
BEYOND
PHOTOGRAPHY

THE DIGITAL DARKROOM

Gerard J. Holzmann

BEYOND
PHOTOGRAPHY

— THE DIGITAL DARKROOM —

Gerard J. Holzmann

AT&T Bell Laborator ies
Murray Hill, New Jersey 07974

PRENTICE-HALL
Englewood Cliffs, New Jersey 07632

Librar y of Congress Catalog Card Number: 88-5992

Prentice Hall Software Series
Br ian W. Ker nighan, Advisor

Copyr ight © 1988 by Bell Telephone Laborator ies, Incor porated.

All rights reserved. No par t of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any for m or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.
Pr inted in the United States of America.

This book was typeset in Helvetica by the author, using an Autologic APS-5 phototype-
setter and a DEC VAX 8550 running the 9th Edition of the UNIX® operating system.

DEC, PDP and VAX are trademar ks of Digital Equipment Corporation. UNIX is a regis-
tered trademar k of AT&T.

Pr inted in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-074410-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

First This

In more than one way this may be a confusing book. It is not about pho-
tographs and it is not about computers, at least not in the traditional way. The
book shows what happens when a programmer with the ambition of a photog-
rapher and the facilities of a large research lab gets his hands on a photo digi-
tizer and starts writing programs to transfor m images in every conceivable and
inconceivable way. Leafing through the collection of pictures reproduced here
you will probably wonder who on earth would care to go to so much trouble to
create these nonsensical images. Yet these computer manipulated pho-
tographs can be fascinating. If they were not so easy to create, they might
almost pass for intricate wor ks of art. Most of the images reproduced here,
however, were made in just a few seconds of computer time and startled their
maker as much as the occasional viewer.
This material is just too wonderful to pass up. This book was made to share
the images and the picture editing technique with more people. There’s no
deep message behind them, no claim on originality, and no artistic pretense. I
do want to show that computer-manipulated photos do not have to be fuzzy
and ugly. With some effor t, and with the right tools, photos can be digitized,
processed, and reproduced close to the resolution of commonly used films
and photographic papers and certainly with enough detail to fool the human
obser ver. The pictures collected here are for you to enjoy, to stare at, to feed
your imagination, and to tempt you to build your own digital darkroom and
duplicate the effects.

Gerard J. Holzmann

vii

Acknowledgments

I thank all people who so courageously agreed to have their distorted portraits
included in this book. Many of them have also contributed ideas for image
transfor mations, have helped me build tools to perfor m them elegantly, and
have forced me to keep rewr iting the text until it was readable. I am particu-
lar ly grateful to Jon Bentley, Brian Ker nighan, and Doug McIlroy. Their careful
reading of early drafts of the text helped me considerably to improve both the
str ucture and the appearance of the book.
It is a pleasure to acknowledge also the inspiration and crucial help of Rob
Pike and Ken Thompson during the development of the software. Rob Pike
contr ibuted many ideas for image transfor mations (including the idea for the
cover picture) and helped me develop and print many versions of the nega-
tives for the pictures reproduced in this book. Ed Sitar helped me overcome
numerous problems that stand between an idea and its realization by miracu-
lously always finding just the right piece of equipment that I needed. Andrew
Hume spent more days and weeks than he would care to remember to get
sensitive image processing equipment to wor k with our 9th Edition UNIX sys-
tems. Mar y Bittr ich, Beate Oestreicher, and Judy Paone helped me track
down and ver ify much of the infor mation presented.
Without all these people I could not have written this book. I thank them all.

GJH

viii

1 Beyond Photography

A couple of years ago I visited a friend who was preparing a magazine ad for
publication. The ad was for the U.S. Army and it showed a small group of
young people in unifor m under a happy slogan. Most of the people in the
group were white males. There was one woman and one black male among
them. My fr iend’s job was to retouch the photo. Apar t from removing the odd
pimple or freckle he was asked to raise the rank of the woman and the black
male to be higher than those of their colleagues. Not only are we easy to fool,
photography has made it easy for us to fool ourselves in quite subtle ways.
It didn’t take long for portrait photographers to discover that even if their
spar kling conversation would fail to put the twinkle in the eyes of a model, a
speck of white paint could do the job. And they could really please their cus-
tomers by removing bags and wrinkles, typically by scraping off the offending
areas straight from the negative (called knifing the negative). Of course, to
retouch a photo invisibly does require skill. But there’s so much more that you
can do with photos in a darkroom. What amateur photographer hasn’t exper i-
mented with multiple exposures or solarization, if only by accident? There is
in fact a rich tradition for this type of image manipulation. It is interesting to
see how far back this history of tamper ing with photographs really goes.

How to Photograph a Ghost
Photography dates from the beginning of the nineteenth century. The oldest
sur viving photograph was taken by the Frenchman Joseph Nièpce in 1827.
Nièpce died in 1833. His coworker Louis Daguerre continued the wor k, and
together with Nièpce’s son Isidore sold the invention to the French govern-
ment on 19 August 1837.

1

2 BEYOND PHOTOGRAPHY CHAPTER 1

The true ancestor of today’s photography, how ever, is not the daguerrotype
but something called a kalotype. This method, the first to use photographic
negatives, was patented by the Englishman William Henry Fox Talbot in 1841.
What must have been the first exhibition of photographic portraits was orga-
nized in August 1840 by a Swiss painter named Johann Isenring. The por-
traits were hand colored, and, says a French history book* to our satisfaction,
Isenr ing showed the photos

après avoir gratté la pupille des yeux sur la plaque pour donner vie à ses per-
sonnages. — after having scratched the pupils of the eyes on the photo-
graphic plate to bring the images to life.

Histoire de la photographie (p. 24)
So, not much time was lost in the attempt to perfect perfection. And it was not
an exception either. Dawn Ades, for instance, writes:

It was common practice in the nineteenth century to add figures to a land-
scape photograph, and to print in a different sky. The latter type of ‘combina-
tion printing’ was to compensate for the defects in early cameras, because it
was almost impossible [...] to obtain in one exposure both sharp foreground
detail and impressive meteorological effects.

Photomontage (p. 89)

Combination Print

By 1859 the now familiar technique of double exposure had been described in
detail by the English photographer Henry Peach Robinson, in a booklet with
the revealing title ‘‘On printing photographic pictures from several negatives.’’
Double exposure proved to be a convincing way to demonstrate the existence
of ghosts in the late nineteenth century. The procedure was as follows. A
photographic plate was pre-exposed with the desired image of a forefather.
Then, in the presence of an objective audience, the real picture was taken (on
the same plate) and developed. Out came a photo of the scene that had just

* Complete references can be found at the end of this chapter.

CHAPTER 1 BEYOND PHOTOGRAPHY 3

been photographed with the image of the ghost in the background.
Not everybody was happy with this photographic trickery. In 1856 a series of
angry letters appeared in the Jour nal of the London Photographic Society,
protesting the doctoring of photographs. In par ticular, these writers wanted
retouched photographs banned from all exhibitions of the society. Aaron
Scharf writes:

...retouching had reached such proportions, it seems, that it became difficult
to find photographs which had not been embellished by hand.

Creative Photography (p. 14)
The protests were, of course, to no avail. Distorting or enhancing pho-
tographs remained a popular pastime, as illustrated by the following selection
of books from that period:

1861 − Alfred Wall, ‘‘A manual of artistic colouring as applied to pho-
tographs.’ ’ − A first description of the still popular method of hand coloring
black-and-white photographs.
1866 − Antoine Claudet, ‘‘A new means of creating harmony and artistic
effect in photographic portraits.’ ’ − The method consisted of changing the
focus of the lens during an exposure. After all, exposure times were still long
enough.
1869 − Henr y Peach Robinson, ‘‘Pictor ial effect in photography.’ ’ − A detailed
descr iption of combination printing methods, for instance by using special
cloud negatives.
1889 − Jacques Ducos du Hauron, ‘‘Photographie transfor miste.’ ’ − A most
enter taining booklet on photographic distortion techniques. It descr ibes
methods to make photographic caricatures, using cylindrical mirrors, coni-
cally shaped negatives, tilted printing paper, or by using special lenses that
change the image during exposures. It even includes a discussion of a
sophisticated technique for separating the emulsion from a photographic
plate and reshaping it to achieve special effects.
1893 − Bergeret & Drouin, ‘‘Les recreations photographiques.’ ’ − An encyclo-
pedia of techniques for photographic image manipulations.
1896 − Walter Woodbur y, ‘‘Photographic amusements.’ ’ − A book that fea-
tured, for instance, a technique called multiphotography. The method was
simply to use mirrors to photograph someone from several angles at the
same time. The book was printed in no few er than 11 editions between 1896
and 1937.

Composite portraits have also been popular for quite some time. The simple
composite of the Mona Lisa and a self-portrait of Leonardo da Vinci shown on
the first page of this chapter is a recent example. It was used by artist Lillian
Schwar tz to support a theor y that the Mona Lisa could be another self-portrait
of da Vinci. Ewing and McDermott wrote in the introduction to an entertaining
book on photo composites by Nancy Burson:

Fr ancis Galton, a biologist, founder of eugenics, and cousin of Charles Dar-
win, probably made the first composite photographs in 1877. Caught up in
the nineteenth century’s passion for the classification of types, he hoped to

4 BEYOND PHOTOGRAPHY CHAPTER 1

make pictures of the average criminal, the consumptive patient, the military
officer, and so on.

Composites (p. 12)

John Heartfield (1931) Jerr y Uelsmann (1970)

Around 1920, John Heartfield and George Grosz of the Berlin Dada group
were among the first to use photocollage and photomontage artistically.
Hear tfield became famous for his fierce photomontages directed against the
rise of Hitler in Germany. Today, of course, image manipulation is as popular
as ever, though much less debated. In Germany, artist Klaus Staeck follows
in Heartfield’s footsteps by using photomontage as a political weapon in his
work. In Amer ica, photographer Jerry Uelsmann has perfected combination
pr inting with modern dar kroom techniques. He makes impressive wor ks
using up to six enlargers for a single print.
From Isenring in 1840 to Uelsmann today, photomontage has made quite a
histor y. If anything, it shows that almost anything can be done and has been
done to change a photographic image.

Why Bother with Computers?
If almost everything can and has been done in conventional darkrooms, why
should we even bother trying to use computers? There are two main reasons.
First of all, everything one can do to a digitized picture with a computer is
reversible, which makes it much easier to play around with a picture, trying dif-
ferent transfor mations. Second, not only can the computer mimic everything a
skilled professional can do with chemicals and enlargers in a darkroom, it can
indeed also do things that are almost impossible to do any other way. How
would you smoothly fade a picture from a negative to a positive version in a
dar kroom? In a darkroom you can correct perspective by tilting the enlarger
lens or the printing paper, but how do you hold the paper to twist a picture into
a spiral? Believe it or not, to a certain extent you can even restore the focus

CHAPTER 1 BEYOND PHOTOGRAPHY 5

in a fuzzy picture or remove motion blur with a computer. Less than half of
the image transfor mations shown in Chapter 4 can be done in a conventional
dar kroom, and only with considerably more effor t.
So, there’s a lot to be said for using the computer as a digital darkroom.
Besides, there are a few other and perhaps even more convincing reasons for
using a computer darkroom: you never get your hands wet, you can but do not
have to turn off the light, and it can be ver y enter taining.

An Overview
In the next few chapters we will explore the new wor ld of digital photography
and the type of image manipulation it makes possible.
In Chapter 2 we will see what type of hardware you would need to equip a
computer as a darkroom. You need some way to get the picture into the com-
puter, with a digitizer or a frame-grabber. And you need some way to print it
back on film or paper with a printer. Once the image is in the computer, noth-
ing stops you from turning it inside out. Beware, you will soon find out what
this means. For this you need software, and this is where it gets really inter-
esting.
Chapter 3 explains in detail how we can build a language for defining image
transfor mations. The picture processing language serves as an example of
the new types of digital darkroom tools that the photographer of the future
may use. It shows how you can filter, enhance, and transfor m images without
having to worr y much about the theory that is behind it all.
Chapter 4 presents an array of maltreated pictures that illustrate the new pos-
sibilities. Each picture is accompanied by a brief explanation of how the effect
was achieved.
Chapter 5 gives complete details on how to build a digital darkroom on your
own personal computer and reproduce almost everything discussed in this
book.
The book concludes with a catalogue of useful transfor mations that is pre-
sented in Chapter 6.

Books Mentioned
Some of the books mentioned in the text are listed below. Not all books,
however, are still in print.

Composites, Nancy Burson, Richard Carling, and David Kramlich, Beech Tree
Books, New Yor k, 1986, ISBN-0-688-02601-X.
Creative Photography, Aaron Scharf, Reinhold Publishing, New Yor k, 1965,
Librar y of Congress #65-13370.
Die Kunst findet nicht im Saale statt, Klaus Staeck, Rowohlt Ver lag, Hamburg,
1976, ISBN 3-498-06114-3.
Fantastic Photographs, Attilio Colombo, Random House, New Yor k, 1979,

6 BEYOND PHOTOGRAPHY CHAPTER 1

ISBN 0-860-92017-8.
John Heartfield Leben und Wer k, Wieland Herzfelde, VEB Ver lag der Kunst,
Dresden, 3rd printing 1986, LSV-8116.
Histoire de la photographie, Jean A. Keim, Presses Universitaires de France,
Paris, 1970.
Photomontage, Dawn Ades, Thames and Hudson, London, 1976, ISBN
0-500-27080-5.
Silver Meditations, Jerr y N. Uelsmann, Morgan & Morgan Publishing, Dobbs
Ferr y, N.Y., 1975, ISBN 0-871-00087-3.

2 Image Processing

One of the first machines that was specifically built to translate a photograph
into a digital code was the Bartlane cable picture transmission system from
the early 1920s. In about three hours the Bartlane system could transmit a
photo from New Yor k to London, with sufficient resolution to allow the photo to
be printed in a newspaper. Image processing with computers did not start
until the sixties, when the first lunar probes were launched. Somehow the
people at NASA’s Jet Propulsion Lab in Pasadena were able to transfor m the
fuzzy and distorted little pictures returned by the Ranger and Surve y er space-
craft into the detailed images that hit the pages of Life magazine. How was
this done? There is in fact quite some theory behind these image enhance-
ments. The good news, how ever, is that the process is by now so standard-
ized that it can be translated into a small set of ‘‘digital darkroom tools’’ that
can be used and understood by anyone.

Digital Photos
Computers wor k well with numbers, and they can in principle handle any
problem that can be translated into numbers. This is not just true for problems
with a mathematical flavor. It is also true for photos. A photograph, after all,
is just a large collection of dots on a piece of paper. Each dot can have a
br ightness and perhaps a color. The number of possible dots, brightness val-
ues, and colors can be large, but is usually limited. This means that any
photo can be translated into numbers and stored in a computer. How many
numbers does it take to define a photo? In the next chapter we will see that
roughly 20 million numbers can record all the infor mation on a single 35mm
black-and-white negative, where each number has a value between 0 and
255. Since this is quite a fixed number, we can even calculate the maximum

7

8 BEYOND PHOTOGRAPHY CHAPTER 2

number of different pictures that can be made on a 35mm negative. It is esti-
mated that all photographers, amateur and professional together, take about
10 billion or 1010 pictures per year. The maximum possible number of pic-
tures is 25620,000,000. At our current rate, then, we will not run out of things to
photograph for another 1048,164,799 years, give or take a few.
It is actually remarkable that we can translate (digitize) a photograph, any
photograph, into a set of numbers without losing infor mation. The numbers
are much like a negative: at any time they can be used to recreate the original
image. But better still, these digital negatives are much easier to store. They
do not age or fade, and they can be manipulated just as easily in a computer
as real negatives can be manipulated in a darkroom. It is not unlikely that
within the next ten years the conventional camera we all use today will be
replaced by a digital camera that takes photos on a floppy disk that is ‘‘pro-
cessed’’ in a nor mal personal computer with the type of software presented in
this book. The photos can be shown on a television set or printed with a high-
resolution film printer that may someday be as standard as the dot matrix
pr inter of a personal computer today.
There are signs that this development is under way. Equipment for image
recording and replay has over the years become smaller and smaller, so
much so that the difference in size between the latest video ‘‘camcorders’’ and
a nor mal SLR (single-lens reflex) photo camera has become almost negligi-
ble. In the fall of 1986 companies such as RCA, Hitachi, NEC, and Toshiba
introduced the first digital video recorders that internally sample and digitize
video images. So far, the digital capabilities of these recorders are used
mostly for special effects such as high-quality freeze frame, slow motion, and
‘‘inser t pictures’’ (a second video image inserted in the corner of the screen).
The move , however, is in the direction of a completely digital video system,
and with that it will become ver y easy to hook up a video recorder to a com-
puter and capture video images on a computer disk.

Digital Cameras
Digital SLR cameras have been in development for almost ten years. It first
became possible to build these cameras with the availability of large CCD
arrays. The CCD or charge-coupled device was invented by Willard S. Boyle
and George E. Smith at Bell Labs in the early 1970s (the patent is dated
December 31, 1974). It wor ks much like a photocell, translating brightness
values into electrical signals. By packing thousands of these CCD elements
onto a chip, a solid-state image sensor can be constructed that can almost
instantly sample an image and encode it into an electrical or even a digital sig-
nal. The first application of the CCD image sensors was in solid-state video
and television cameras. The resolution of the image sensor depends trivially
on the number of CCD elements in the array. The largest CCD device cur-
rently available is a 2048×2048 array made by Tektronix, Inc. It measures 2.5
inches square, which makes it also the largest integrated circuit made to date.
The CCD image sensors have a number of important advantages over other
types of photo detectors, and even over conventional photographic film. First,

CHAPTER 2 IMAGE PROCESSING 9

they have a much higher quantum efficiency, that is, they are more sensitive to
light. They also have a super ior linear ity and a large dynamic range, which
means that there is a simple fixed relation between the brightness of an image
and the response of a CCD element for a wide range of brightness values.
Finally, the CCD sensors produce a high-quality and stable signal, with ver y
little noise. They have, in fact, only one real disadvantage. The larger cells
are still hard to make and are therefore expensive.

