’97,

(Grenoble, Fr.), September 1997.

[120] R. Nelson and Y. Aloimonos, “Obstacle avoidance using flow field di-

vergence,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, pp. 1102–1106, October 1989.

[121] F. Gabbiani, H. Krapp, and G. Laurent, “Computation of object

approach by a wide field visual neuron,” Journal of Neuroscience, vol. 19,

no. 3, pp. 1122–1141, February 1999.

[122] R. W. Beard, J. W. Curtis, M. Eilders, J. Evers, and J. R. Cloutier, “Vision-

aided proportional navigation for micro air vehicles,” in Proceedings of

the AIAAGuidance, Navigation and Control Conference, (HiltonHead, NC),

American Institute of Aeronautics and Astronautics, AIAA 2007-6609,

August 2007.

[123] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Waltham, MA:

Blaisdell Publishing Company, 1969.

[124] M. Guelman, “Proportional navigation with a maneuvering target,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 8(3), pp. 364–

371, May 1972.

[125] C. F. Lin,Modern Navigation, Guidance, and Control Processing. Englewood

Cliffs, NJ: Prentice Hall, 1991.

[126] J. Waldmann, “Line-of-sight rate estimation and linearizing control

by an imaging seeker in a tactical missile guided by proportional

navigation,” IEEE Transactions on Control Systems Technology, vol. 10,

pp. 556–567, July 2002.

[127] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applica-

tions to Orbits, Aerospace, and Virtual Reality. Princeton, NJ: Princeton

University Press, 1999.

[128] J. P. Corbett and F. B. Wright, “Stabilization of computer circuits,” in

WADC TR 57-25 (E. Hochfeld, ed.), (Wright-Patterson Air Force Base,

OH), 1957.

[129] G. Platanitis and S. Shkarayev, “Integration of an autopilot for a micro

air vehicle,” in Infotech@Aerospace, AIAA 2005-7066, September 2005.

[130] R. Rysdyk, “Course and heading changes in significant wind,” in AIAA

Journal of Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1311–12,

July-August 2010.

Index

Absolute Pressure Sensor, 145

Absolution Pressure Sensor, 126

Accelerometers, 120, 147, 156

Aerodynamic Coefficients, 51

Aileron, 42

Airspeed, 18, 20, 22, 54, 57

Altitude, 62

Angle of Attack, 16, 20, 41, 57

Autopilot; Airspeed Hold using Pitch, 110;

Airspeed Hold using Throttle, 111;

Altitude Hold Using Pitch, 108; Course

Hold, 102; Longitudional, 106; Pitch

Attitude Hold, 106; Roll Attitude Hold,

99; Side Slip Hold, 104

Bandwidth Separation, 104

Coordinate Frames, 8, 226; Body Frame,

14, 227; Camera Frame, 227; Gimbal

Frame, 227; Gimbal-1 Frame, 226;

Inertial Frame, 12; Stability Frame, 16;

Vehicle Frame, 12; Vehicle-1 Frame, 13;

Vehicle-2 Frame, 14; Wind Frame, 17

Coordinated Turn, 64, 69, 166, 167

Course Angle, 20, 21, 140

Crab Angle, 20, 22

DesignModels, 4, 60, 164

Differential Pressure Sensor, 129, 146

Dubins Path; Computation, 195;

Definition, 194; RRT Coverage, 222; RRT

Paths through Obstacle Field, 217;

Tracking, 200

Dutch-roll Mode, 91

Dynamics; GuidanceModel, 171;

Rotational Motion, 33; Translational

Motion, 32

EgoMotion, 234

Elevator, 42

Estiamtion; Heading, 158

Estimation; Airspeed, 146; Altitude, 145;

Angular Rates, 145; Course, 148, 158;

Groundspeed, 148; Position, 148, 158;

Roll and Pitch Angles, 147, 156; Wind,

158

Euler Angles, 12, 29; Heading (Yaw)), 13;

Pitch, 14; Roll, 14

Fillet, 189

Flat EarthModel, 231, 239

Flight Path Angle; Inertial Referenced, 20,

165, 167

Flight-path Angle; Air Mass Referenced, 22

Focal Length, 228

Forces; Drag, 41, 44, 45, 47; Gravitation,

40; Lift, 41, 44, 47; Propulsion, 53

Gimbal; Azimuth Angle, 227, 231;

