
MAT-VET-F 20022

Examensarbete 15 hp
Juni 2020

Autonomous flight of the micro
drone Crazyflie 2.1 through an
obstacle course

Chiedza Chadehumbe
Josefine Sjöberg

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Autonomous flight of the micro drone Crazyflie 2.1
through an obstacle course

Chiedza Chadehumbe, Josefine Sjöberg

A drone is an unmanned aerial vehicle with multiple forms of usage.
Drones can be programmed to fly with different degrees of autonomous
flight. Autonomous controlled flight makes it possible for the drone to
fly without human involvement and it is then controlled solely by
software. The goal of this project is to program the micro drone
Crazyflie 2.1 to autonomously fly through an obstacle course in the
shortest amount of time and a predetermined direction. The nature and
placement of the obstacles are unknown beforehand. The obstacles are
detected and avoided by using the obstacle detection sensor Multi-
ranger. To achieve autonomous flight two possible navigation systems
were tested, the Loco Positioning System and Flow deck. Flying the
Crazyflie while using Flow deck as positioning system performed best,
managing to fly through the obstacle course avoiding all obstacles.

ISSN: 1401-5757, MAT-VET-F 20022
Examinator: Martin Sjödin
Ämnesgranskare: Ken Welch
Handledare: Luca Mottola, Stefan Johansson

Populärvetenskaplig sammanfattning

En drönare är en obemannad luftfarkost med m̊anga användningsomr̊aden. Drönare kan program-
meras till att flyga med olika grader av autonom styrning. Autonom styrning gör det möjligt för
drönaren att styras utan mänsklig inblandning och den styrs d̊a helt av mjukvara. I detta pro-
jekt programmeras mikrodrönaren Crazyflie 2.1 till att autonomt flyga snabbast möjligt igenom en
förutbestämd hinderbana med slumpmässigt utplacerade hinder. För att upptäcka hinder användes
den avst̊andsmätande sensorn Multi-ranger. I projektet utvärderades tv̊a olika positoneringssys-
tem, Loco positioning system och Flow deck. Av de tv̊a testade positioneringsystemen presterade
Flow deck bäst och med lösningen med Flow deck lyckades drönaren flyga igenom hela hinderbanan
och undvika de utplacerade hindrena.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Goal . 3

2 Hardware 3
2.1 Crazyflie 2.1 . 3
2.2 Crazyflie positioning systems . 4

2.2.1 Loco positioning system and the Loco Positioning deck 5
2.2.2 Optical navigation using Flow deck . 5

2.3 Crazyflie obstacle detection sensor . 5
2.3.1 Multi-ranger deck . 5

3 Method 6
3.1 Implementing pathfinding . 6
3.2 Implementing obstacle detection . 7
3.3 Implementing autonomous flight . 7

3.3.1 LPS . 7
3.3.2 Flow deck . 8

4 Results 8
4.1 Flying through the test path using LPS . 8
4.2 Flying through the test path using Flow deck . 8

4.2.1 Method 1 . 8
4.2.2 Method 2 . 9

4.3 Flying through the obstacle course . 10

5 Discussion 12
5.1 Flying through the test path using LPS . 12
5.2 Flying through the test path using Flow deck . 12

6 Conclusion 13

7 Bibliography 14

Appendices 16

A Available equipment 16

B Flying environment 16

C Methods of flying 17
C.1 Method 1: Angling the drone . 17
C.2 Method 2: Not angling the drone . 17

1

D Code 18
D.1 LPS . 18
D.2 Flow Deck . 24

D.2.1 Method 1 . 24
D.2.2 Method 2 . 30

2

1 Introduction

1.1 Background

A drone is an unmanned aerial vehicle that has multiple forms of usage. Some of these applications
are aerial photography, combat, and transport. Smaller types of drones where the wingspan is less
than 15cm are called micro drones [1]. Drones can be programmed to fly with different degrees
of autonomous flight. Autonomous controlled flight makes it possible for the drone to fly without
human involvement and it is then controlled solely by software. The drone can then by itself
detect and manage applications that are hard or dangerous for humans to do. To be able to fly
autonomously the drone needs sensors to detect potential obstacles.