Willard S. Boyle (l.) and George E. Smith
Demonstration of the First CCD Camera in Dec. 1974

The first truly digital cameras for making photographs have yet to be built.
Kodak’s subsidiar y Videk has developed a high-resolution black-and-white
CCD camera, named the Megaplus, that comes close to such a general pur-
pose digital camera. The camera is built around a 1340×1037 dot image sen-
sor and produces digital output. So far, though, the Megaplus camera has no
independent image storage capability; it is meant to be used as a scanner
with a fixed connection to a personal computer. The first version being mar-
keted by Videk is also quite expensive (over $10,000). It has, how ever, all the
features of a serious forer unner of the digital camera of the future.
A low-resolution alternative to a fully digital camera is already available today:
the still video camera. It has a CCD image sensor, it records photos on floppy
disk instead of film, and in fact the only difference from a real digital camera is
that it is based on video technology rather than computer technology. Let us
look in a little more detail at some of these cameras, though it is good to keep
in mind that they cannot compete with the price and resolution of conventional
photo cameras and films just yet.

Still Video Cameras
Several large companies, most notably Canon, Fuji, Kodak, and Sony, have
developed, or are in the process of developing, a new generation of SLR
photo cameras using CCD image sensors and video technology. In 1980

10 BEYOND PHOTOGRAPHY CHAPTER 2

Sony demonstrated the first ‘‘still video image’’ camera, the Mavica, at the
Photokina in Germany. Canon soon followed with a still video camera called
the RC-701. An exper imental version was tested in practice during the Los
Angeles Olympic Games in 1984. In May 1986 Canon announced it as a
commercial product, and with that it became the first such camera actually
being sold. Sony began marketing the Mavica camera in October 1987.
Kodak followed with a prototype still video camera in the first half of 1988.

The Canon RC-701

Shown above is a picture of Canon’s RC-701 camera. It looks like a nor mal
SLR photo camera, it has all the same controls, but it takes photos on a floppy
disk instead of on a film. All main companies are wor king on a line of prod-
ucts to support the new still video imaging systems. Canon, Sony, and Kodak
all have dev eloped still video recorders and players that accept the new photo
floppy disks. All three companies also have dev eloped still video image
pr inter systems for producing hardcopy output.
The floppy disk for mat for the still video cameras has been standardized
among the major companies. The roll-film of the future is a small 2×2 inch
floppy disk that can store up to 50 color photos. To ease the transfer of
images to and from video recorders, the photos are stored in video for mat, not
in digital for m. An immediate consequence of this choice is that the resolution
of the still video cameras is rather crude. The CCD image sensor in the cam-
eras is capable of recording approximately 780×490 dots per image. The
effective resolution of a video image, how ever, is typically not higher than 480
dots per line and 480 lines per image. To make matters worse, the Canon still
video camera records only one of the two ‘‘fields’’ that make up a video frame,
e.g., only the odd-numbered lines of the picture. This reduces the effective
resolution of the pictures to about 480×240 dots per image. The Kodak proto-
type camera and the Sony Mavica camera do not have this restriction, but
also the resolution of a full video frame is still a far cry from the roughly
4000×3000 dots of a conventional film.
The reason for this poor resolution is clearly not in the cameras but in the
recording for mat chosen and its origin in video technology. To compete with

CHAPTER 2 IMAGE PROCESSING 11

conventional films the resolution of the new cameras will have to get at least 5
times higher, and the price will have to get at least that much lower. There is,
however, reason to believe that this can and will happen. One possibility is
that the next generation of digital cameras will use truly digital storage of data
on miniature floppy disks that can be read directly by a personal computer.
The other possibility is the adoption, at least for digital photography, of the
new high-definition television standard (HDTV) that has, quite independently,
also been in preparation for several years. The HDTV standard would double
the resolution of television and video images. Below we will talk a little more
about the type of equipment that is available for digital photography right now.

Scanners and Digitizers
The simplest method to digitize a photograph is to send it to a graphics lab
that has good scanning equipment. For a modest fee, say between $10 and
$15, they will digitize a print or a slide and provide you with a floppy disk or a
computer tape in the for mat you specify.
Another possibility is to buy a graphics board for the specific personal com-
puter that you own (e.g., one of the TARGA boards for the AT&T personal
computers). Most graphics boards have a frame-grabbing capability, that is,
they have a video input port that allows you to digitize video frames directly
from a video recorder or video camera. The resolution will be lower than what
you can get from a good scanner, but the convenience of having your own dig-
itizer on line will be a definite plus.
By far the best method is, of course, to purchase your own photo-scanner or
digitizer. For not too much money you can buy small, low-resolution scanners
that connect directly to a personal computer. They are adver tised in many
popular journals, such as Byte magazine. Commercially available high-reso-
lution scanners range in price from a few hundred to a few hundred thousand
dollars. As can be expected, the more money you spend, the better scanner
you can buy. A good scanner that connects to an IBM PC or an Apple Macin-
tosh, for instance, is the SpectraFax 200, made by the SpectraFax Corpora-
tion, in Naples, Flor ida. The scanner can digitize 8×10 inch color prints at 200
dots per inch, and costs about $4000.
The scanner that was used to digitize photos for this book costs about
$30,000. It can scan both opaque and transparent images (i.e., both prints
and negatives) at up to 750 dots per inch (8 bits per dot) over an image area
of maximally 8×10 inches. It is sold by Imagitex Inc., in Nashua, New Hamp-
shire.
Most digitizers of this type hold a single array of photo cells or CCD elements
that can be moved mechanically along the length of a picture. Line by line the
picture can then be scanned, with a resolution that is determined by the num-
ber of cells in the array. The electrical character istics of the photo cell change
under the influence of the light that falls on it. The scanner obtains a reading
from each cell in the array that corresponds to the brightness of the image at
the precise spot within the image that was focused on the cell. The cheaper
scanners have few er cells in the array and a smaller range of brightness

12 BEYOND PHOTOGRAPHY CHAPTER 2

values that can be distinguished. We will come back to the effect of this on
image quality in Chapter 3. Be war ned, though, that if you want to be able to
process images of acceptable quality you need a system that can produce
512×512 dots (pixels) or more, with at least 8 bits per dot for black-and-white
images, and at least 24 bits per dot for color images (8 bits each for red,
green, and blue).

Video Printers and Film Printers
After you have scanned in the image and processed it in the digital darkroom
that lives in your home computer, the image must somehow be put back on
film or paper. The cheapest solution is simply to snap a picture from the mon-
itor of your system with a Polaroid camera, but you are not likely to be satis-
fied for long with the quality of such prints.
A good solution is again to send a floppy disk or a tape with the digital output
to a graphics labs and have them produce a high-quality image with good
equipment. The graphics lab in this case perfor ms the function of the camera
store where you would go with a conventional film to have prints made. The
problem for the time being is that there are not many graphics labs that pro-
cess digital images. But that may change.
An alternative is to use a still video image printer that will allow you to produce
a medium-resolution print of any video image. Still video image printers are
sold by Sony, Kodak, and Canon. The price is around $4000 for the printer
and about $1 per print made.
The best, but also the most expensive, solution is to buy your own high-reso-
lution digital film printer that allows you to write back images onto either
Polaroid film or 35mm negatives. A digital film printer reads the encoded
image and var ies the brightness of a light beam that writes the picture back to
film in accordance with the processed infor mation stored in the computer. As
with scanners, there are cheap solutions that wor k slowly, at low resolution or
with only a few brightness values that can be written back to film, and there
are expensive solutions that can wor k miracles. The most expensive film
pr inters, such as the ones used to make animation movies at the Disney Stu-
dios, can cost up to half a million dollars. The one that was used to prepare
this book is the QCR D4/2 system made by Matr ix Instr uments Inc. in Orange-
burg, New Yor k. It has a maximum resolution of 4096×4096 dots with a
br ightness range from 0 to 255. It is relatively slow: it takes about 20 minutes
to put a color image back on film at full resolution. Compared to its (up to 50
times) faster brothers it is also relatively cheap. It costs about $20,000.

Fur ther Reading
A gentle and readable introduction to image processing, including an overview
of the early wor k done at NASA’s Jet Propulsion Lab in Pasadena, can be
found in the March 1987 special issue of Byte magazine. The more theoreti-
cally inclined will probably find more than they bargain for in the following
books:

CHAPTER 2 IMAGE PROCESSING 13

Digital Image Processing, by William K. Pratt, John Wiley & Sons, New Yor k,
1978, 750 pgs., ISBN 0-471-01888-0.
Digital Image Processing, by R. C. Gonzalez and P. A. Wintz, Addison-Wes-
ley, Reading, Mass., 1977, 431 pgs., ISBN 0-201-02596-5.
Digital Filters — Theory and Applications, N. K. Bose, Elsevier Science Pub-
lishing Co., New Yor k, 1985, 496 pgs., ISBN 0-444-00980-9.

3 The Digital Darkroom

Computers wor k with numbers, not pictures. To get a computer to wor k on a
picture we have to find a way to represent the image in numbers. For tunately,
the first thing that comes to mind turns out to be perfectly wor kable: think of
the picture as a big array of dots and assign a value to each dot to represent
its brightness. We will stick to black-and-white images here. For color images
the same principles apply. We would use three brightness values per dot: one
for each of the primar y colors red, green, and blue. Two questions that
remain are: How many dots (pixels) do we need, and how large a value
should be used to define each dot?

From Pictures to Numbers
Let’s star t with the basics. Photographic film, say 35mm black-and-white film,
has an exposure range in the order of 1:256 and a resolving power of roughly
4000 dots per inch. For photographic paper the numbers are somewhat
lower, on the order of 1000 dots per inch resolution and a brightness range of
1:30, but for now let us use the quality of the film storing the original image as
a reference. To store a brightness value between 0 and 255 we need an 8-bit
number (28 equals 256), quite happily the size of a byte on most machines.
So, one part of the problem is easily solved: each dot in the image to be digi-
tized can be stored in one byte of memory. One frame on a 35mm film mea-
sures 24×36mm or roughly 0.9×1.4 inches. If we digitize the frame at 4000
dots per inch, each frame will produce 0.9×4000×1.4×4000 numbers, which
corresponds to some 20 megabytes of data. But this is only part of the story.
The negative holds enough infor mation to allow us to make enlargements on
photographic paper at an acceptable resolution. If we enlarge the 24×36mm

15

16 BEYOND PHOTOGRAPHY CHAPTER 3

frame five times, the effective resolution of the enlargement drops from 4000
dots per inch on the film to 800 dots per inch on the print. Another reference
is the resolving power of the eye . After all, the image only needs to have a
cer tain resolution to make the dots invisible to the eye . How many dots can
we distinguish on a print? The resolving power of a human eye is approxi-
mately 1/60 of a degree, which means that even under optimal conditions we
cannot resolve more than about 600 dots per inch at a viewing distance of 12
inches. An image digitized and reproduced at 600 dots per inch is indistin-
guishable from the original under normal viewing conditions. Most of the pho-
tos in this book were digitized at 750 dots per inch. Just for comparison, the
resolution of a television image is less than 500 by 500 dots, which on a 15
inch diagonal screen corresponds to about 47 dots per inch.

Z Is for White
To make it easier to talk about digitized images and image transfor mations,
we will introduce some shorthand. Let’s stick to the analogy of a picture as a
two-dimensional array of dots. Each dot then has three attributes: one num-
ber defining its brightness and two other numbers defining its location in the
array (and in the image). Since we will use these three numbers quite exten-
sively, I will give them names. There is nothing special about these names:
they are just shorthand. The two numbers defining the location of a dot within
a picture will be named x and y and the brightness of the dot can be called z .

(x,y)

z
X

Y

picture

The Sampling Grid

The dots are really ‘‘samples’’ of the brightness in the real image. The (x , y)
gr id is therefore sometimes referred to as the ‘‘sampling grid.’’
For a given picture the x , y , and z are of course not independent. Given the
first two, the last one is determined: z is a function of x and y . The value of z
at position (x , y) in some image named picture is written as

picture[x , y].
It is convenient to introduce symbols for the maximum values of the three
numbers just named. The picture width in dots is named X . The x coordi-
nate ranges in value from 0 to X − 1. Similarly, Y is the picture height. The y
coordinate ranges from 0 to Y − 1. Z , finally, defines the maximum brightness
value of the dots. If we use one byte per dot, Z will be 255, and z can have a

CHAPTER 3 THE DIGITAL DARKROOM 17

value between 0 and 255. X and Y may tur n out to be 512 or 1024, depend-
ing on the size of the picture and the resolution at which it was scanned, but
the precise values are largely irrelevant from this point on. A low value for z
means a low brightness (dark) and a high value is a high brightness (light). A
low value for x refers to the left side of the image and a low value for y refers
to the top.

A Picture Transformation Language
Given sufficient resolution, any image can be translated into numbers and
those numbers can be translated back into an image. Our purpose here is to
find a simple way to descr ibe images and image transfor mations. To do that
we are developing a little language that consists of symbols like the x , y , and
z introduced above , and some transfor mation expressions. Two symbols that
come in handy for defining transfor mations are old and new . We use the first
to refer to the result of the last transfor mation perfor med. The second symbol,
new , refers to the destination of the current transfor mation: the newly created
image. We can also refer to specific dots in the old or new image by writing
old [x , y] and new [x , y], where x and y are as defined above . So, using only
the symbols introduced so far, we can create a picture by writing in this lan-
guage:

new [x , y] = x + y (3.1)

The expression defines a brightness x + y of the image new for each dot at
position (x , y). It may confuse you that a location is translated into a bright-
ness, but that’s exactly what we are doing! The expression x + y produces a
number and all numbers together define an image. But there’s a catch. The
br ightness value of the dots in the new image is restricted to values between
0 and Z , but the maximum value of x + y can of course be much larger than
Z . If dots are stored in bytes, the values assigned will wrap around the maxi-
mum value Z . If we want we can make this effect explicit by using modulo
ar ithmetic. If x + y ≥ Z + 1, we subtract Z + 1 as often as necessary from
x + y to get a value that fits the range. So, a brightness value Z remains Z ,

18 BEYOND PHOTOGRAPHY CHAPTER 3

but Z + 1 becomes 0, and 3∗Z + 12 becomes 9. The value of an expression
E taken modulo-Z is usually written as E %Z . As a var iation on (3.1) we can
tr y:

(3.2) (3.3)

new [x , y] = (x∗y)%(Z + 1) (3.2)

The modulo operator % will come back a few more times below. For now, just
remember that all brightness values are by default modulo Z + 1. The range
of available brightness values can be matched precisely to the grid:

new [x , y] = (Z ∗x∗y)/((X − 1)∗(Y − 1)) (3.3)

In the upper left-hand corner both x and y are zero and thus the brightness z
at new [0, 0] will be zero, or solidly black. In the lower right-hand corner
x∗y = (X − 1)∗(Y − 1) and z reaches its maximum value Z : white.
But why do only things that make sense? We just talked about the modulo
operator %, so let’s try something like

new [x , y] = x %y (3.4)

CHAPTER 3 THE DIGITAL DARKROOM 19

Where x is smaller than y (the lower left triangle) the picture could as well
have been defined as new [x , y] = x , which, since dots are stored in bytes, is
inter preted as new [x , y] = x %(Z + 1). Note that you can tell from the picture
what the current values for X and Y are, given that Z = 255.

Trigonometr y Made Pretty
If we also include trigonometr ic functions in our picture language, we can
really start exper imenting. Let sin(a) be the sine function that returns a value
between +1.0 and −1.0. Its argument a is an angle given in degrees. Try to
explain the patterns defined by

(3.5) (3.6)

new [x , y] = y + (sin(x)∗Z)/2 (3.5)

and, with atan(y , x) retur ning the arc-tangent of y /x in degrees,
new [x , y] = (atan(y −Y /2, x − X /2)∗Z)/360 (3.6)

The possibilities for creating intricate patterns with random mathematical func-
tions are endless. With some effor t you can even find pictorial representa-
tions for interesting mathematical theorems.

Conditional Transformations
It is time to add a little more power to our expression language. We will use
the notation

(condition)?yes: no
to mean that if the condition is true (or nonzero), the transfor mation is defined
by expression yes, otherwise it is defined by no. So, trivially,

new [x , y] = (0)?Z : 0 (3.7)

defines an all-black image, and
new [x , y] = (Z > 0)?old [x , y]: 0 (3.8)

20 BEYOND PHOTOGRAPHY CHAPTER 3

has no effect whatsoever (the condition always holds). Note also that ‘‘trans-
formation’’ (3.7) is independent of x and y coordinates: it defines the same
new brightness value Z for every dot in the image, independent of its location.
Between the lines you have already been sold on the idea that an image (old)
can be used in a transfor mation just as easily as an expression. We will
explore this in more detail in the section titled Geometr ic Tr ansfor mations.
Using the modulo operator and conditional transfor mations, we can define
interesting patterns with one-liners such as the following two.

(3.9) (3.10)new [x , y] = ((x %(5 + y /25)) > 5)?0: Z (3.9)

new [x , y] = (Z ∗abs(x %sin(y)) > 10)?0: Z (3.10)

There is again an infinite number of var iations on this theme. We can, for
instance, try to make a composite of two photos, using some mathematical
function, or even the brightness of a third photo in the conditional.