Dynamics, 229; Elevation Angle, 227,

231

GPS, 134, 158

Ground Speed, 18, 22, 54, 140

Half Plane, 188, 191, 200

Heading Angle, 13, 20, 23

Inertial Matrix, 35

Kalman Filter; Basic Explanation, 149;

Continuous-Discrete to Estimate Roll

and Pitch, 156; Continuous-Discrete to

Position, Course, Wind, Heading, 158;

Derivation, 151; Extended Kalman Filter,

156; Geolocation, 232

Kinematics; GuidanceModel, 168;

Position, 30, 61, 165, 166; Rotation, 31,

61

Lateral Motion, 68, 78, 99

Linearization, 78

Load Factor, 165

Longitudinal Motion, 43, 50, 71, 82, 105

Low Pass Filter, 234

Low-pass Filter, 144

Minimum Turning Radius, 65

Normalized Line of Sight Vector, 229

Pline, 175

Porbit, 181

Path Following, 174

PhugoidMode, 89

PID: Digital Implementation, 114

Pitch Angle, 14

PitchingMoment, 44, 45

Pitot Tube, 130

Precision Landing, 240

Proportional Navigation, 240, 242

300 Index

Rapidly Exploring Random Trees (RRT),

212; 3-D Terrain, 216; Point to Point

Algorithm, 215; Smoothing Algorithm,

217; Using Dubins Paths, 217

Rate Gyros, 124, 145, 156

Right Handed Rotation, 10

Roll Angle, 14

Roll Mode, 90

RotationMatrices, 9; Body to Gimbal, 227;

Body to Gimbal-1, 227; Body to Stability,

17; Body toWind, 18; Gimbal to

Camera, 227; Gimbal-1 to Gimbal, 227;

Stability toWind, 18; Vehicle to Body,

15; Vehicle to Vehicle-1, 14; Vehicle-1 to

Vehicle-2, 14; Vehicle-2 to Body, 15

Rudder, 42

Saturation Constraints, 97

Short-periodMode, 87

Side Slip Angle, 17, 20, 41, 57, 71

SimulationModel, 4, 61, 277

Spiral-divergenceMode, 90

Stall, 46

State-space Models; Lateral, 78;

Longitudinal, 82

State Variables, 28

Successive Loop Closure, 95

Time to Collision, 238

Transfer Functions; Aileron to Roll, 69, 99;

Airspeed to Altitude, 74; Elevator to

Pitch, 73, 106; Pitch to Airspeed, 110;

Pitch to Altitude, 74, 108; Roll to Course,

70, 102; Roll to Heading, 70; Rudder to

Side Slip, 71, 104; Throttle to Airspeed,

77, 111

Trim, 65, 78

Vector Field; Orbit, 183; Straight Line, 179

Voronoi Path Planning, 207

Waypoint Configuration, 200

Waypoint Path, 187

Wind Gusts, 54; DrydenModel, 55

Wind Speed, 18, 22, 54

Wind Triangle, 20, 22, 160

	Cover
	SMAL LUNMANNED AIRCRAFT: Theory and Practice
	©
	Contents
	Preface
	1 Introduction
	2 Coordinate Frames
	3 Kinematics and Dynamics
	4 Forces and Moments
	5 Linear Design Models
	6 Autopilot Design Using Successive Loop Closure
	7 Sensors for MAVs
	8 State Estimation
	9 Design Models for Guidance
	10 Straight-line and Orbit Following
	11 Path Manager
	12 Path Planning
	13 Vision-guided Navigation
	APPENDIX A: Nomenclature and Notation
	APPENDIX B: Quaternions
	APPENDIX C: Animations in Simulink
	APPENDIX D: Modeling in Simulink Using S-functions
	APPENDIX E: Airframe Parameters
	APPENDIX F: Trim and Linearization in Simulink
	APPENDIX G: Essentials from Probability Theory
	APPENDIX H: Sensor Parameters
	Bibliography
	Index