1.2 Goal

The goal of this project is to assemble the micro drone Crazyflie 2.1, manufactured by Bitcraze
AB [2], and program it to autonomously fly through a predefined circular obstacle course in the
shortest amount of time with a predetermined direction. The path is not unique as there are mul-
tiple available routes to reach the finish line. Time starts when the drone takes off at the starting
point and the run concludes when the drone lands at the same take-off point, with some tolerance
margin. The path the drone has taken will be logged during the run for performance evaluation.
The course is given as a sequence of 3D coordinates. Where the path splits in multiple directions,
an obstacle may be placed preventing the drone to fly through the shortest path. The drone must
then choose the second shortest path given that no obstacles are blocking that direction, and so on.
The number of obstacles as well as their nature and positioning is not known beforehand, meaning,
the drone must dynamically recognize the situation and act accordingly.

To reach this goal a catalog of sensors and equipment was given to us, where the full list is specified
in Appendix A. There were two different sensors that can act as the drones positioning system, the
Loco Positioning System (LPS) and Flow deck and one sensor for obstacle detection, Multi-ranger.
One of the aims of the project was to evaluate which one of the given positioning system sensors
that works best for our goal.

This project will be the foundation of a possible future project-based course for students on the
Master’s Programme in Engineering Physics on Uppsala University to enroll, to learn more about
autonomously controlled drones.

2 Hardware

2.1 Crazyflie 2.1

The Crazyflie 2.1, see Figure 1, is the third miniature quadcopter developed by Bitcraze AB. The
Crazyflie comes as a kit and weighs 27g and measures 92x92mm when assembled. It has four 7mm
coreless DC-motors that achieve a maximum takeoff weight of 42g. This enables the Crazyflie 2.1
to carry more hardware in the form of expansion decks that can provide further functionality, such
as sensors. An expansion deck can be placed either on top or under the Crazyflie. A fully loaded
battery gives the quadcopter around seven-minutes of flight time.

3

Figure 1: To the left the Crazyflie 2.1 package contents unassembled and to the right the Crazyflie
2.1 assembled, [3].

Crazyflie 2.1 is equipped with a low-latency/long-range radio as well as Bluetooth LE which enables
both manual and autonomous flight. Manual flight is possible either from a mobile app using
Bluetooth, available for both Android and iOS, or through the Crazyflie client installed on the
Bitcraze virtual machine (VM) using a game controller. The latter requires the Crazyflie PA, a
2.4 GHz long-range USB radio dongle that sends communications between the computer and the
Crazyflie. Autonomous flight is possible using software to control the Crazyflie, instead of manual
control, in combination with the Crazyflie PA and some kind of positioning system giving the drone
information on its position. When flying the Crazyflie there are four main dimensions of control,
visualized in Figure 2. The dimensions are roll, pitch, yaw, and thrust.

Figure 2: The main dimensions to control while flying the Crazyflie 2.1, [4]

2.2 Crazyflie positioning systems

Autonomous flight with the Crazyflie requires an expansion deck that can get its current position
or measure relative distance so that it can move to a desired position in a desired velocity. In this
project, two possible positioning systems were available for testing. The Loco Positioning System
with the Loco Positioning deck or optical navigation using the Flow deck.

4

2.2.1 Loco positioning system and the Loco Positioning deck

The Loco Positioning system [5] is a local positioning system that can be used to give the Crazyflie
absolute 3D coordinates by using a set of anchors, Loco Positioning nodes, that are positioned in
the room as reference. On the drone, a Loco Positioning deck, see Figure 3, is placed either on
top or underneath the Crazyflie. By sending radio messages between the anchors and the Loco
Positioning deck, the system measures the distance from each anchor to the deck and calculates
the 3D position of the Crazyflie.