Polar Coordinates
Now let us slightly change the rules of this game. All expressions that we
have invented so far used the symbols x and y . The x and the y were
defined as Cartesian coordinates in the image array. We can also consider
the image area as a simple two-dimensional plane with an arbitrar y coordi-
nate system for locating the individual dots.
We can, for instance, define a polar coordinate system, with the origin in the
middle, and again two numbers to find the location of dots relative to the ori-
gin. We name the polar coordinates r and a. The radius r is the distance of a
dot from the origin, and a is the angle between a line from the dot to the origin
and a fixed, but otherwise arbitrar y, line through the origin.

CHAPTER 3 THE DIGITAL DARKROOM 21

(0,0)

(0,0)

x

y r

a

Car tesian Polar
Coordinates Coordinates

We can again introduce a special shorthand R for the maximum radius and a
shor thand A for the maximum angle (360o). The or igin of the polar coordinate
system is (X /2,Y /2) in Cartesian coordinates, and similarly, the origin of the
Car tesian coordinate system is (R , 3∗A/8) in polar coordinates.
Now it is easy to make the picture

(3.11) (3.12)

new [r , a] = (Z ∗r)/R (3.11)

or the more inspiring
new [r , a] = (((a + r)%16) − 8)∗Z /16 + Z /2 (3.12)

But enough said about these artificial images. The expressions that we used
to calculate brightness values above can also be used to calculate a malicious
defor mation of an existing image: It’s time to try our hand at some real image
transfor mations.

22 BEYOND PHOTOGRAPHY CHAPTER 3

Point Processes
Image transfor mations come in a number of flavors. We can, for instance, dis-
tinguish between point processes, area processes, and frame processes. A
transfor mation that assigns new brightness values to individual dots, using
only the old brightness value of a dot, is called a point process. A simple
point process is

new [x , y] = Z − old [x , y] (3.13)

which makes a negative by subtracting each dot from the maximum bright-
ness value Z . Another example is

new [x , y] = Z ∗log (old [x , y])/log (Z) (3.14)

This particular transfor mation can be used as part of a correction filter to cope
with the ‘‘nonlinear ity’’ of devices such as scanners and display monitors: the
tendency to lose detail in the dark areas of the picture. The above transfor-
mation corrects for nonlinearity by boosting the values of the darker pixels
with a logarithmic function.
We can also simulate the effect of photographic ‘‘solar ization’’ with a point pro-
cess. The solarization effect was discovered by Armand Sabattier in 1860. If,
in a conventional darkroom, a partly developed image is exposed to raw light,
the previously unexposed areas turn from positive to negative, but the previ-
ously exposed areas remain as they are. We can simulate this effect with the
following transfor mation, applied here to a portrait of Jim McKie.

new [x , y] = (old [x , y] < Z /2)?Z − old [x , y]:old [x , y] (3.15)

We can also slowly fade in a solarization effect from left to right, for instance
with:

(3.15) (3.16)

new [x , y] =
(old [x , y] > (Z * x)/(2 * X))?old [x , y]: Z − old [x , y] (3.16)

Or we could use the brightness values of one portrait to solarize another. A

CHAPTER 3 THE DIGITAL DARKROOM 23

point process can also be used to enhance or reduce contrast in a photo.
Using conditional expressions we can also apply these changes to only spe-
cific parts of a picture.

Area Processes
If not just the old brightness value of the dot itself is used, but values of the
dots in a small area around it, the point process becomes an area process.
An image can be blurred a little by calculating the average brightness value of
each dot and four of its neighbors.

(3.17) (3.18)

new [x , y] = (old [x , y] +
old [x − 1, y] + old [x + 1, y] + old [x , y − 1] + old [x , y + 1])/5 (3.17)

The blurr ing can be applied to a larger area surrounding each pixel (as shown
in Chapter 6) to enhance the effect. Or, using polar coordinates, the amount
of blurr ing can be var ied with the radius to simulate the soft-focus effect of an
old lens.
If we can blur an image by adding neighbor ing dots to each pixel and normal-
izing, imagine what would happen if we subtract the brightness values of
neighbor ing dots from each pixel. With the right normalization again we can
wr ite this as follows.

new [x , y] = 5∗old [x , y] −
old [x − 1, y] − old [x + 1, y] − old [x , y − 1] − old [x , y + 1] (3.18)

The effect of the transfor mation is a digital filtering that wor ks as though it
restored the focus in a blurr y image. For mally, the process approximates the
working of a Laplacian filter ∇2.
Another example of an area process is this one to make a relief. The transfor-
mation is useful in more serious image processing applications as a fast edge
detection filter, illustrated here with a portrait of Brian Redman.

24 BEYOND PHOTOGRAPHY CHAPTER 3

new [x , y] = old [x , y] + (Z /2 − old [x + 2, y + 2]) (3.19)

Geometric Transformations
With a third type of transfor mation we can define geometric transfor mations to
the sampling grid and change the coordinates of the dots in an image. The
standard mapping defines a regular grid of dots. Geometr ic transfor mations
are used to reshape that grid. If the portrait of Brian Redman is stored in an
array named ber , we can write

(3.20) (3.21)

new [x , y] = ber [x , y] (3.20)

which is the normal photo on the standard grid with each dot at location (x , y)
in ber mapped to a new dot at precisely the same location in the new image.
This is still a point process. But we can play more interesting games with the
picture. For instance,

new [x , y] = ber [x , Y − y] (3.21)

CHAPTER 3 THE DIGITAL DARKROOM 25

tur ns the picture upside down, by rev ersing the y coordinate in the grid. And,
only slightly more complicated,

(3.22) (3.23)
new [x , y] = ber [y , X − x] (3.22)

rotates the image by 90o clockwise. The x and y coordinates are swapped,
and the order of the x is reversed. Reversing the order of y instead of x
makes the image rotate counterclockwise.
We are still using all the dots in the old image to create the new one. We can
also break that rule and try something like

new [x , y] = ber [x /2, y] (3.23)

to stretch the image horizontally by a factor of 2. This stretching operation
can be made more interesting still by using arbitrar y tr igonometr ic functions to
calculate the offset, or by stretching both the x and y coordinates. Note also
that

new [x , y] = old [x∗2, y∗2] (3.24)

is a simple way to shr ink an image. How ever, to avoid having the coordinates
overflow their maxima and cause havoc, it is more prudent to write either

new [x , y] = old [(x∗2)%(X + 1), (y∗2)%(Y + 1)] (3.25)

or
new [x , y] = (x ≤ X /2&&y ≤Y /2)?old [x∗2, y∗2]: 0 (3.26)

The most rewarding geometric transfor mations on portraits are made with
conditional expressions. We can, for example, make a perfect mirror compos-
ite of a portrait, once it is centered properly. These transfor mations

new [x , y] = (x >= X /2)?bwk [x , y]: bwk [X − x , y] (3.27)

26 BEYOND PHOTOGRAPHY CHAPTER 3

(3.27) (3.28)

new [x , y] = (x < X /2)?bwk [x , y]: bwk [X − x , y] (3.28)

are two different ways to mirror a portrait of Brian Ker nighan vertically along
its middle axis. Of course, even more startling effects can be produced by
mirror ing along a horizontal axis.
If we can do all this with a single image, imagine what could be done with two
or more! Let’s see how we could use the portraits of Rob Pike and Peter
Weinberger. Here they are first shown in their original, unedited, version.

Rob Pike Peter Weinberger

CHAPTER 3 THE DIGITAL DARKROOM 27

Frame Processes
Tr ansfor mations that wor k on multiple images are called frame processes.
Suppose we have the portraits of Rob Pike and Peter Weinberger stored in
two image files named rob and pjw . An average of the two is quickly defined,
though not ver y inspir ing.

(3.29) (3.30)

new [x , y] = (rob[x , y] + pjw [x , y])/2 (3.29)

All we have to do is add the pictures and divide by 2. We can also fade one
picture slowly into the other, which makes for a more interesting picture. A
first attempt might be a full linear fade.

new [x , y] = (x∗rob[x , y] + (X − x)∗pjw [x , y])/X (3.30)

But that doesn’t really wor k out too well. If we restr ict the fade to just the mid-
dle part of the image, it looks better. The transfor mation expression we need
must have a different effect in three different areas of the image: left, middle,
and right. We can use a conditional transfor mation again to accomplish this,
but note that we need more than one condition this time. We can do that with
a nested conditional as follows.

(left)?pjw : (right)?rob: fade
The last part

(right)?rob: fade
is treated as a separate transfor mation expression that takes effect only when
the condition (right) of the first expression is false. Transfor mation (3.31)
shows the details.

new [x , y] = (x < X /3)?pjw : (x > 2∗X /3)?rob
: ((x − X /3)∗rob + (2∗X /3 − x)∗pjw)∗3/X (3.31)

We can also do this transfor mation in a ver tical plane, and use two, more
carefully selected, portraits, to achieve the following effect (admittedly, the

28 BEYOND PHOTOGRAPHY CHAPTER 3

resulting photo was touched up a little with a separate editor).

(3.31) (3.32)

new [x , y] = (y < Y /3)?ber : (y > 2∗Y /3)?skull
: ((y −Y /3)∗skull + (2∗Y /3 − y)∗ber)∗3/Y (3.32)

Again, nothing prevents us from exper imenting at length with even less useful
compositions. We can, for instance, use the brightness of an image in the
conditional,

(3.33) (3.34)

new [x , y] = (rob[x , y] > Z /2)?rob[x , y]: pjw [x , y] (3.33)

or play more involved tricks with the coordinates
new [x , y] = rob[x + (X ∗cos(((x −C)∗A)∗2/X))/6, y] (3.34)

where A is the maximum angle 360, and C is a constant. In this case X was
684 and C was 512.

CHAPTER 3 THE DIGITAL DARKROOM 29

And There’s More
Well, we have now set the stage for more interesting wor k. What follows in
Chapter 4 is a selection of the most startling image transfor mations we hap-
pened upon while playing with this picture language. Chapter 5 includes a
discussion of some software that can be used to build an image editor to
exper iment fur ther with these transfor mations on a home computer. Chapter
6 gives an overview of the image transfor mations that we have discussed.

4 Altered Images

About the Photos
Somewhere toward the end of 1983 our group of about fifty researchers
star ted using a new type of computer terminal.* Immediately, people set to
work to try and exploit its graphics capabilities. Luca Cardelli (now with DEC’s
Systems Research Center in Palo Alto) had thought of a way to convert pho-
tos manually into little black-and-white icon bitmaps. We found a victim (a pic-
ture of computer scientist Edsger W. Dijkstra) and set to wor k. The process
was first to reduce the photograph with a Xerox copier to a wallet-size picture
of high contrast, then draw a 12×12 grid on it, make a checkerboard pattern
with black-and-white squares, and then type the resulting array of dots into the
computer. The result was this picture:

The EWD Icon

Luca made a demonstration program featur ing Dijkstra’s por trait as a bounc-
ing ball. We digitized a few more portraits manually, but soon became bored
with the process.
* The blit ter minal was dev eloped jointly by Bar t Locanthi and Rob Pike. It was built and marketed
by Teletype as the DMD 5620. The acronym DMD stands for ‘‘dot mapped display.’ ’

31

32 BEYOND PHOTOGRAPHY CHAPTER 4

Someone then came up with the idea to make a new mail server that would
announce the arrival of computer mail on our terminals by showing a little por-
trait of the sender. Luca Cardelli wrote a first version called vismon (a pun on
an existing program called sysmon). Rob Pike talked us all into posing for 4×5
inch Polaroid portraits. Not knowing what they were in for, everybody, from
secretar y to executive director, cooperated with the picture project. The pic-
tures were digitized with a scanner borrowed from our image processing col-
leagues. Within a few days we thus obtained close to 100 portraits that have
become a main source for image processing exper iments.
The next step in this sequence was when Rob Pike and Dave Presotto devel-
oped the software for a centralized data base of portraits. They called it the
face server. The vismon program was rewr itten to use the face server. Ever
since then vismon has been one of the most popular programs on our com-
puters.
The face server is used both by the mail program to announce computer mail
and by a printer spooler to identify the owner of jobs sent to our laser printers.
The picture below shows an afternoon’s wor th of mail from vismon: a police
lineup of digitized faces. The bar on the left is a remnant of the original pro-
gram sysmon. It shows the load on the computer system itself.

Vismon Display
Including the portrait of new colleagues into the face server’s data base is now
a routine operation. A photo is digitized into 512×512 dots, then halftoned
and converted into a 48×48 bit icon with a program called mugs wr itten by
Tom Duff. The icon is then included in the data base maintained by the face
ser ver.
As a side effect from the effor t to build the face server we had suddenly
obtained a data base of digitized portraits, just begging to be used for pur-
poses other than the mere announcement of computer mail. Although my
main research is not in computer graphics, I could not resist the temptation to
wr ite a program called zunk with which I could swap eyes and noses in por-
traits.
I quickly found out that people can be remarkably creative when it comes to
alter ing por traits of colleagues. Since zunk was not a true picture editor I
ended up adding special-purpose portions to the program for each new mean
transfor mation that we thought of. When the number of zunk options was
over 50 I opted for a different strategy. The language for picture transfor ma-
tions, shown in Chapter 3, solved the problem and together with Rob Pike and
Ken Thompson I built a picture editor called pico that is responsible for most
of the pictures that follow. The editor itself was built in only a few weeks of

CHAPTER 4 ALTERED IMAGES 33

frantic wor k. Over the years it has grown quite a bit. The language of the cur-
rent version of pico is much richer than what we have shown so far. Special-
pur pose software was also added to support monitors for the real-time display
of image transfor ms. But the basic structure and elegance of the editor has
been maintained, and pico has proven to be an irresistible toy.
The pages that follow can be read as a cookbook of image transfor mations.
Each recipe in this sequence takes two pages. The left page will show the
or iginal image with an explanation of the specific transfor mation used, and
perhaps some intermediate images that were needed to create the final ver-
sion. The right-hand page will show the finished image. Naturally, since most
of the pictures in our data base are from colleagues, they will be featured
most prominently here. Most transfor mations, how ever, can be applied to any
image whatsoever. And you do not even have to be ver y precise when you try
to duplicate the effects. One of the nicest things about image transfor mations
of this type is that the result of typos and even of utter mistakes can still be
quite fascinating and more often than not lead to solid improvements.

34 BEYOND PHOTOGRAPHY CHAPTER 4

1

In the original version of this book, the victim of the first transfor mation was a
famous image of Albert Einstein, taken by Philippe Halsman in 1947.
Although the original and its transfor mation appeared with permission of the
current copyr ight owners of the image, they later professed to have regretted
their decision and revoked per mission. In this online version, therefore, we
have chosen a new victim: a portrait of system engineer Margaret Smith,
defenseless for this purpose due to marriage to the author.
The unedited version is shown below. The photo was transfor med with the
following expression, where r and a give radius and angle of location x , y .
Function sqr t computes a square root, and cartx and carty convert from polar
coordinates to Cartesian coordinates.

new [x , y] = margaret [cartx (sqrt (r ∗400), a), carty (sqrt (r ∗400), a)]
The effect is that the image shrinks toward the center. You can think of it as a
projection of the image onto a cone, with the tip of the cone in the middle of
the picture.

[Page differs from the 1st edition]

CHAPTER 4 ALTERED IMAGES 35

Einstein Caricature

[Page differs from the 1st edition]

36 BEYOND PHOTOGRAPHY CHAPTER 4

2

For the next transfor mation we use a classic portrait of Alexander Graham
Bell, taken by a photographer named Holton in 1876. This strange var iant of
the portrait was created by randomly moving rows in the picture array left and
right and by moving columns up and down. The difference in shift between
two adjacent columns or two adjacent rows is never more than one dot. The
transfor mation function is given in Chapter 6.
The original portrait is shown below.

CHAPTER 4 ALTERED IMAGES 37

Bell Shear

38 BEYOND PHOTOGRAPHY CHAPTER 4

3

The photo on the right is an example of how smooth picture editing operations
can be perfor med in the digital domain. No airbrush was used, no paint was
needed to cover up anything in this picture. In the original version of this
book, the image shown here was a composite of the solemn face of Robert
Oppenheimer and the character istic hair of Albert Einstein, both from portraits
taken by Philippe Halsman. Like the original for the first image in this collec-
tion, copyr ight issues prevent us from using those originals here. They are
replaced with a ver y young portrait of the author and of the even younger
Tessa Holzmann, his daughter. The two por traits were first lined up and aver-
aged, as in

new [x , y] = (gerard [X − x , y] + tessa[x , y])/2
The picture on the left was mirrored and scaled for a better fit. The average
was used to find the best points for a transition between the two pictures.
Using this line a matte was created: a separate picture that is black where one
picture is supposed to be and white everywhere else. The edge from black to
white was then blurred, again digitally (Chapter 3, equation 3.17), into a soft
slope of gray values to make the transition less abrupt. The final picture is a
simple addition of the two por traits, using the matte to decide how much of
each picture should be visible at each dot:
new [x , y] = matte[x , y]∗gerard [X − x , y] + (Z −matte[x , y])∗tessa[x , y]

The whole operation took less then an hour of my time, and mere seconds of
the computer’s. A routine for extracting an image matte from a picture is given
in Chapter 6.

[Page differs from the 1st edition]

CHAPTER 4 ALTERED IMAGES 39

Opstein

[Page differs from the 1st edition]

40 BEYOND PHOTOGRAPHY CHAPTER 4

4

Many transfor mations shown here result from merely wonder ing ‘‘what would
happen if’’ some strange operation is applied to an image. In this case I won-
dered what would happen if all the dots in the picture were shifted down by a
distance that var ies with their brightness. In the picture language, this is writ-
ten as

new [x , y − jlb[x , y]/4] = jlb[x , y]
where this time we change the index of the destination image instead of the
source. The brighter the dot, the more it moves, with a maximum shift of Z /4.
The portrait that was subjected to this operation is Jon Bentley’s. Jon is a
popular author of textbooks on program efficiency.* Here is first the original
por trait, scanned in from a 4×5 inch black-and-white Polaroid picture.

* Jon’s best known books are Wr iting Efficient Programs, Prentice Hall, 1982, and Programming
Pear ls, Addison-Wesley, 1986.

CHAPTER 4 ALTERED IMAGES 41

The Bentley Effect

42 BEYOND PHOTOGRAPHY CHAPTER 4

5

For some reason, the portrait of Peter Weinberger has always been our most
popular target for picture editing exper iments. It star ted a few years ago when
Peter was raised to the rank of department head and was careless enough to
leave a por trait of himself floating around. On a goofy Saturday evening at the
lab, Rob Pike and I started making photocopies and, to emphasize Peter’s
rise in the managerial hierarchy, prepared a chart of the Bell Labs Cabinet
with his picture stuck in every available slot. Peter must have realized that the
best he could do was not to react at all, if at least he wanted to avoid seeing
his face 10 feet high on a water tower. Nev ertheless, Peter’s picture appeared
and reappeared in the most unlikely places in the lab.
Within a few weeks after AT&T had revealed the new cor porate logo, Tom Duff
had made a Peter logo that has since become a symbol for our center. Rob
Pike had T-shir ts made. Ken Thompson ordered coffee mugs with the Peter
logo. And, unavoidably, in the night of September 16, 1985, a Peter logo, 10
feet high, materialized on a water tower nearby. As an ill twist of fate, Peter
has meanwhile become my depar tment head at Bell Labs, which makes it
very tempting to include him in this collection of faces. The picture was cre-
ated by randomly selecting dots and sliding them down the page until a darker
dot was met. The melting routine itself is included in Chapter 6.
For compar ison, an unedited version of Peter’s face and the Peter logo are
shown below.

CHAPTER 4 ALTERED IMAGES 43

Peter Melted

44 BEYOND PHOTOGRAPHY CHAPTER 4

6

With a few exceptions the more striking transfor mations seem to be the ones
that are particular ly easy to describe. On the title page for Chapter 3 we used
a por trait twisted into a spiral. Here is the expression that makes it happen:

new [r ,a] = ken[r , a + r /3]
The dots in the image are again addressed with polar coordinates. The angle
a is incremented with a third of the radius r , thus making the edges swir l
around the center of the picture.
The operation is applied to a portrait of Ken Thompson. Ken has left his mark
at Bell Labs with the development, together with Dennis Ritchie, of the UNIX®
operating system. Needless to say, the picture on the right does him no jus-
tice. His real unswir led por trait is shown below.

CHAPTER 4 ALTERED IMAGES 45

Ken Thompson

46 BEYOND PHOTOGRAPHY CHAPTER 4

7

The painting-like effect of this transfor mation requires a little more wor k. For
ev ery dot in the image a program calculated a histogram of the surrounding
36 dots and assigned the value of the most frequently occurring brightness
value. The result looks almost like an oil painting. In this case the portrait is
of Dennis Ritchie. Dennis is of course best known for his wor k on UNIX and
the C programming language. Locally, though, he is equally famous for his
most impressive Halloween costumes. No picture transfor mation can achieve
a comparable effect, so I won’t even try: here is Dennis in oil. The transfor ma-
tion routine is included in Chapter 6.

CHAPTER 4 ALTERED IMAGES 47

Dennis Ritchie

48 BEYOND PHOTOGRAPHY CHAPTER 4

8

What if we took the polar coordinates of a dot and pretended they were Carte-
sian coordinates. That is, we use the angle a to calculate a value for the x -
coordinate and the radius r to calculate the y . Let’s say that we have a func-
tion x (a) to cast the a into an x and y (r) to cast the r into y . Adding scaling
we can try the following expression:

new [x , y] = luca[x (a)∗X /A, y (r)∗Y /R]
The picture on the right is the result of this transfor mation applied to the por-
trait of Luca Cardelli, rotated by 90o to put him upright:

new [x , y] = old [Y − y , x]
It would be hard to maintain that computer graphics brings out the best in peo-
ple. Below is a picture of the real Luca.

CHAPTER 4 ALTERED IMAGES 49

Luca Cardelli

50 BEYOND PHOTOGRAPHY CHAPTER 4

9

The transfor mation shown here is similar to the one used for photo 2. In this
case a number of rows and columns are shifted at a time, with all numbers
selected randomly. The amount of each shift was anywhere between 0 and
32 dots in either direction. The width of a shift was chosen randomly between
8 and 40 dots. See Chapter 6 for details.
The portrait used is that of Ed Sitar. Ed is a true magician with computer
hardware and has achieved the impossible to keep machines running when
they desperately want to be down. In fact, what you see on the right is proba-
bly what he feels on an average Monday when he is wor king on ten different
major catastrophes at a time. But, in all fair ness, below is a picture of what
Ed really looks like.

CHAPTER 4 ALTERED IMAGES 51

Ed Sitar

52 BEYOND PHOTOGRAPHY CHAPTER 4

10

With a small librar y of photos of fair ly standard patterns (e.g., wood grain,
pebbles, brick, cloth) a range of new picture transfor mations becomes possi-
ble. Here we used a coarse picture of wood grain to transfor m a por trait of
New Yor k ar tist Hillar y Bur nett. The transfor mation is defined as follows:

new [x , y] = hillary [clamp(x − pattern∗F), y]
where F is a factor that determines how large the distortion will be at each
pixel. In the picture selected F was set to 3/4, which means that each dot in
the image was displaced up to Z ∗3/4 columns depending on the brightness of
the pattern. clamp is a function that protects against overflow or underflow of
the calculated x index (it always retur ns a value between 0 and X).
The distorted picture was combined with the original, using an image matte to
define the transition, as was done in photo 1. For compar ison, here is also
the original portrait and the pattern that was used.

CHAPTER 4 ALTERED IMAGES 53

Warp

54 BEYOND PHOTOGRAPHY CHAPTER 4

11

Here is a rather complex transfor mation expression that has a surpr ising op-
ar t effect:

new[x,y] = greg[x,y]ˆ(greg[x,y]∗factor)>>17
where

factor = (128-(x-128)∗(x-128) - (y-128)∗(y-128))

A few operators in the expression will need some explanation. The circumflex
operator used in the first expression is the exclusive or from the C program-
ming language. The >> sign is a bitwise right shift of a value. In this case the
shift by 17 positions is a fast way to get the effect of a division by 217.
Below is the original photo, a por trait of Greg Chesson. Greg is one of the
contr ibutors to the early versions of the UNIX operating system. As the trans-
formation fittingly illustrates, Greg now lives in Califor nia.

CHAPTER 4 ALTERED IMAGES 55

Gregor y Chesson

56 BEYOND PHOTOGRAPHY CHAPTER 4

12

The mirrors in a funhouse obviously wor k because the mirror surface is
cur ved. The effect can be simulated with a simple sine function to index an
image array. We have to exper iment a little to find appropriate scaling factors,
for instance to control the number of curves across the width of the image or
the depth of each curve .

new [x , y] = ava[x + sin(C1∗x)∗C2, y + sin(y)∗C3]
One appealing var iant of this tranfor mation is shown below. The factors used
for the picture on the right are C1 = 1. 15, C2 = 160, and C3 = 89. The trans-
formation is applied to the portrait of Al Aho. Every student in computer sci-
ence is familiar with Al’s books on algorithms and compiler design (known as
the dragon books; see also the list of books at the end of Chapter 5). Here is
a rare glimpse of the author in a funhouse mirror.

CHAPTER 4 ALTERED IMAGES 57

Al Aho

58 BEYOND PHOTOGRAPHY CHAPTER 4

13

Well, if a funhouse mirror can be simulated with the computer, we should also
be able to mimic the effect of looking through one of these wavy bathroom
windows. This expression will do the trick:

new [x , y] = andrew [x + (x%32) − 16, y]
Andrew Hume is a rugged Australian programmer, known throughout Bell
Labs for a peculiar wardrobe that defies the seasons (shorts, even in the dead
of winter).
The impact of the transfor mation is enhanced somewhat if we add a spiraling
effect, not seen in many bathroom windows.

new [x , y] = andrew [x + ((a + r /10)%32) − 16, y]
The result is shown on the right. Andrew’s real portrait and the effect of the
first transfor mation are shown below. And, yes, Andrew likes cats.

CHAPTER 4 ALTERED IMAGES 59

Andrew Humed

60 BEYOND PHOTOGRAPHY CHAPTER 4

14

The obvious counterpar t for the car icature transfor mation that was illustrated
in the first of these images is the fisheye. Before our picture editor pico was
ev en bor n, Tom Duff wrote a program that would simulate the effect of a fish-
eye lens. The effect can be mimicked with the following transfor mation, using
polar coordinates:

new [r , a] = psl [(r ∗r)/R , a]
The subject of this operation is Peter Langston. Peter wor ked at Lucasfilm for
a while and is now with Bellcore. He is the author of popular computer games
such as empire and ballblazer. The picture on which the transfor mation is
based is shown below. In this case it is rather hard to decide which picture is
more intriguing.

CHAPTER 4 ALTERED IMAGES 61

Fisheye

62 BEYOND PHOTOGRAPHY CHAPTER 4

15

This is an example of a slightly more intricate transfor mation. The picture is
sliced up into small squares which are moved by a random amount in the x
and y direction. The background for the picture on the right is a negative of
the original portrait (new [x , y] = Z − theo[x , y]). The tiling effect was
obtained with a 10-line program written in the pico language. (A similar rou-
tine written in C is given in Chapter 6.) The por trait is of Theo Pavlidis, known
for more serious contributions to the field of image analysis and image pro-
cessing.*

* For instance, Algor ithms for Graphics and Image Processing, Computer Science Press, 1982.

CHAPTER 4 ALTERED IMAGES 63

Tiled Theo

64 BEYOND PHOTOGRAPHY CHAPTER 4

16

This is an example of the type of transfor mation that can be done with a rub-
ber-sheet program. With such a program you can scale, stretch, and move
par ts of an image interactively. In this case it allows one to make either nasty
or friendly var iants of a neutral portrait such as Rob Pike’s. Below the original
and a friendlyfied var iant; to the right a meaner version.

CHAPTER 4 ALTERED IMAGES 65

Mean Rob

66 BEYOND PHOTOGRAPHY CHAPTER 4

17

After 16 ‘‘ordinar y’’ transfor mations we can no longer avoid showing that, yes
tr uly, a plastic surgeon could do wonders with software like this. When I first
star ted explor ing the possibilities of image transfor mations I wrote a little
demonstration program, called ‘‘Pinocchio,’ ’ that made the obvious change to
a profile. At the time we had only two pictures in our data base with a profile:
Bar t Locanthi and Doug McIlroy. Since Doug McIlroy was my depar tment
head at the time, I courageously ran the program on his portrait. Sixteen
frames from a little movie generated with the Pinocchio program are repro-
duced on the right. To my relief Doug does not hold it against me, and his
children derive great joy from these pictures.
In the pictures on the right the nose was stretched. For compar ison, in the
small picture on the right below, the nose was shrunk. The or iginal por trait is
shown on the left. The Pinocchio images are mirrored.

CHAPTER 4 ALTERED IMAGES 67

Pinocchio

68 BEYOND PHOTOGRAPHY CHAPTER 4

18

The portrait that was used for this transfor mation has been a more or less
standard test picture in digital image processing for almost 20 years. Every-
body in image processing knows the image as the Karen picture. Yet nobody
seems to know who Karen really is. Let history record that Karen’s real name
is Karen Nelson. Karen was a secretary at Bell Labs in the late sixties. She
left the Labs in 1969, was married, and had four children. The Karen picture
was first published in the Bell System Technical Journal of May/June 1969.
In the picture on the right a combination of a few ear lier transfor mations is
used. This is the expression:

new [r , a] = karen[r , a + karen[r , a]/8]
The angle a is incremented with an amount that depends on the brightness of
the image at that spot. The result is much like a spin-painting.

CHAPTER 4 ALTERED IMAGES 69

Karen

70 BEYOND PHOTOGRAPHY CHAPTER 4

19

Perhaps one picture in this series is in order to illustrate that one can, of
course, use the digital darkroom tools to just plainly enhance a photo without
distor ting it. The picture on the right is a composite of two photos and an arti-
ficial background. The or iginal por trait is shown below. To reduce the high-
light on the hair and to replace the background I made two separate image
mattes (see Chapter 6). The mattes are blurred to smooth the edges. The
background is generated with the expression

new[x,y] = (x/2)ˆ(y/2)

The composite of foreground image F and background image B using matte
(shown below) is accomplished with the following image arithmetic:

new[x,y] = ((matte[x,y]∗F[x,y] + (Z-matte[x,y])∗B[x,y])/Z

We can use smaller mattes in the same manner to darken highlights (called
‘‘burning in’’ in conventional photography). The por trait is of Lillian Schwar tz,
a seasoned pro in the art of computer graphics.

CHAPTER 4 ALTERED IMAGES 71

Lillian Schwar tz

72 BEYOND PHOTOGRAPHY CHAPTER 4

20

Many years ago, Leon D. Har mon of Bell Labs studied the recognizability of
faces, depending on the resolution at which they were reproduced.* One
image from his series made history: a low resolution, but perfectly recogniz-
able, image of president Lincoln. The transfor mation is quite simple to mimic
in the picture language.

new [x , y] = old [(x /16)∗16, (y /16)∗16]
We use a truncation here that is implicit in integer arithmetic. Note that
156/16 = 9.75 which, when stored as an integer, truncates to 9. Therefore
(156/16) ∗ 16 = 144 and not 156.
The result of the transfor mation is shown below, together with the original por-
trait of Judy Paone, secretar y in our Computing Techniques Research depart-
ment. Since recognizability is not really an issue in this book, we can do even
better, for instance, by switching to polar coordinates

new [r , a] = old [(r /32)∗32, (a/32)∗32]
The result of this transfor mation is shown on the right.

* See, for instance, his article ‘‘The recognition of faces,’ ’ in Scientific Amercican, November 1973,
p. 71.

CHAPTER 4 ALTERED IMAGES 73

The Lincoln Transfor m

74 BEYOND PHOTOGRAPHY CHAPTER 4

5 Darkroom Software

If you have a home computer, some way to display a graphics image, and
maybe even a way to capture images from a digitizer or a video recorder, you
can easily build your own digital darkroom tools. To help you get started I will
discuss a small interactive image editor named popi (pronounced ‘‘po-pee’’).
It is a portable version of the editor pico (‘‘pee-ko’’) that was used to generate
the pictures in this book. (Popi is short for por table pico.)
The most noticeable difference between pico and popi is speed. Pico has a
built-in optimizing compiler that translates transfor mation expressions into
machine code for a DEC VAX computer. This compiler dramatically improves
the perfor mance of the editor, but of course, it wor ks for only one specific tar-
get machine. Instead, popi translates the transfor mation expressions into pro-
grams that are interpreted by a little portable stack machine. This reduces the
efficiency, but makes it possible to use the editor on any machine that can
compile C programs.

Popi
The discussion that follows explains how popi works, how you can use it to
create and edit images, and how user commands are parsed and executed.
The editor is for black-and-white images, stored in disk files in raw for mat: one
byte per pixel in scanline order, top scanline first. There are a few other
restr ictions to popi’s command language that you may or may not want to
remove once you have this software running on your system. This version of
the editor, for instance, does not know any trigonometr ic functions and does
not know about polar coordinates. It will be relatively easy to make the exten-
sions. Some hints on how to do that are given at the end of this chapter.

75

76 BEYOND PHOTOGRAPHY CHAPTER 5

The resolution of the images you can process depends only on the amount of
memor y available on your system. The more memory, the better. The version
discussed here wor ks with 248×248 images, for which you will at least need
200 kilobytes of main memory in your system.

Command Language
Popi accepts five types of commands. The most important one is the image
transfor mation command

new = expression

that was used throughout this book. The other commands are
r file

to read an image from a disk file into a read-only buffer,
w file

to write the result of the last transfor mation into a file,
f

to show which files are currently open, and
q

to quit the editor.
Let us ignore the precise structure of the transfor mation expressions for a
while. We retur n to that in the section titled Grammar Rules. We look first at
the global structure of the editor. Commands can be typed on a single line
separated by semicolons, or on separate lines. An edit session with popi, for
instance, may go as follows.

$ popi
-> r rob read image ‘rob’ into a buffer
-> r pjw read image ‘pjw’ into a buffer
-> f check which files are open
$1 = rob
$2 = pjw
-> new=rob-pjw subtract pjw from rob
-> w prob wr ite result in a file ‘prob’
-> q quit
$ operating system prompt

The arrow -> is the editor’s prompt: it tells the user that the program is ready
for a new command.

Program Structure
The image editor is written in the programming language C. It has four parts:

• a lexical analyzer,
• a recursive-descent parser,
• a file handler, and
• an interpreter, built as a stack-machine.