Figure 3: Loco Positioning deck, [6]

2.2.2 Optical navigation using Flow deck

The Flow deck v2 [7], seen in Figure 4, gives the Crazyflie the ability to sense its motion in
both vertical and horizontal directions. It uses a time-of-flight laser ranging sensor to measure
vertical distances up to 4m with mm precision and an optical flow sensor to detect and measure
the horizontal motion of surfaces, enabling the drone to travel desired distances. The deck weighs
1.6g, measures 21x28x4mm, and is designed for mounting under the Crazyflie.

Figure 4: Flow deck v2, [7].

2.3 Crazyflie obstacle detection sensor

2.3.1 Multi-ranger deck

The Multi-ranger deck [8], seen in Figure 5, gives the Crazyflie the ability to sense objects around
it in five directions: front, back, left, right, and up. It uses five time-of-flight laser ranging sensors
to sense objects up to 4m away with mm precision and allowed proximity can be set by the user
through the Application Programming Interface (API) for obstacle avoidance. The deck weighs
2.3g, measures 35x35x5mm, and is designed for mounting on top of the Crazyflie.

5

Figure 5: Multi-ranger deck, [8].

3 Method

To reach the project goal three main steps needed to be implemented: pathfinding, obstacle detec-
tion, and autonomous flight. This was implemented using a virtual machine (VM) that Bitcraze has
developed [9], which has all the software needed for flight and development pre-installed. Virtual
machines are software computers that provide the same functionality as physical computers; they
run applications and an operating system [10]. The application logic could be placed either on a
controlling station, such as a computer, that connects to the Crazyflie or directly on the Crazyflie.
The Crazyflie firmware is written in C++ and the official Crazyflie API is written in Python, how-
ever, several other languages can be used from the client side. For this project, it was decided that
a controlling station, using the Python API, should control the Crazyflie.

For test flying, we had access to a room at Uppsala University which had the LPS using eight
anchors installed, see Appendix B. All tests were made in this room for both LPS and Flow deck,
including the final test.

To be able to check how well the drone performs, the current position was logged in a CSV-file
using the pre-existing Kalman filter estimation with an interval of 500 ms.

3.1 Implementing pathfinding

The path is given as a sequence of 3D-coordinates in a CSV-file, where each coordinate is followed
by its connected coordinates. A graph data structure was chosen to represent the path and was
implemented using the Python package NetworkX [11]. NetworkX contains a large number of tools
to build and manipulate graph structures and is well documented for easy use. A directed graph was
chosen since the drone is only allowed to travel a specific direction on the path. The path coordinates
were represented by graph nodes and the path between them by graph edges. NetworkX provides
pathfinding features for finding the shortest path between specific nodes. We added weights to
each edge equaling the distance between the nodes and used their standard feature for weighted
pathfinding to find the shortest path through the obstacle course. Weighted pathfinding returns
the path with the smallest sum of the weights, ensuring that the shortest path is returned. Since
the obstacle course starts and ends on the same node, the start node was changed by 0.0001 m in
the z-direction so that two different nodes could be used as input in the NetworkX feature. This
was needed since if the same node is used for start and finish, it only returns itself.

6

3.2 Implementing obstacle detection

For obstacle detection, we used the Multi-ranger deck with the corresponding class multiranger
developed by Bitcraze [12]. As stated in the problem description, obstacles will only be placed in
the vicinity of a splitting point. For testing our implemented solution we invented a test path, see
Figure 6. Looking at the test path, the drone needs to check for obstacles when it stands on a
splitting point, as in node B, and also before it reaches a splitting point looking for dead ends, as
for when it travels from node G to F. If the drone detects an obstacle between two nodes, the graph
edge between them is removed and the shortest path is recalculated using this new information. If
the drone detects a dead end, it also re-tracks its path before it recalculates the new path, since the
graph is directed. To achieve this, the drone was instructed to stop before it reaches its destination,
checking for obstacles in its flight direction, and then fly the rest of the distance if the path is clear.
When it reaches a node, it checks for obstacles in the next flight direction, before it starts to travel
again.