CHAPTER 5 DARKROOM SOFTWARE 77

The figure illustrates how these parts fit together.
Consider what happens when the user (at the upper left-hand side of the fig-
ure) enters the command new = x∗∗y . The command is first read by the lexi-
cal analyzer. The job of the lexical analyzer is to recognize some predefined
character sequences in the input, such as the image name new and the oper-
ator ∗∗. Each predefined sequence is passed as a single token to the next
program module: the parser. The eight-character sequence new = x * *y is
passed as a sequence of five tokens (new , =, x , POW , and y) from the lexi-
cal analyzer to the parser.

inter preter handler
file

parseranalyzer
lexical

file system

Edit
Buffers

Image
Files

monitor

The Structure of Popi

The parser looks at the sequence of tokens and decides what type of com-
mand it is. In this case it will decide that this is an image transfor mation com-
mand since the first token is new and not, for example, r or w . The parser
then starts building a little program for the interpreter to perfor m the transfor-
mation. For our example the program should instruct the interpreter to calcu-
late a new value x y for each pixel (dot) of the image. The execution loop over
all pixels is a fixed part of the interpreter. Note that the interpreter evaluates
the complete transfor mation expression once for every pixel in the image
being edited.
If the user types the command r picture, the parser will invoke the file handler
to read the image stored in file picture. The image is read into a read-only
buffer and can be used as a source for image edit operations. The only
images that ever change during an edit session are the ones in the edit
buffers. There are two edit buffers: one is called new and the other is called
old . Buffer old holds the result of the last edit operation perfor med. Initially it

78 BEYOND PHOTOGRAPHY CHAPTER 5

is an all-zero, or black, image. The other edit buffer, new , is the target of the
current edit operation. After the completion of each edit operation the two
buffers are swapped; the result of the last edit operation becomes the start for
a next one. (Note that this makes it trivial to add a one-level undo operation.)
You will almost certainly want to extend the editor with a display routine, dot-
ted in the figure, to see the transfor mations on a monitor either while they are
being perfor med by the interpreter, or after the interpreter completes. The
specific display routine you will need, however, depends on the hardware you
use. A sample routine for bi-level displays is included at the end of this chap-
ter.
Throughout the program, librar y routines are used that can in one for m or
another be found on most systems. All librar y routines used are part of the
proposed ANSI standard C language definition, so it should be fair ly easy to
find or to provide for equivalent routines on most systems. The software
should run without change on well-known systems such as UNIX and MS-DOS.
Let’s take a closer look now at the different parts of the editor. At the end of
this chapter the complete program is listed.

The Lexical Analyz er
The task of the lexical analyzer is to recognize keywords such as new and
old , and identify operators that consist of more than one character, such as
>=, ! =, and &&. It must also find out when the name of an image file is used,
and it must recognize numbers and convert the corresponding character
str ings into integers. White space (space and tab characters) is ignored.
Ever ything that is not recognized by the lexical analyzer is passed on to the
parser untouched. Single characters which are not part of a predefined
sequence are treated as tokens with a code that equals their ASCII value. All
other tokens are written in capitals, e.g., POW , and are defined as integer
constants with a value greater than 255, the largest possible ASCII value.
The function getchar() is a librar y routine that returns the next available
character in the command typed by the user.
The tokens passed from the lexical analyzer to the parser can have two
attr ibutes: lexval and text . They are declared as follows.

int lexval;
char text[256];

Tokens of the type VALUE , for example, have a value attribute stored in the
integer var iable lexval . Tokens of type NAME have a str ing attr ibute that is
stored in array text . Tokens of type FNAME have both a value and a string
attr ibute. The FNAME token refers to an open image file. Its string attribute
gives the file name, and its value attribute is the number of the buffer into
which the image was read.
This is what the lexical analyzer looks like:

CHAPTER 5 DARKROOM SOFTWARE 79

lex()
{ int c;

do /* ignore white space */
c = getchar();

while (c == ’ ’ || c == ’\t’);

if (isdigit(c))
c = getnumber(c);

else if (isalpha(c) || c == ’_’)
c = getstring(c);

switch (c) {
case EOF: c = ’q’; break;
case ’*’: c = follow(’*’, POW, c); break;
case ’>’: c = follow(’=’, GE, c); break;
case ’<’: c = follow(’=’, LE, c); break;
case ’!’: c = follow(’=’, NE, c); break;
case ’=’: c = follow(’=’, EQ, c); break;
case ’|’: c = follow(’|’, OR, c); break;
case ’&’: c = follow(’&’, AND, c); break;
case ’Z’: c = VALUE; lexval = 255; break;
case ’Y’: c = VALUE; lexval = DEF_Y-1; break;
case ’X’: c = VALUE; lexval = DEF_X-1; break;
default : break;
}
return c;

}

The function follow (tok , ifyes, ifno) looks at the next character typed. If it
matches tok , the value ifyes is returned; if it does not match, the character is
saved with pushback () (more about that below) and ifno is returned.

follow(tok, ifyes, ifno)
{ int c;

if ((c = getchar()) == tok)
return ifyes;

pushback(c);

return ifno;
}

The librar y routines isdigit (c) and isalpha(c) retur n nonzero (a boolean value
true in C) when the argument is a digit or a letter, respectively. getnumber (c)
and getstring (c) are shown below. They scan the user command for a num-
ber or a text string starting with character c .

80 BEYOND PHOTOGRAPHY CHAPTER 5

getnumber(first)
{ int c;

lexval = first - ’0’;
while (isdigit(c = getchar()))

lexval = 10*lexval + c - ’0’;
pushback(c);
return VALUE;

}

File names are looked up in a structure src [] where the I/O handler stores
images. nsrc slots are in use, but the first two slots (0 and 1) are for the edit
buffers and are skipped in the search. We will talk more about this data struc-
ture in a little while.

getstring(first)
{ int c = first;

char *str = text;

do {
*str++ = c;
c = getchar();

} while (isalpha(c) || c == ’_’ || isdigit(c));
*str = ’\0’;
pushback(c);

if (strcmp(text, "new") == 0) return NEW;
if (strcmp(text, "old") == 0) return OLD;

for (c = 2; c < nsrc; c++)
if (strcmp(src[c].str, text) == 0)
{ lexval = c-1;

return FNAME;
}

if (strlen(text) > 1)
return NAME;

return first;
}

A few more librar y routines are used here. strlen(str) retur ns the number of
characters in the string, and strcmp(str 1, str 2) returns zero if the two given
str ings are equal. Nor mally, the lines with the function calls to strcmp() would
be implemented as a search in a symbol table, but since we have only a few
predefined symbols in this program, we can easily do without.
The last character read by routines follow (), getnumber (), and getstring () ter-
minates a symbol and may star t the next one. It must be saved for later, so it
is pushed back onto the input. The function pushback (c) can be imple-
mented with a one-slot buffer. In a UNIX environment it can be implemented
as ungetc (c , stdin).

CHAPTER 5 DARKROOM SOFTWARE 81

The Parser
Apar t from correctly decoding the transfor mation expressions, the parser must
be able to recognize file handling commands and respond to user inquiries.
The parsing routines never call getchar () but use lex () for all input. The rou-
tine parse() itself is called from the main() procedure repeatedly, until it
retur ns false (a value of zero):

main()
{

...
do noerr=1; while(parse());

}

The var iable noerr is used as an error flag that is reset each time the parse
routine is called. But more about error handling later. The parser will return
zero only on an explicit quit command q from the user.

parse()
{ extern int lat; /* look ahead token */

printf("-> ");
while (noerr)
{ switch (lat = lex()) {

case ’q’: return 0;
case ’\n’: return 1;
case ’;’: break;
case ’f’: showfiles();

break;
case ’r’: getname();

if (!noerr) continue;
getpix(&src[nsrc], text);
break;

case ’w’: getname();
if (!noerr) continue;
putpix(&src[CUROLD], text);
break;

default : transform();
if (noerr) run();
break;

} }
}

The parser indicates its willingness to accept a new command from the user
by printing a prompt -> with the I/O routine printf (string). The routine printf ()
is used in two flavors here. As shown, it just prints text on the user’s screen,
possibly with some extra arguments for printing numbers and character
str ings. We will also use it as fprintf (stderr , string) to print error messages.
(If your system has no separate channel for error messages, they can equally
well be printed with printf (string).)
Commands are typed on a single line separated by semicolons, or on sepa-
rate lines. If the command can be parsed without syntax errors, the transfor-
mation program built by the parser is executed by the interpreter. This pro-
gram is in reality a sequence of tokens (numbers) stored in an array called

82 BEYOND PHOTOGRAPHY CHAPTER 5

parsed []. Below, this is referred to as the parse string. For completeness,
here is also the routine getname() that is used in parse() to fetch a filename
argument (a single alphanumer ic character, or one of the tokens FNAME or
NAME with a string attribute).

getname()
{ int t = lex();

if (t != NAME && t != FNAME && !isalpha(t))
error("expected name, bad token: %d\n", t);

}

error () is the routine to be called when a syntax error is detected. It will eat
up the rest of the input, up to a newline, and set an error flag that will avoid
the interpreter from being run on erroneous input.

error(s, d)
char *s;

{
extern int lat;

fprintf(stderr, s, d);
while (lat != ’\n’)

lat = lex();
noerr = 0; /* noerr is now false */

}

Having seen the lexical analyzer and the main routine of the parser, you
already know almost everything there is to know about the wor king of popi.
We only have to fill in a few details, such as the parsing of expressions, the
execution of parse strings and the reading and writing of image files.

Grammar Rules
When the parser starts processing a transfor mation expression it expects to
see a sequence such as

new[x,y] = expression.
This sequence reaches the parser as a token NEW followed by a character [,
an expression for the x index, a comma, another expression for the y , a char-
acter =, and a final expression for the values to be assigned. As an added dif-
ficulty we will allow for certain standard parts of this sequence to be omitted.
The editor should be able to fill in the missing parts with defaults. For
instance, if the index to array new is missing, as in

new = expression
the parser may assume a default index [x , y]. If the token new is also miss-
ing, and the statement just reads

expression
the parser can assume that you meant an assignment to image array new
with the default index [x , y].
To make more precise what type of expressions are acceptable to the parser,

CHAPTER 5 DARKROOM SOFTWARE 83

we define a grammar. A transfor mation, for instance, takes one of three pos-
sible for ms, which we can describe as follows:

trans → NEW ‘[’ index ‘]’ ‘=’ expr
| NEW ‘=’ expr
| expr

This grammar rule is called a production. On the left-hand side of the arrow
we write the name of the phrase or language fragment we want to define.
Here we wrote trans, as an abbreviation of ‘‘transfor mation expression.’’ The
right-hand side shows a number of alternative ways in which the phrase can
be constructed. The alter natives are separated by ver tical bars. Quoted
characters are called literals, and names in capitals are called ter minals.
Ever ything in a production except the literals and terminals must be expanded
in still other productions, so that eventually everything can be defined recur-
sively in terms of literals and terminals only. Note that the lexical analyzer we
discussed before will recognize all the literals and terminals for us, and pass
them as tokens to the parser.
The only undefined term in the production above is expr . So we will have to
define it.

expr → term
| term ‘?’ expr ‘:’ expr

This rule says that an expression is either a conditional expression or some-
thing called a term. Note that conditional expressions can have other condi-
tionals inside, but not in the term before the question mark.

term → factor binop term

This time we have two nonter minals in the production: binop and factor . The
expansion for binop, or binar y operator, is quickly defined.

binop → ‘*’ | ‘/’ | ‘%’
| ‘+’ | ‘-’
| ‘>’ | ‘<’ | GE | LE | EQ | NE
| ‘ˆ’ | AND | OR

A factor is a little more wor k.
factor → ‘(’ expr ‘)’

| ‘-’ factor
| ‘!’ factor
| OLD
| fileref
| value
| ‘x’
| ‘y’
| factor POW factor

A factor, then, can be any expression enclosed in parentheses; it may be pre-
ceded by a single minus sign (the unary minus) or a single exclamation mark
(a boolean negation). It can be the token OLD , the characters x and y , or a
factor raised to the power of some other factor . It can also be a constant
value or a file reference fileref . This nonterminal, in turn, can be defined as

84 BEYOND PHOTOGRAPHY CHAPTER 5

follows:
fileref → FNAME

| FNAME ‘[’ index ‘]’
| ‘$’ value
| ‘$’ value ‘[’ index ’]’

$FNAME$ is the token returned by the lexical analyzer when it recognizes the
name of an open image file in the input. We allow for file references to be
either symbolic (e.g., pjw [x , y]) or numer ic (as in $1[x , y]). The correspon-
dence between names and numbers is given by the f command, discussed
ear lier. This leaves only the following nonterminals to be expanded.

value → digit | digit value
index → expr ‘,’ expr

and trivially:
digit → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’

| ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Now let’s look at the code for the parser that makes it all happen. The
parser’s job is to read the transfor mation expressions, flag syntax errors, and
build a program for the interpreter that encodes the expressions.
The treatment of the defaults requires some attention. Remember that each
image buffer takes either an explicit, user-defined index or, if the user omits it,
an implicit index [x , y]. If the index to the destination buffer new is omitted,
the parser inserts a special symbol @ into the program to tell the interpreter
to use the default index and destination, i.e., new [x , y]. The processing of
explicit or implicit indexes to image files stored in other image buffers is
deferred to a procedure named fileref ().
Here, first, is the code for routine transform(), that is called from parse() at the
star t of a transfor mation expression.

transform()
{ extern int prs;

prs = 0; /* initial length of parse string */
if (lat != NEW)
{ expr();

emit(’@’);
pushback(lat);
return;

}
lat = lex();
if (lat == ’[’)
{ fileref(CURNEW, LVAL);

expect(’=’); expr(); emit(’=’);
} else
{ expect(’=’); expr(); emit(’@’);
}

CHAPTER 5 DARKROOM SOFTWARE 85

if (lat != ’\n’ && lat != ’;’)
error("syntax error, separator\n");

pushback(lat);
}

The symbol @ is really an abstract instruction of the stack machine that runs
the transfor mations. An assignment to any other location in array new is
encoded with an explicit ‘‘instr uction’’ =. The program for the interpreter, or
the parse string as we have called it before, is built in an array called parsed .
We use a procedure emit (symbol) to add new symbols to the parse string.

emit(what)
{

if (prs >= MANY)
error("expression too long\n");

parsed[prs++] = what;
}

The parse string is in standard postfix notation, with a few special operators
such as @ and =. In postfix notation the expression new = x∗∗y becomes
‘x , y , POW , @.’ The operators simply follow the operands to which they
apply, instead of sitting between them. This for mat greatly simplifies the
design of the interpreter. Procedure expect (token) checks that the look-
ahead token lat matches the expected value and then reads in the next token
from the lexical analyzer.

expect(t)
{

if (lat == t)
lat = lex();

else
error("error: expected token %d\n",t);

}

fileref () is a procedure that decodes a reference to an image buffer. It has to
check that the image is really available, and it must properly decode the index.
A file reference can occur in two different contexts: on the left-hand side or the
right-hand side of an assignment. In the first case the interpreter will have to
calculate the address of the location in the destination buffer where a new
pixel value is to be stored; in the second case it simply needs to read a pixel
value from that location and can forget about its address. The parser will dis-
tinguish the two different uses by using either the symbol LVAL or RVAL in
the second argument to fileref (). As it turns out, we will only allow array new
to be used as an LVAL. Here is the code. The appropriate token value to be
issued is passed as in argument tok (see, for instance, the usage of fileref () in
the transform() routine above).

86 BEYOND PHOTOGRAPHY CHAPTER 5

fileref(val, tok)
{

if (val < 0 || val >= nsrc)
error("bad file number: %d\n", val);

emit(VALUE);
emit(val);
if (lat == ’[’)
{ lat = lex();

expr(); expect(’,’);
expr(); expect(’]’); /* [x,y] */

} else
{ emit(’x’);

emit(’y’);
}
emit(tok);

}

A value is encoded in the parse string by the symbol VALUE followed by the
actual number seen.

More about Parsing Expressions
The most important part of the parser starts with expr (). It is time to worr y
here about operator precedence rules. An expression like 512 * y + x is to be
inter preted as (512 * y) + x instead of 512 * (y + x). In postfix for m this is the
difference between parsing 512,y ,*,x ,+ and 512,y ,x ,+,*. To ensure that the
parser gives multiplications, divisions, and modulo operations a higher prior ity
than, for instance, additions or subtractions, we use a lookup table that
encodes four precedence levels.

int op[4][7] = {
{ ’*’, ’/’, ’%’, 0, 0, 0, 0, },
{ ’+’, ’-’, 0, 0, 0, 0, 0, },
{ ’>’, ’<’, GE, LE, EQ, NE, 0, },
{ ’ˆ’, AND, OR, 0, 0, 0, 0, },

};

Procedure expr () uses a generic procedure level (nr) to parse sub-expres-
sions for precedence level nr . It tries to parse the highest-precedence opera-
tors first. At the highest level it tries to find a factor () such as a number or a
variable. At the other levels it checks for the appropriate operators in the table
shown above . The lowest level is given to the operators of a conditional
expression (a question mark and a colon).