When we evaluated our implemented solutions on the test path we used ourselves as stationary
obstacles, making sure to stand at the same spot for each test run when the Crazyflie searched for
obstacles in its path.

Figure 6: Test path.

3.3 Implementing autonomous flight

3.3.1 LPS

When implementing autonomous flight using the LPS, we based the code of the Bitcraze example
script AutonomousSequence, found on Github [13]. The script uses the commander class [14]
developed by Bitcraze, to fly, where position coordinates and angle are passed to the drone in
sequence. Angle calculations were implemented so that the drone always turned to the flight

7

direction, enabling the use of only the front sensor for obstacle detection on the Multi-ranger, see
Appendix C.1 for an illustration.

3.3.2 Flow deck

Two different ways of flying using the Flow deck were implemented and tested, where both methods
used Bitcrazes motion commander class [15] developed for Flow deck. Since the Flow deck does
not know its absolute position we fly it using the motion commander function move distance to
move a certain distance in the x-, y- and, z-direction. First, it was implemented that the drone
should fly in the direction it is facing, meaning it should angle itself to the node it flies to, identical
to the behavior when using LPS. From here on, this method is referred to as Method 1.

In the second method, it was implemented that the drone never turns, using the calculated relative
angles between nodes and drone orientation to determine which Multi-ranger sensor to use, see
Appendix C.2 for an illustration. From here on, this method is referred to as Method 2.

4 Results

4.1 Flying through the test path using LPS

In Table 1, 15 test runs using three different velocities are illustrated. All runs were incomplete
due to overshooting the destination coordinate F, see Figure 6, resulting in the drone flying into
the obstacle. All tests were made using the LPS with 8 anchors.

Table 1: Result from 15 test runs for three different velocities.

Run 0.2m/s 0.4m/s 0.6m/s

1 Incomplete Incomplete Incomplete
2 Incomplete Incomplete Incomplete
3 Incomplete Incomplete Incomplete
4 Incomplete Incomplete Incomplete
5 Incomplete Incomplete Incomplete

4.2 Flying through the test path using Flow deck

4.2.1 Method 1

When using Method 1 to fly through the obstacle course, it was observed that the angling of the
drone resulted in undesirable behavior. This behavior manifested itself as over- or undershooting
of the angle or drifting, as the drone turned itself. To examine the effect of the velocity when the
drone turned, tests were made of the importance of the angular velocity. In Table 2, the result of 15
different test runs using three different angular velocities when angling the Crazyflie is presented.
The reason for the incomplete runs is color-coded by their main reason for failing the test run.
Red means that the drone did not angle itself correctly after adjusting its angle in a turn or due
to an obstacle, either by over- or undershooting the angle or drifting while turning. Blue is when

8

the drone did not travel the correct distance between one of the previous coordinates and therefore
missed an obstacle. The latter is independent of the angular velocity but was instead a problem due
to using Flow deck as the positioning system. All the test runs resulted in the drone missing the
second obstacle placed before the coordinate F except the fifth test run with 90°/s as the angular
velocity where it missed the first obstacle placed closed to the coordinate B. All tests were run with
the velocity of 0.2m/s.

Table 2: Result from 15 test runs for three different angular velocities.

Run 45°/s 90°/s 180°/s

1 Incomplete Incomplete Incomplete
2 Incomplete Incomplete Incomplete
3 Incomplete Incomplete Incomplete
4 Incomplete Incomplete Incomplete
5 Incomplete Incomplete Incomplete

Since the result of the tests of adjusting the angular velocity resulted in 15 incomplete runs, it was
decided to not do any further fine-tuning of this way of flying the Crazyflie.