CHAPTER 5 DARKROOM SOFTWARE 87

expr()
{ extern int prs;

extern int parsed[MANY];
int remem1, remem2;

level(3);
if (lat == ’?’)
{ lat = lex();

emit(’?’);
remem1 = prs; emit(0);
expr();
expect(’:’); emit(’:’);
remem2 = prs; emit(0);
parsed[remem1] = prs-1;
expr();
parsed[remem2] = prs-1;

}
}

Conditional image transfor mation commands are built from three sub-expres-
sions:

condition?iftrue:iffalse.
If, at runtime, the condition is found to be true, the interpreter will execute the
instr uctions in array parsed for the iftrue par t. If, how ever, the condition is
found to be false, the interpreter should be able to skip to the iffalse par t. To
allow the interpreter to do this at runtime, the parser reserves a slot in the
parse string for the destination of the jump. The slot is filled with that destina-
tion after the colon has been parsed. Similar ly, after executing an iftrue par t,
the interpreter must skip to the end of the conditional. Again the proper desti-
nation can be patched into the string, but only after the end of the iffalse
expression has been seen (i.e., a semicolon or a newline).

level(nr)
{ int i;

extern int noerr;

if (nr < 0)
{ factor();

return;
}
level(nr-1);
for (i = 0; op[nr][i] != 0 && noerr; i++)

if (lat == op[nr][i])
{ lat = lex();

level(nr);
emit(op[nr][i]);
break;

}
}

A factor, finally, is defined as follows:

88 BEYOND PHOTOGRAPHY CHAPTER 5

factor()
{ int n;

switch (lat) {
case ’(’: lat = lex();

expr();
expect(’)’);
break;

case ’-’: lat = lex();
factor();
emit(UMIN);
break;

case ’!’: lat = lex();
factor();
emit(’!’);
break;

case OLD: lat = lex();
fileref(CUROLD, RVAL);
break;

case FNAME: n = lexval;
lat = lex();
fileref(n+1, RVAL);
break;

case ’$’: lat = lex();
expect(VALUE);
fileref(lexval+1, RVAL);
break;

case VALUE: emit(VALUE);
emit(lexval);
lat = lex();
break;

case ’y’:
case ’x’: emit(lat);

lat = lex();
break;

default : error("expr: syntax error\n");
}
if (lat == POW)
{ lat = lex();

factor();
emit(POW);

}
}

In the order listed, a factor can be an expression enclosed in parentheses, a
factor preceded by a minus sign (unary minus), or a logical negation. It can
also be a symbolic or a numer ic file reference, a value, a Car tesian coordi-
nate, or a factor raised to some other factor with a power operator.
So far, we have discussed the lexical analyzer and the parser. The interpreter
and the file handler remain to be discussed. Before we discuss the file han-
dler, first a few words about the specific data structures that are used for stor-
ing the images.

CHAPTER 5 DARKROOM SOFTWARE 89

Data Structure
Images are stored in a structure of the following type:

struct SRC {
char *str; /* file name */
unsigned char **pix; /* pixel values */

} src[];

The for mat is one byte per pixel, DEF _X pixels per scanline, and DEF _Y
scanlines per image. We will use two of these structures as edit buffers:
src [0] and src [1] with DEF _Y ×DEF _X pixels. The result of the last edit oper-
ation is in one of these two arrays and is referred to as old . Inter nally, it is
addressed as src [CUROLD]. pix . Similar ly, the destination of an edit opera-
tion is in the other edit buffer named new , or src [CURNEW]. pix .
The default image resolution is defined by two constants:

#define DEF_X 248
#define DEF_Y 248

What follows is an aside on the choice of the resolution, which you can skip
on a first reading:

The precise value you can afford to enter for DEF _X and DEF _Y depends
on the amount of memory in your computer and the type of memory alloca-
tion perfor med. On most systems, an image size of 248×248 will allow for a
generous number of image files to be open for editing simultaneously.
Smaller computers, that is, computers with a wordsize of 16 instead of 32 or
64 bits, can make it hard to allocate more than 216 = 64k bytes at a time.
We therefore chose to allocate memory for the images in increments of
DEF _X , once for each scanline, instead of once for each picture.
A few more hairy details. An allocator sometimes uses a few bytes from
each block allocated for its own housekeeping. On a small system, this
makes it attractive to pick a value for DEF _X that is the same number of
bytes smaller than a power of 2 so that we can evenly fill up available mem-
or y, without leaving gaps. (The amount of real memory available comes in
powers of 2.) In this case we chose 256 − 8 = 248, which turns out to be an
good size for an AT&T PC6300+ system running UNIX. On a larger system
you need not worr y about memory allocation details and just select any
frame size that is convenient to wor k with.

File Handler
We need routines to read and write image files, and to show which files are
currently open. The last one is easy:

90 BEYOND PHOTOGRAPHY CHAPTER 5

showfiles()
{ int n;

if (nsrc == 2)
printf("no files open\n");

else
for (n = 2; n < nsrc; n++)

printf("$%d = %s\n", n-1, src[n].str);
}

It uses printf () again, this time with two extra arguments: a number to be
pr inted at the place indicated with %d and a name to be printed at the %s.
Reading new files, including the required memory allocation, can be done as
follows, using the standard I/O routines fopen(), fread (), and fclose(). A call to
fopen(str , "r ") opens the file named str for reading. Similarly fopen(str , "w ")
opens the file for writing, and creates it if it does not exist. fread (ptr , n, m, fd)
reads m chunks of n bytes from the file referred to by file descriptor fd and
places it at the location given by ptr .

getpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "r")) == NULL)
{ fprintf(stderr, "no file %s\n", str);

return;
}

if (into->pix == (unsigned char **) 0)
{ into->pix = (unsigned char **)

Emalloc(DEF_Y * sizeof(unsigned char *));
for (i = 0; i < DEF_Y; i++)

into->pix[i] = (unsigned char *)
Emalloc(DEF_X);

}
into->str = (char *) Emalloc(strlen(str)+1);
if (!noerr) return; /* set by Emalloc */

for (i = 0; i < DEF_Y; i++)
fread(into->pix[i], 1, DEF_X, fd);

strcpy(into->str, str);

fclose(fd);
nsrc++;

}

A separate procedure is used to access the memory allocator, to make it eas-
ier to catch errors:

CHAPTER 5 DARKROOM SOFTWARE 91

char *
Emalloc(N)
{ char *try, *malloc();

if ((try = malloc(N)) == NULL)
error("out of memory\n");

return try;
}

Wr iting files is also simple. fwrite(ptr , n, m, fd) writes m chunks of data, of n
bytes each, from a location pointed to by ptr into the file with descriptor fd .

putpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "w")) == NULL)
{ fprintf(stderr, "cannot create %s\n", str);

return;
}
for (i = 0; i < DEF_Y; i++)

fwrite(into->pix[i], 1, DEF_X, fd);
fclose(fd);

}

The Interpreter
The interpreter is a sensitive piece of code since it is asked to execute the
parse string once for every pixel in the image being edited. Even for a small
image size of 248×248 pixels the interpreter must run through the parse string
61,504 times. It is impor tant that it is as fast as it can be.
The interpreter is built as a stack machine. It maintains a pointer rr to a stack
of values. Values and var iables are pushed onto the stack. Operators and
functions pop the stack and replace the values at the top with their result. At
the end of each run of the interpreter that stack should be empty. The runtime
stack contains long values instead of integers to allow for the computation of
both pixel values and pixel addresses.
For convenience we define a macro dop(OP) for the frequently occurring
operation that pops two values from the stack, applies an operation OP to
them, and then pushes the result back.

#define dop(OP) a = *--rr; tr = rr-1; *tr = (*tr OP (long)a)

Variable rr points to the first free slot on the stack. The topmost symbol on
the stack is at position (rr − 1). The dop macro can be used for all binary
ar ithmetic and boolean operations. The interpreter will keep a pointer to the
default destination of pixel assignments up to date in a pointer p.

92 BEYOND PHOTOGRAPHY CHAPTER 5

run()
{ long R[MANY]; /* the stack */

register long *rr, *tr; /* top of stack */
register unsigned char *u; /* explicit destination */
register unsigned char *p; /* default destination */
register int k; /* indexes parse string */
int a, b, c; /* scratch */
int x, y; /* coordinates */

p = src[CURNEW].pix[0];
for (y = 0; y < DEF_Y; y++, p = src[CURNEW].pix[y])
for (x = 0; x < DEF_X; x++, p++)
for (k = 0, rr = R; k < prs; k++)
{ if (parsed[k] == VALUE)

{ *rr++ = (long)parsed[++k];
continue;

}
if (parsed[k] == ’@’)
{ *p = (unsigned char) (*--rr);

continue;
}
switch (parsed[k]) {
case ’+’: dop(+); break;
case ’-’: dop(-); break;
case ’*’: dop(*); break;
case ’/’: dop(/); break;
case ’%’: dop(%); break;
case ’>’: dop(>); break;
case ’<’: dop(<); break;
case GE: dop(>=); break;
case LE: dop(<=); break;
case EQ: dop(==); break;
case NE: dop(!=); break;
case AND: dop(&&); break;
case OR: dop(||); break;
case ’ˆ’: dop(|); break;
case ’x’: *rr++ = (long)x; break;
case ’y’: *rr++ = (long)y; break;
case UMIN: tr = rr-1; *tr = -(*tr); break;
case ’!’: tr = rr-1; *tr = !(*tr); break;
case ’=’: a = *--rr;

u = (unsigned char *) *--rr;
*u = (unsigned char) a;
break;

case RVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) src[c].pix[a][b];
break;

CHAPTER 5 DARKROOM SOFTWARE 93

case LVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) &(src[c].pix[a][b]);
break;

case POW: a = *--rr;
(rr-1) = Pow((rr-1),(long)a);
break;

case ’?’: a = *--rr; k++;
if (!a) k = parsed[k];
break;

case ’:’: k = parsed[k+1]; break;

default : error("run: unknown operator\n");
}

}
CUROLD = CURNEW; CURNEW = 1-CUROLD;

}

It may look curious that two of the "instructions" are processed before the
large case switch is entered. They catch the two most frequently executed
operations and it makes the interpreter run faster to process them first. At the
end of the run the two edit buffers, referred to by old and new , are swapped.
Note that the procedure Pow () accepts and returns long values. To make use
of the C librar y routine, you can define

long
Pow(a, b)

long a, b;
{ double c = (double)a;

double d = (double)b;
return (long) pow(c, d);

}

The Complete Program
Here, finally, is the complete listing of the program, with all loose ends neatly
tied up. On a UNIX system it is compiled with the command

cc -o popi main.c lex.c io.c expr.c run.c

If display is the name of a display routine that can show an unfor matted
image file on the specific monitor you use, you can test the wor king of the edi-
tor with the commands.

$ popi invoke the editor
-> xˆy create a test pattern
-> w test wr ite it in a file
-> q quit the editor
$ display test display the result

Tr y it. You’ll like it.

94 BEYOND PHOTOGRAPHY CHAPTER 5

/*** popi.h (header file) **************************/

#define MANY 128
#define DEF_X 248 /* image width */
#define DEF_Y 248 /* image height */

#define RVAL 257 /* larger than any char token */
#define LVAL 258
#define FNAME 259
#define VALUE 260
#define NAME 261
#define NEW 262
#define OLD 263
#define AND 264
#define OR 265
#define EQ 266
#define NE 267
#define GE 268
#define LE 269
#define UMIN 270
#define POW 271

struct SRC {
unsigned char **pix; /* pix[y][x] */
char *str;

};

/*** main.c **/

#include <stdio.h>
#include <ctype.h>
#include "popi.h"

int parsed[MANY];
struct SRC src[MANY];
short CUROLD=0, CURNEW=1;
int noerr, lexval, prs=0, nsrc=2;
char text[256];

char *Emalloc();

main(argc, argv)
char **argv;

{
int i;

src[CUROLD].pix = (unsigned char **)
Emalloc(DEF_Y * sizeof(unsigned char *));

src[CURNEW].pix = (unsigned char **)
Emalloc(DEF_Y * sizeof(unsigned char *));

CHAPTER 5 DARKROOM SOFTWARE 95

for (i = 0; i < DEF_Y; i++)
{ src[CUROLD].pix[i] = (unsigned char *)

Emalloc(DEF_X);
src[CURNEW].pix[i] = (unsigned char *)

Emalloc(DEF_X);
}

for (i = 1; i < argc; i++)
getpix(&src[nsrc], argv[i]);

do noerr=1; while(parse());
}

parse()
{ extern int lat; /* look ahead token */

printf("-> ");
while (noerr)
{ switch (lat = lex()) {

case ’q’: return 0;
case ’\n’: return 1;
case ’;’: break;
case ’f’: showfiles();

break;
case ’r’: getname();

if (!noerr) continue;
getpix(&src[nsrc], text);
break;

case ’w’: getname();
if (!noerr) continue;
putpix(&src[CUROLD], text);
break;

default : transform();
if (noerr) run();
break;

} }
}

getname()
{ int t = lex();

if (t != NAME && t != FNAME && !isalpha(t))
error("expected name, bad token: %d\n", t);

}

emit(what)
{

if (prs >= MANY)
error("expression too long\n");

parsed[prs++] = what;
}

96 BEYOND PHOTOGRAPHY CHAPTER 5

error(s, d)
char *s;

{
extern int lat;

fprintf(stderr, s, d);
while (lat != ’\n’)

lat = lex();
noerr = 0; /* noerr is now false */

}

char *
Emalloc(N)
{ char *try, *malloc();

if ((try = malloc(N)) == NULL)
error("out of memory\n");

return try;
}

/*** lex.c (lexical analyzer) *********************/

#include <stdio.h>
#include <ctype.h>
#include "popi.h"

extern struct SRC src[MANY];
extern short CUROLD, CURNEW;
extern int nsrc, lexval;
extern char text[];

lex()
{ int c;

do /* ignore white space */
c = getchar();

while (c == ’ ’ || c == ’\t’);

if (isdigit(c))
c = getnumber(c);

else if (isalpha(c) || c == ’_’)
c = getstring(c);

CHAPTER 5 DARKROOM SOFTWARE 97

switch (c) {
case EOF: c = ’q’; break;
case ’*’: c = follow(’*’, POW, c); break;
case ’>’: c = follow(’=’, GE, c); break;
case ’<’: c = follow(’=’, LE, c); break;
case ’!’: c = follow(’=’, NE, c); break;
case ’=’: c = follow(’=’, EQ, c); break;
case ’|’: c = follow(’|’, OR, c); break;
case ’&’: c = follow(’&’, AND, c); break;
case ’Z’: c = VALUE; lexval = 255; break;
case ’Y’: c = VALUE; lexval = DEF_Y-1; break;
case ’X’: c = VALUE; lexval = DEF_X-1; break;
default : break;
}
return c;

}

getnumber(first)
{ int c;

lexval = first - ’0’;
while (isdigit(c = getchar()))

lexval = 10*lexval + c - ’0’;
pushback(c);
return VALUE;

}

getstring(first)
{ int c = first;

char *str = text;

do {
*str++ = c;
c = getchar();

} while (isalpha(c) || c == ’_’ || isdigit(c));
*str = ’\0’;
pushback(c);

if (strcmp(text, "new") == 0) return NEW;
if (strcmp(text, "old") == 0) return OLD;

for (c = 2; c < nsrc; c++)
if (strcmp(src[c].str, text) == 0)
{ lexval = c-1;

return FNAME;
}

if (strlen(text) > 1)
return NAME;

return first;
}

98 BEYOND PHOTOGRAPHY CHAPTER 5

follow(tok, ifyes, ifno)
{ int c;

if ((c = getchar()) == tok)
return ifyes;

pushback(c);

return ifno;
}

pushback(c)
{

ungetc(c, stdin);
}

/*** io.c (file handler) ************************/

#include <stdio.h>
#include "popi.h"

extern struct SRC src[MANY];
extern int nsrc, noerr;
extern char *Emalloc();

getpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "r")) == NULL)
{ fprintf(stderr, "no file %s\n", str);

return;
}

if (into->pix == (unsigned char **) 0)
{ into->pix = (unsigned char **)

Emalloc(DEF_Y * sizeof(unsigned char *));
for (i = 0; i < DEF_Y; i++)

into->pix[i] = (unsigned char *)
Emalloc(DEF_X);

}
into->str = (char *) Emalloc(strlen(str)+1);
if (!noerr) return; /* set by Emalloc */

for (i = 0; i < DEF_Y; i++)
fread(into->pix[i], 1, DEF_X, fd);

strcpy(into->str, str);

fclose(fd);
nsrc++;

}

CHAPTER 5 DARKROOM SOFTWARE 99

putpix(into, str)
struct SRC *into; /* work buffer */
char *str; /* file name */

{
FILE *fd;
int i;

if ((fd = fopen(str, "w")) == NULL)
{ fprintf(stderr, "cannot create %s\n", str);

return;
}
for (i = 0; i < DEF_Y; i++)

fwrite(into->pix[i], 1, DEF_X, fd);
fclose(fd);

}

showfiles()
{ int n;

if (nsrc == 2)
printf("no files open\n");

else
for (n = 2; n < nsrc; n++)

printf("$%d = %s\n", n-1, src[n].str);
}

/*** expr.c (parser) ******************************/

#include "popi.h"

extern int lexval, nsrc;
extern struct SRC src[MANY];
extern short CUROLD, CURNEW;
int lat; /* look ahead token */

int op[4][7] = {
{ ’*’, ’/’, ’%’, 0, 0, 0, 0, },
{ ’+’, ’-’, 0, 0, 0, 0, 0, },
{ ’>’, ’<’, GE, LE, EQ, NE, 0, },
{ ’ˆ’, AND, OR, 0, 0, 0, 0, },

};

100 BEYOND PHOTOGRAPHY CHAPTER 5

expr()
{ extern int prs;

extern int parsed[MANY];
int remem1, remem2;

level(3);
if (lat == ’?’)
{ lat = lex();

emit(’?’);
remem1 = prs; emit(0);
expr();
expect(’:’); emit(’:’);
remem2 = prs; emit(0);
parsed[remem1] = prs-1;
expr();
parsed[remem2] = prs-1;

}
}

level(nr)
{ int i;

extern int noerr;

if (nr < 0)
{ factor();

return;
}
level(nr-1);
for (i = 0; op[nr][i] != 0 && noerr; i++)

if (lat == op[nr][i])
{ lat = lex();

level(nr);
emit(op[nr][i]);
break;