4.2.2 Method 2

When flying the obstacle course using the sensor in the direction of travel, the angling was no longer
a problem. It was instead investigated how the speed of the drone affected the drone’s ability to
manage the path. The result of 15 test runs with three different velocities is shown in Table 3.
All the incomplete test runs were due to the Crazyflie flying inconsistent distances between the
coordinates resulting in it missing the obstacle placed in front of coordinate F. The average run
time for the completed runs were 1 min and 55 s with a velocity equal to 0.2m/s, 1 min and 17 s
with 0.4m/s and 1 min and 6 s with 0.6m/s.

Table 3: Result from 15 test runs for three different velocities.

Run 0.2m/s 0.4m/s 0.6m/s

1 Complete Incomplete Incomplete
2 Incomplete Incomplete Incomplete
3 Incomplete Complete Complete
4 Incomplete Incomplete Complete
5 Complete Complete Incomplete

In Figure 7, the average path is shown for the three velocities two completed runs. The best per-
formance was achieved with 0.2m/s as velocity.

To see if it was possible to fine-tune the solution, a correction of the position of the drone when it
reached every coordinate was tested. Since the position was logged relative to the start position of
the drone, the current position could be corrected using the logged value. The result of 15 test runs
with three different velocities is shown in Table 4. The first aim was to evaluate the same velocities

9

(a) Velocity = 2m/s. (b) Velocity = 4m/s.

(c) Velocity = 6m/s.

Figure 7: The best path the drone took of each velocity’s completed runs.

as in Table 3, but since it was observed that the result for 0.4m/s was all incomplete runs, 0.3m/s
was evaluated instead of 0.6m/s.

Table 4: Result from 15 test runs for three different velocities.

Run 0.2m/s 0.3m/s 0.4m/s

1 Complete Complete Incomplete
2 Complete Incomplete Incomplete
3 Complete Incomplete Incomplete
4 Complete Complete Incomplete
5 Complete Incomplete Incomplete

4.3 Flying through the obstacle course

The path given to us for the final test can be seen in Figure 8. The placement and nature of
obstacles were unknown before the final test but were at the time of testing revealed to be chairs
with the placement shown in Figure 8.

10

Figure 8: The final path.

During test flies through the given obstacle course without obstacles, it was observed that although
the correction of the coordinates did work for when the drone moved small distances, it did not
work sufficient enough for longer distances. When flying distances that were above 1m the drone
often failed to fly all the way. So instead we tried to elongate the distance the drone should travel
when the distance between two coordinates was longer than 1m. This was done by multiplying the
distance by 1.1.

The final result was achieved using Method 2 without correction of the drone at the coordinates but
with multiplying the longer distances with 1.1. This resulted in the logged position of the drone
appearing to be off the path, but in actuality it was not the case, see Figure 9. The speed was set
to 0.2m/s and the time it took for the drone to fly through the obstacle course was 2 minutes and
4s.

Figure 9: The result of the drone flying through the final path. In the picture it seems that the
drone was off path but in real life the drone managed to fly through the obstacle course.

11

5 Discussion

5.1 Flying through the test path using LPS

The LPS uses absolute position and angle, where the angle of the drone is relative to the x-axis of
the LPS coordinate system. This means that the drone can take-off from any position in the room
and then fly to the starting point of the obstacle course with a desired angle. An unstable take-off
is therefore not an issue. However, the absolute position is sensitive to disturbances and was tested
to have an error margin of as much as ± 40cm in all directions in our testing environment. This
caused the drone to hover and fly unstable, causing the drone to miss obstacles and sometimes
crash. The LPS is documented to have an accuracy of approximately 10cm [5], leading us to think
that there were unusually large disturbances from the surroundings of our testing area.

The unstable flight was minimized changing the number of calls made for each position when calling
the function send position setpoint() from the commander class. Optimal velocity was found to be
0.2m/s with the number of calls set to 20.

Despite the unstable flight, the logged position did not show a large error margin leading us to
think that the Kalman filter installed on the drone fluctuates with the absolute position of the LPS.