}
}

transform()
{ extern int prs;

prs = 0; /* initial length of parse string */
if (lat != NEW)
{ expr();

emit(’@’);
pushback(lat);
return;

}

CHAPTER 5 DARKROOM SOFTWARE 101

lat = lex();
if (lat == ’[’)
{ fileref(CURNEW, LVAL);

expect(’=’); expr(); emit(’=’);
} else
{ expect(’=’); expr(); emit(’@’);
}
if (lat != ’\n’ && lat != ’;’)

error("syntax error, separator\n");
pushback(lat);

}

factor()
{ int n;

switch (lat) {
case ’(’: lat = lex();

expr();
expect(’)’);
break;

case ’-’: lat = lex();
factor();
emit(UMIN);
break;

case ’!’: lat = lex();
factor();
emit(’!’);
break;

case OLD: lat = lex();
fileref(CUROLD, RVAL);
break;

case FNAME: n = lexval;
lat = lex();
fileref(n+1, RVAL);
break;

case ’$’: lat = lex();
expect(VALUE);
fileref(lexval+1, RVAL);
break;

case VALUE: emit(VALUE);
emit(lexval);
lat = lex();
break;

case ’y’:
case ’x’: emit(lat);

lat = lex();
break;

default : error("expr: syntax error\n");
}

102 BEYOND PHOTOGRAPHY CHAPTER 5

if (lat == POW)
{ lat = lex();

factor();
emit(POW);

}
}

fileref(val, tok)
{

if (val < 0 || val >= nsrc)
error("bad file number: %d\n", val);

emit(VALUE);
emit(val);
if (lat == ’[’)
{ lat = lex();

expr(); expect(’,’);
expr(); expect(’]’); /* [x,y] */

} else
{ emit(’x’);

emit(’y’);
}
emit(tok);

}

expect(t)
{

if (lat == t)
lat = lex();

else
error("error: expected token %d\n",t);

}

/*** run.c (interpreter) **************************/

#include "popi.h"

extern int prs, parsed[MANY];
extern struct SRC src[MANY];
extern short CUROLD, CURNEW;

#define dop(OP) a = *--rr; tr = rr-1; *tr = (*tr OP (long)a)

long
Pow(a, b)

long a, b;
{

double c = (double)a;
double d = (double)b;
double pow();

return (long) pow(c, d);
}

CHAPTER 5 DARKROOM SOFTWARE 103

run()
{ long R[MANY]; /* the stack */

register long *rr, *tr; /* top of stack */
register unsigned char *u; /* explicit destination */
register unsigned char *p; /* default destination */
register int k; /* indexes parse string */
int a, b, c; /* scratch */
int x, y; /* coordinates */

p = src[CURNEW].pix[0];
for (y = 0; y < DEF_Y; y++, p = src[CURNEW].pix[y])
for (x = 0; x < DEF_X; x++, p++)
for (k = 0, rr = R; k < prs; k++)
{ if (parsed[k] == VALUE)

{ *rr++ = (long)parsed[++k];
continue;

}
if (parsed[k] == ’@’)
{ *p = (unsigned char) (*--rr);

continue;
}
switch (parsed[k]) {
case ’+’: dop(+); break;
case ’-’: dop(-); break;
case ’*’: dop(*); break;
case ’/’: dop(/); break;
case ’%’: dop(%); break;
case ’>’: dop(>); break;
case ’<’: dop(<); break;
case GE: dop(>=); break;
case LE: dop(<=); break;
case EQ: dop(==); break;
case NE: dop(!=); break;
case AND: dop(&&); break;
case OR: dop(||); break;
case ’ˆ’: dop(|); break;
case ’x’: *rr++ = (long)x; break;
case ’y’: *rr++ = (long)y; break;
case UMIN: tr = rr-1; *tr = -(*tr); break;
case ’!’: tr = rr-1; *tr = !(*tr); break;
case ’=’: a = *--rr;

u = (unsigned char *) *--rr;
*u = (unsigned char) a;
break;

case RVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) src[c].pix[a][b];
break;

104 BEYOND PHOTOGRAPHY CHAPTER 5

case LVAL: a = *--rr;
b = *--rr;
tr = rr-1;
c = *tr;
*tr = (long) &(src[c].pix[a][b]);
break;

case POW: a = *--rr;
(rr-1) = Pow((rr-1),(long)a);
break;

case ’?’: a = *--rr; k++;
if (!a) k = parsed[k];
break;

case ’:’: k = parsed[k+1]; break;

default : error("run: unknown operator\n");
}

}
CUROLD = CURNEW; CURNEW = 1-CUROLD;

}

Librar y Routines
Here is an overview of the librar y routines that were used in the program. It
should not be hard to find equivalents for them if you run on a system other
than UNIX. They are all considered standard routines in the C programming
language.

fclose fread isalpha pow strcpy
fopen fwrite isdigit pr intf str len
fpr intf getchar malloc strcmp ungetc

Efficiency Considerations
The complete program listed above is only about 500 lines of C text. Yet it
can be an amazingly powerful package once you get the hang of the notation
for transfor mation expressions. I have run it under a UNIX operating system
on an AT&T PC6300+, a DEC VAX/750, a DEC VAX/785, and a CRAY/XMP
computer. Not to worr y, the difference in perfor mance for the software is not
near ly as spectacular as the difference in price of this hardware. Here is a
compar ison of runtimes for a few transfor mations. All times given are in sec-
onds.

Runtimes (frame size: 248×248 pixels)

Tr ansfor mation PC6300+ VAX/750 VAX/785 CRAY/XMP
new=128 7.2 4.1 1.6 0.1
new=pjw 24.2 10.5 3.7 0.4
new=Z-old 32.4 15.1 5.2 0.6
new=(pjw+rob)/2 59.2 25.9 9.7 1.0
new=(x<X/2)?pjw:rob 63.1 33.2 13.9 1.4
new=(pjw<128)?Z-pjw:pjw[X-x,y] 79.3 38.6 14.8 1.6

The times quoted are for the program as listed, with interpreted code. Since

CHAPTER 5 DARKROOM SOFTWARE 105

the interpreter runs the same code many thousands of times, even for a single
image transfor mation, ev ery improvement in that portion of the code pays off
immediately. One way to achieve a substantial speedup is to replace the
inter preter with an on-the-fly compiler that translates the transfor mation pro-
gram into machine code and runs it. It will go too far to get into the details of
that extension, but suffice it to say that it is wor th the effor t. The speed differ-
ence between interpreted code and compiled code can be as high as 1:100
for nontr ivial transfor mations. The program popi you see above is a predeces-
sor of the image editor called pico. Pico has the same basic structure as
popi, but has the built-in compiler to make it faster. The compiler extension
more than doubles the size of the program, but in a way it can achieve the
same as the purchase of a Cray supercomputer. (The perfor mance of running
pico with compiled code on a Cray is of course utterly decadent.)

Adding a Display Routine
To display an image on your terminal screen requires code that is hardware
dependent, so I have not included it in popi, but you can easily extend the
software in this way. If you have a one-byte-per-pixel monitor, you can write
the pixel values to the screen without processing.

display(pix)
unsigned char **pix;

{
register int x, y;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)

putdot(pix[y][x], x, y);
}

The device-dependent routine putdot (val , x , y) should write a pixel with
br ightness val at location x , y on the screen. Note, how ever, that most dis-
play monitors will wor k substantially faster if you can write one scanline at a
time, using, for example:

for (y = 0; y < DEF_Y; y++)
putline(pix[y], y);

Some display monitors use a different type of coordinate system, e.g., with Y
at the top of the screen and 0 at the bottom. You can use the same routine,
and simply subtract the y variable from Y to produce a picture that is right
side up:

for (y = 0; y < DEF_Y; y++)
putline(pix[y], DEF_Y-1-y);

If you have a one-bit-per-pixel dot-mapped monitor, the image has to be
halftoned before it can be displayed. Here is a routine that you can use. It
uses a standard halftoning method, like the ones used for printing photos in
newspapers, to map gray values onto pure black-and-white values. (For more
infor mation on halftoning methods, refer to the bibliography at the end of this
chapter.)

106 BEYOND PHOTOGRAPHY CHAPTER 5

#define RES 8

thresh[RES][RES] = {
{ 0, 128, 32, 160, 8, 136, 40, 168, },
{192, 64, 224, 96, 200, 72, 232, 104, },
{ 48, 176, 16, 144, 56, 184, 24, 152, },
{240, 112, 208, 80, 248, 120, 216, 88, },
{ 12, 140, 44, 172, 4, 132, 36, 164, },
{204, 76, 236, 108, 196, 68, 228, 100, },
{ 60, 188, 28, 156, 52, 180, 20, 148, },
{252, 124, 220, 92, 244, 116, 212, 84, },

}; /* an array with threshold values */

display(pix)
unsigned char **pix;

{
register int x, y;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)
{ if (pix[y][x] >= thresh[y%RES][x%RES])

putdot(1, x, y);
else

putdot(0, x, y);
}

}

Note again that it may be faster first to assemble a whole scanline of one bit
dots in memory and write it to the screen with a single procedure call put-
line().
Including the display routine in the editor is done in three steps. First, extend
the lexical analyzer to recognize a new keyword, such as display , and return a
new token, e.g., DISP . Then add a value for the new token to the header file
‘‘popi.h,’’ e.g.,

#define DISP 272

Finally, extend the routine parse() to respond to the new command, by adding
another case to the switch statement. For instance,

case DISP: display(src[CUROLD].pix); break;

If you are more daring, you want to consider including routine putline() directly
inside run(). The best place to do this is at the end of the loop on var iable y .
The extra procedure call makes the program run a little slower. Being able to
see the effect of a transfor mation happen in real-time, how ever, will more than
make up for it.
In a similar way popi can be extended with any number of user-defined rou-
tines, either standard transfor mations that you would like to have predefined,
or transfor mations that may be hard to express in the language of the transfor-
mation expressions. In Chapter 6 we include some examples of routines you
may want to add in this manner.

CHAPTER 5 DARKROOM SOFTWARE 107

Hints for Other Extensions
One of the first things you may want to do is to extend popi to handle both
color and black-and-white images. One simple way to do this is to store pixel
values not in 8-bit bytes but in 32-bit words (for instance, a long integer). You
will need 8 bits each for the red, green, and blue color components, and use
the remaining 8 bits to separate the color components within the pixel word.
You will have to be careful to get the image arithmetic to wor k right, especially
to avoid overflow between neighboring color components. But it is not too
hard to do. Another method is, of course, to store the red, green, and blue
components in three separate image files and use the editor as is.
The extension for polar coordinates (Chapter 3) is relatively easy. The sim-
plest method is to prepare two files with precomputed values of all r and a
values. The editor loads the two files in memory, as if they were image files,
and simply looks up each r and a value as needed, instead of computing
them over and over on-the-fly. You will need to add two lines to the parsing
routine factor (), to catch r and a in the same case statement that processes x
and y . Then you will have to add a modest amount of code to the interpreter
routine run() to look up the precomputed value for either r or a, given x and
y . The code for RVAL in run() can serve as an example.
Tr igonometr ic functions are also relatively easy to add. The lexical analyzer
will need to recognize a few more character sequences, such as sin, cos, and
atan. They can be translated into three new tokens and interpreted by run()
similar to the token POW . Note, how ever, that the sin and cos functions
retur n values between +1.0 and −1.0, while the editor wor ks only with inte-
gers. A simple way around this is to have these functions return 1000 times
their value, and to renormalize the results in the transfor mation expressions.
Adding an undo operation takes only one line of code, to be added to the
case switch in routine parse() in main.c.

case ’u’: CUROLD = CURNEW; CURNEW = 1-CUROLD; break;

Those who really want to exper iment will also want to consider the extension
of popi with var iables, interactively defined functions, and explicit control flow
statements. Each such extension will increase both the power and the size of
the editor. But be war ned: If you are not a skilled programmer when you
begin with these extensions, you probably will be when you complete them.

Books
A couple of books may be helpful if you would like to wor k with the software
discussed above . The best reference to the C programming language is still
Kernighan and Ritchie’s manual from 1978. A discussion of the draft ANSI
standard C language can be found in Harbison and Steele’s book. Much
more about the design of parsers and lexical analyzer can be found in the
famous dragon books by Aho and others. A wealth of infor mation on C pro-
gramming can also be found in Ker nighan and Pike’s book on UNIX. Read
especially Chapter 8 on program dev elopment if you consider extending popi.

108 BEYOND PHOTOGRAPHY CHAPTER 5

An excellent introduction to digital halftoning methods can be found in Robert
Ulichney’s book.
For completeness the list below also includes a reference to a paper pub-
lished in the AT&T Technical Journal with more infor mation on the structure of
the picture editor pico, popi’s bigger brother.
The C Programming Language, Brian W. Ker nighan and Dennis M. Ritchie,
Prentice Hall, 1978, 2nd revised edition 1988, ISBN 0-13-110163-3.
C − A Reference Manual, Samual P. Harbison and Guy L. Steele Jr., Prentice-
Hall, 2nd edition, 1987, ISBN 0-13-109802-0.
Compilers − Principles, Techniques and Tools, Al Aho, Ravi Sethi, and Jeff
Ullman. Addison-Wesley, 1986, ISBN 0-201-10088-6.
The UNIX Programming Environment, Brian W. Ker nighan and Rob Pike,
Prentice-Hall, 1984, ISBN 0-13-937699-2.
Digital Halftoning, Rober t Ulichney, The MIT Press, 1987, ISBN
0-262-21009-6.
‘‘Pico − a Picture Editor,’ ’ Gerard J. Holzmann, AT&T Technical Journal, Vol.
66, No. 2, 1987, pp. 2–13.

6 Catalogue of Transformations

We conclude with a list of image transfor mations in the picture language for
popi. We make full use of the defaults for indexing, so old [x , y] is abbreviated
to old , and a default assignment new [x , y] = is always omitted. Most of the
transfor mations were illustrated in Chapters 3 and 4. At the completion of
each command, or sequence of commands, listed here the edit buffer will
contain the required image. The last few examples are transfor mations that
are harder to express in popi, but that can be added as user-defined routines,
as shown in Chapter 5 (see Adding a Display Routine).

Making a Negative
Z-old

Logarithmic Correction
Z∗log(old)/log(Z)

Simulated Solarization
(old > Z/2) ? Z-old : old

Contrast Expansion and Normalization
(Z*(old-L))/(H-L) Assumes brightness values in the range L to H .

Focus Restoration
5∗old-old[x-1,y]-old[x+1,y]-old[x,y-1]-old[x,y+1]

109

110 BEYOND PHOTOGRAPHY CHAPTER 6

Blurring
(old[x-2,y-2]+old[x-1,y-2]+old[x,y-2]+old[x+1,y-2]+
old[x-2,y-1]+old[x-1,y-1]+old[x,y-1]+old[x+1,y-1]+
old[x-2,y]+old[x-1,y]+old[x,y]+old[x+1,y]+
old[x-2,y+1]+old[x-1,y+1]+old[x,y+1]+old[x+1,y+1])/16

Enlarging by an Integ er Factor
(x<X/5 && y<Y/5) ? old[x∗5,y∗5] : 0 Enlarges by a factor of 5

Shrinking by an Integ er Factor
old[x/3,y/3] Shr inks by a factor of 3

Mirroring
old[X-x,y]

Turning the Picture Upside Down
old[x,Y-y]

Rotating by 90o Clockwise
old[y,X-x]

Rotating by 90o Counterclockwise
old[Y-y,x]

Averaging Three Images
(one+two+three)/3

Weighted Average
(W1∗one+W2∗two+W3∗three)/(W1+W2+W3) Weight factors: W1, W2, W3

Relief
old-old[x+2,y+2]

Arbitrar y Grid Transforms
See Chapter 4, photos 10, 11, and 13.

old[x+(64-(old%16)∗(old%16))/8, y+(64-(old/16)∗(old/16))/8]
oldˆ(old∗(128-(x-128)∗(x-128)-(y-128)∗(y-128)))>>17
old[x+(x%32)-16, y]

Transforms Using Trigonometric Functions
See Chapter 4, photo 12, and Chapter 3, expression 3.35.

CHAPTER 6 CATALOGUE OF TRANSFORMATIONS 111

old[x+sin(X∗x/4)∗X/8, y+sin(Y∗y/4)∗Y/8]
old[x+(X∗cos(((x-X/2)∗A)∗2/X))/6, y]

Transforms Using Polar Coordinates
See Chapter 4, photos 1, 6, 8, 13, 14, and 19.

old[sqrt(r∗R), a]
old[r, a+r/3]
old[x(a) ∗ X/A, y(r) ∗ Y/R]
old[x+((a+r/10)%32)-16, y]
old[(r∗r)/R, a]
old[r, a+old[r,a]/8]

Composites with Mattes
Straight composites of images, without averaging or fading, can be made in a
number of different ways. In the examples below we use two images, named
I1 and I2, and the corresponding mattes, M1 and M2. Assume that the
images have the same background (e.g. portraits against a plain white back-
ground). At each point in the final image either I1 or I2 will be visible. All mat-
tes are zero within the image area they define and Z outside of it. This type
of image compositing is called the ‘‘Por ter-Duff algebra.’’

(!M1)?I1:I2 I1 over I2
(!M2)?I2:I1 I2 over I1
(!M1&&!M2)?I1:0 I1 inside I2
(!M1&&!M2)?I2:0 I2 inside I1
(!M1&&!M2)?0:I1 I1 outside I2
(!M1&&!M2)?0:I2 I2 outside I1
(!M1&&!M2)?I1:I2 I1 atop I2
(!M1&&!M2)?I2:I1 I2 atop I1

The expressions are for non-blurred mattes (cf. Chapter 4 photo 3).
Arbitrar y Composites
See Chapter 3, expressions 3.15, 3.28, 3.31, 3.32, and 3.33.

(one[x,y] > Z/2) ? one[x,y] : two[x,y]
(x>X/2)? old : old[X-x,y]
(x∗two[x,y] + (X-x)∗one[x,y])/X
(x<X/3)?two:(x>2∗X/3)?one:((x-X/3)∗one+(2∗X/3-x)∗two)∗3/X
(y<Y/3)?two:(y>2∗Y/3)?one:((y-Y/3)∗one+(2∗Y/3-y)∗two)∗3/Y

Plotting a Grid
(x%7>1)?(y%7>1)?0:Z:Z Evenly spaced, thick white lines.
(x%7)?(y%7)?0:x/2:x/2 Thinner grid, fading from left to right.

Routine-1: Oil Transfer
An example librar y routine that can be linked with the image editor. This par-
ticular transfor mation was used for Chapter 4, photo 7. We will use the macro
definitions for New and Old in also the other routines that are listed here.

112 BEYOND PHOTOGRAPHY CHAPTER 6

#define N 3
#define New src[CURNEW].pix
#define Old src[CUROLD].pix

oil()
{ register int x, y;

register int dx, dy, mfp;
int histo[256];

for (y = N; y < DEF_Y-N; y++)
for (x = N; x < DEF_X-N; x++)
{ for (dx = 0; dx < 256; dx++)

histo[dx] = 0;

for (dy = y-N; dy <= y+N; dy++)
for (dx = x-N; dx <= x+N; dx++)

histo[Old[dy][dx]]++;

for (dx = dy = 0; dx < 256; dx++)
if (histo[dx] > dy)
{ dy = histo[dx];

mfp = dx;
}

New[y][x] = mfp;
} }

Note that the values in array histo can be updated faster if you avoid counting
the same pixels more than once in a single sweep across the width of the
image.
Routine-2: Picture Shear
See Chapter 4, photo 2. The routine uses a standard librar y function rand ()
to draw random numbers.

shear()
{ register int x, y, r;

int dx, dy, yshift[DEF_X];

for (x = r = 0; x < DEF_X; x++)
{ if (rand()%256 < 128)

r--;
else

r++;
yshift[x] = r;

}

for (y = 0; y < DEF_Y; y++)
{ if (rand()%256 < 128)

r--;
else

r++;

CHAPTER 6 CATALOGUE OF TRANSFORMATIONS 113

for (x = 0; x < DEF_X; x++)
{ dx = x+r; dy = y+yshift[x];

if (dx >= DEF_X || dy >= DEF_Y
|| dx < 0 || dy < 0)

continue;
New[y][x] = Old[dy][dx];

} } }

Routine-3: Slicing
See Chapter 4, photo 9. For the definitions of New and Old see Routine-1.

slicer()
{ register int x, y, r;

int dx, dy, xshift[DEF_Y], yshift[DEF_X];

for (x = dx = 0; x < DEF_X; x++)
{ if (dx == 0)

{ r = (rand()&63)-32;
dx = 8+rand()&31;

} else
dx--;

yshift[x] = r;
}
for (y = dy = 0; y < DEF_Y; y++)
{ if (dy == 0)

{ r = (rand()&63)-32;
dy = 8+rand()&31;

} else
dy--;

xshift[y] = r;
}

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)
{ dx = x+xshift[y]; dy = y+yshift[x];

if (dx < DEF_X && dy < DEF_Y
&& dx >= 0 && dy >= 0)

New[y][x] = Old[dy][dx];
} }

Routine-4: Tiling
See also Chapter 4, photo 15. The routine can be made more interesting by
also randomly var ying the size of the tiles.

#define T 25 /* tile size */

tiling()
{ register int x, y, dx, dy;

int ox, oy, nx, ny;

114 BEYOND PHOTOGRAPHY CHAPTER 6

for (y = 0; y < DEF_Y-T; y += T)
for (x = 0; x < DEF_X-T; x += T)
{ ox = (rand()&31)-16; /* displacement */

oy = (rand()&31)-16;

for (dy = y; dy < y+T; dy++)
for (dx = x; dx < x+T; dx++)
{ nx = dx+ox; ny = dy+oy;

if (nx >= DEF_X || ny >= DEF_Y
|| nx < 0 || ny < 0)

continue;
New[ny][nx] = Old[dy][dx];

} } }

Routine-5: Melting
See Chapter 4, photo 5. This transfor mation ‘‘melts’’ the image in place. It
does not use the edit buffer new , so the two buffers should not be swapped
after the transfor mation completes.

melting()
{ register int x, y, val, k;

for (k = 0; k < DEF_X*DEF_Y; k++)
{ x = rand()%DEF_X;

y = rand()%(DEF_Y-1);

while (y < DEF_Y-1 && Old[y][x] <= Old[y+1][x])
{ val = Old[y][x];

Old[y][x] = Old[y+1][x];
Old[y+1][x] = val;
y++;

} } }

Routine-6: Making a Matte
Image mattes were used, for instance, to make photos 2 and 19 in Chapter 4.
For a por trait on a fair ly light background, a first approximation of a matte can
be made with the following routine. It will have to be touched up with a normal
paint program. Experiment with different values for G.

#define G 7.5 /* gamma factor */

extern double pow(); /* the C-library routine */
matte()
{ register x, y;

unsigned char lookup[256];

for (x = 0; x < 256; x++)
lookup[x] = (255. * pow(x/255., G)<3.)?255:0;

for (y = 0; y < DEF_Y; y++)
for (x = 0; x < DEF_X; x++)

New[y][x] = lookup[Old[y][x]];
}

NAME INDEX

Ades, Dawn 2, 6
Aho, Al 56, 108
Bell, A. G. 36, 116
Bentley, Jon viii, 40
Bergeret 3
Bittr ich, Mar y viii
Bose, N. K. 13
Boyle, Willard S. 8, 116
Bur nett, Hillar y 52, 115
Burson, Nancy 3, 5
Cardelli, Luca 31, 48
Chesson, Greg 54
Claudet, Antoine 3
Colombo, Attillio 5
Daguerre, Louis 1
Darwin, Charles 3
da Vinci, Leonardo 3
Dijkstra, Edsger W. 31
Ducos du Hauron, Jacques

3
Duff, Tom 32, 42, 60, 111
Einstein, Albert 34, 38
Fox Talbot, W. H. 2
Galton, Francis 3
Gonzalez, R. C. 13

Grosz, George 4
Halsman, Philippe 34, 38,

116
Harbison, Samual 108
Har mon, Leon 72
Hear tfield, John 4, 6, 115
Holton 116
Hume, Andrew viii, 58
Isenr ing, Johann 2, 4
Kernighan, Brian viii, 25,

108
Langston, Peter 60
Lincoln 72, 75
Locanthi, Bart 31, 66
McIlroy, Doug viii, 7, 66,

116
McKie, Jim 22-23, 116
Mitchell, Don 115-116
Mona Lisa 1, 3, 115
Nelson, Karen 68, 116
Niepce, Joseph 1
Oestreicher, Beate viii
Oppenheimer, Rober t 38
Paone, Judy viii, 72
Pa vlidis, Theo 62

Pike, Rob viii, 27, 29, 31,
42, 64

Pinocchio 66
Pratt, William K. 13
Presotto, Dave 32
Redman, Brian 23-24, 28
Ritchie, Dennis 44, 46,

108
Robinson, Henry Peach

2-3
Sabattier, Armand 22
Scharf, Aaron 3, 5
Schwar tz, Lillian 3, 70,

115-116
Sitar, Ed viii, 50
Smith, George E. 8, 116
Staeck, Klaus 4-5
Thompson, Ken viii, 33,

42, 44
Uelsmann, Jerry 4, 6, 115
Ulichney, Rober t 108
Wall, Alfred 3
Weinberger, Peter 27, 29,

42, 116
Woodbur y, Walter 3

117

SUBJECT INDEX

35mm negatives 7, 15
Ar t & Antiques magazine

115
algebra, Por ter-Duff 111
area processes 23
atan 19
averaging 27, 110
Bar tlane system 7
blit terminal 31
blurr ing 110
Byte magazine 11-12
camcorder 8
camera, digital 8, 12
Canon 9, 12, 116
CCD 8, 9, 11, 116
color 12, 15, 107
combination print 2-3
commands, popi 76
command terminators,

popi 76
composites 111
conditional transfor mations

19, 86-87
contrast expansion 109
coordinates

car tesian 16
polar 20, 44, 48, 58,
68, 107, 111

correction, logarithmic 22,
109

cos 19
daguerrotype 2
data structure, popi 89
defaults, popi 82, 109
digital

cameras 8, 12
pr inters 11
scanners 11

display command, popi
78, 105

DMD 5620, Teletype 31
double exposure 1-3
edit buffers, popi 77

efficiency, popi 75
enlarging 110
errors, popi syntax 82
EWD icon 31
extensions, to popi

106-107, 109
face server 32
file command, popi 76
file handler, popi 76
file references, popi 84-85
files command, popi 84
film printers, digital 11
fisheye transfor mation 60
floppy disk 10
focus restoration 4, 23,

109
frame-grabber 11
Fuji 9
funhouse mirror 56
gamma 114
geometr ic transfor mation

24
grammar rules, popi 82
gr id transfor mations

110-111
halftoning 106
hand coloring 2
HDTV 11
Hitachi 8
image

ar tificial 17
averaging 27, 110
buffers 78, 89
coordinates 16
disks 10
filters 22, 108
matte 38, 52, 70, 114
melting 42, 114
mirror ing 38, 110
nor malization 109
oiling 46, 111
relief 23, 110
rotating 25, 110

retouching 1
rubber-sheet 64
sensors 9
shear ing 36, 112
shr inking 25, 110
slicing 50, 113
smoothing 110
solar izing 1, 22, 109
stretching 25
tiling 62, 113

Imagitex Inc. 11
indexing, popi 84
inter preter, popi 76, 91
I/O handler, popi 80, 90
Jet Propulsion Lab 7
kalotype 2
knifing negatives 1
Kodak 9, 12
Laplacian filter 23
lexical analyzer, popi 76,

78
librar y routines

C 78
popi 104

Life magazine 7
linear fade 27
literals, popi grammar 83
logar ithmic correction 22,

109
logo, PJW 42
Matr ix Instr uments Inc. 12
matte 38, 52, 70, 114
Mavica CCD camera 9
Megaplus CCD camera 9
melting, picture 114
memor y allocation, popi

89
mirror ing 38, 110
modulo arithmetic 17
multiphotography 3
multiple exposure 1-3
NASA 7
NEC 8

119

120 BEYOND PHOTOGRAPHY

negatives
35mm 7, 15
knifing 1
resolution 15

nonlinear ity 9, 22
nor malization 109
oil transfor mation 46, 111
perfor mance, popi 104
Photokina 9-10
photo montage 2
pico 33, 75, 105
pixel 12, 15, 75, 77, 89
PJW logo 42
point processes 22
polar coordinates 20, 44,

48, 58, 68, 107, 111
Polaroid 12, 32
popi 75

color 107
commands 76
conditional expressions
86
data structure 89
defaults 82, 109
display command 78,
105
buffers 77-78, 89
efficiency 75
extensions 106-107,
109
file handler 76
file references 84
grammar rules 82-83
array indexing 84
inter preter 76, 91
I/O handler 80, 90

lexical analyzer 76, 78
librar y routines 104
memor y allocation 89
parser 76, 81, 85
perfor mance 104
precedence rules 86
prompt 76, 81
quit command 76, 81
read command 76-77,
90
resolution 76, 89
restr ictions 75
stack machine 91
str ucture 77
error handling 82
undo operation 107
wr ite command 76, 90

Porter-Duff algebra 111
postfix expressions 85
precedence rules, popi 86
pr inters, video 12
projection 34
QCR digital camera 12
RCA 8
recursive-descent parser,

popi 76
relief transfor mation 23,

110
resolution 8, 11-12

popi 76, 89
human eye 16
negatives 15
pr ints 16
television 16

retouching 1
rotating 25, 110

rubber-sheet 64
sampling grid 16
scanner, photo 11
sensors, image 9
shr inking 25, 110
sin 19
slicing, picture 50, 113
SLR camera 8
smoothing 110
solar ization 1, 22, 109
Sony 9, 12
SpectraFax Corp. 11
stack machine, popi 91
still video 9
stretching 25
syntax errors, popi 82
sysmon 32
TARGA board 11
Tektronix 8
Teletype DMD 5620 31
ter minal, blit 31
ter minals, popi grammar

83
tiling, picture 62, 113
tokens 77, 78, 83
Toshiba 8
tr igonometry 19, 107, 111
undo operation, popi 107
Videk 9
video printers 12
vismon 32
water tower logo 42
weighted average 110
x, y, and z, defined 16

Photo Credits

The Cover
The cover image is a composite of two different portraits of New Yor k ar tist
Hillar y Bur nett. The original photographs were taken by the author with a 4×5
inch view camera on Polaroid film type 52. One of the photos was mirrored,
combined with the original, and merged with the second. The entire compos-
ite can be expressed in the picture editing language introduced in this book
and executed with the image editor discussed in Chapter 5.

Chapter 1
The Mona Leo picture on page 1 is a composite of the Mona Lisa and a mirror
image of a self-portrait of Leonardo da Vinci, both scaled and lined up to
make a perfect fit. Computer artist Lillian Schwar tz (see Chapter 4, photo 19)
and I made the composite using the picture editing language discussed in
Chapter 2. More infor mation on this image can be found in the special issue
of the monthly Ar ts & Antiques of Januar y 1987.
The foreground of the combination print on page 2 is an old transparent col-
lodium glass positive by an unknown photographer. The background was
computer generated, with a program written by Don Mitchell of AT&T Bell
Labs, and matted in.
On page 4, the photo on the left is a collage made by John Heartfield in 1931.
The full title of the wor k is The Crisis Par ty Convention of the Social Demo-
cratic Par ty of Germany. It can be found in, a.o., John Heartfield Leben und
Werk, by Wieland Herzfelde, VEB Ver lag der Kunst, Dresden, 3rd printing
1986, LSV-8116. The photo is reproduced here with permission from the
Hear tfield Archiv in Berlin and publisher VEB Ver lag der Kunst in Dresden.
The photo on the right was made by Jerr y Uelsmann in 1970. It is titled The
Little Hamburger Tree. It appears, for instance, in his book Silver Meditations,
Morgan & Morgan Publishing, Dobbs Ferr y, N.Y., 1975, ISBN 0-871-00087-3.
The photo is reproduced with permission of Jerry Uelsmann.

115

116 BEYOND PHOTOGRAPHY

Chapter 2
The photo on the title page is a portrait of Doug McIlroy of AT&T Bell Labs,
digitally faded from a negative to a positive. The original photo was made by
Rob Pike.
Page 9. Willard S. Boyle and George E. Smith, demonstrating the first CCD
television camera at Bell Labs in 1974. Photo courtesy of AT&T.
A photo of the Canon RC-701 still video image camera on page 10 is repro-
duced with permission from Canon U.S.A., Inc.

Chapter 3
The photo that opens this chapter is of Jim McKie, a colleague at Bell Labs,
with a transfor mation similar to the one used for Chapter 4, photo 6. McKie’s
por trait was also used for the transfor mations on page 22 and 23. All photos
in this chapter are from the series of 4×5 inch polaroids taken by Rob Pike
(see the introduction to Chapter 4). The only picture not taken by Rob is his
own por trait, which was taken by the author.

Chapter 4
The first picture is the result a square root transfor mation (cf. photo 1 in this
chapter) applied to the EWD icon, also shown on the same page.
Most photos in this chapter were taken by Rob Pike with a 4×5 inch view cam-
era on Polaroid type 52 film. The exceptions are the following six photos.
The originals for photos 1 and 3 were made by Philippe Halsman in 1947 and
1958, © Yvonne Halsman 1988.
The original for photo 2 is a portrait of Alexander Graham Bell taken in 1876.
The photograph is by Holton, courtesy and copyr ight of the Bell family and the
National Geographic Society.
Photo 18, a portrait of Karen Nelson, is reprinted with permission from the
Bell Systems Technical Journal, © 1969 by AT&T.
Photo 19 is a portrait of Lillian Schwar tz taken by the author.
Photo 20 was taken in 1963 by a photographer named Lorstan.

Chapter 5
The photo at the top of page 75 is the result of a pixel smearing operation that
uses an arbitrar y other portrait from our database as an index. The operation
is applied to a portrait of Don Mitchell, better known for his research in com-
puter graphics and cryptography.

Chapter 6
The picture on page 109 is a transfor med por trait of Peter Weinberger, but this
time applied to only half of the image. Cf. photo 5 in Chapter 4.

BEYOND
PHOTOGRAPHY

THE DIGITAL DARKROOM

Gerard J. Holzmann

THE AUTHOR

This book shows how photographs can be scanned into a computer and
manipulated in a ‘digital darkroom’ at a resolution that is close to the resolu-
tion of commonly used films and photographic papers.

Although the results can be startling, most of the images in this book were
made in only a few seconds of computer time. The transfor mations can be
specified in a few lines of text with the picture transfor mation language ‘popi’
that is introduced in the first chapters of the book. All transfor mations can be
reproduced completely with a small portable picture editing system, that is
also discussed in the book. It is written in the programming language C, and
you can run it on your home computer.

PRENTICE-HALL
Englewood Cliffs, N.J. 07632 ISBN 0-13-074410-7