5.2 Flying through the test path using Flow deck

The Flow deck uses relative position when flying, meaning it is controlled with reference to its
current state. This poses some challenges since it does not have an absolute position or angle.
This means that the location of the start node needs to be known beforehand and also the first
travel direction. This is where one of the biggest issues with the Flow deck comes in. The take-off
procedure using the Flow deck can be unstable, where the drone drifts away from the starting
point or turns and get an incorrect first direction. However, since the take-off was not part of
this project, this was solved by simply re-trying the take-off continuously until a successful take-off
was achieved. Also, since the optical flow sensor placed on the Flow deck is sensitive to different
surfaces, colors, and lighting, some care was needed when it comes to where it will fly. If the sun
hits a spot on the ground or if it flies over a carpet, the sensor might be confused and drift off its
current path or crash. The Flow deck works best on matt, light surfaces in good lighting.

There is also the problem of unbalanced propellers caused by previous crashes, production errors, or
a non-centered placement of the battery. To minimize the effect of these issues, one can investigate
how unstable the flight is by test flying the drone beforehand. Unstable flight is characterized by
the drone drifting when hovering, flying, and/or when it turns. If such behavior is present, the
separate parts of the drone need to be examined and replaced if a defect is found.

Using Method 1, where the drone angles itself to the flight direction, resulted in path breaches
causing the drone to miss obstacles by flying past them or by not reaching them. These breaches
were mainly caused by drifting during turns. We tried to minimize this drifting by fine-tuning
the angular velocity and found that for 90°/s the most stable turns were achieved. For 45°/s the
drone drifted more during turns and for 180°/s the angle overshot more often. However, fine-tuning
the angle velocity did not result in more completed runs since the distance estimation was incorrect.

12

To avoid the problem of unstable turns altogether, Method 2 was implemented where no turns are
required. This resulted in a much more stable flight. However, it was noticed that the drone rarely
flies the exact distance it is instructed to fly when using the Flow deck. This was fine-tuned by
multiplying the longer flying distances by 1.1 to achieve a more accurate representation of the real
distance. With this solution, the drone managed to fly through the final obstacle course seen in
Figure 8.

6 Conclusion

Of the two tested ways of navigating the Crazyflie through the obstacle course, either by flying
using LPS or using Flow deck, the Flow deck performed the best. No test runs were complete
using the LPS as the positioning system, with the main reason being unstable flight caused by
disturbances in the LPS.

When using the optical navigation system, Flow deck, two different methods were implemented
and tested, one of which angled the Crazyflie so that only the forward sensor needed to be used on
the obstacle detection sensor Multi-ranger, and one where the drone never changes its angle but
uses the calculated angles between nodes to determine which sensor on the Multi-ranger to use.
The second method, Method 2, with some fine-tuning performed the best and managed to avoid
all obstacles during the final test and reach the finish line.

13

7 Bibliography

[1] Nonami, K. Autonomous Flying Robot: Unmanned Aerial Vehicles and Micro Aerial Vehicles,
New York; Tokyo, Springer, 2010.

[2] Bitcraze webpage, Bitcraze.
Available at:https://www.bitcraze.io/
(Accessed: 10 June 2020).

[3] Crazyflie 2.1, Bitcraze.
Available at:https://store.bitcraze.io/products/crazyflie-2-1
(Accessed: 10 June 2020).

[4] Getting started with the Crazyflie 2.X, Bitcraze.
Available at:https://www.bitcraze.io/documentation/tutorials/
getting-started-with-crazyflie-2-x/
(Accessed: 10 June 2020).

[5] Loco Positioning system, Bitcraze.
Available at: https://www.bitcraze.io/products/loco-positioning-system/
(Accessed: 10 June 2020).

[6] Loco Positioning Deck, Bitcraze.
Available at: https://www.bitcraze.io/products/loco-positioning-deck/
(Accessed: 10 June 2020).

[7] Flow deck v2, Bitcraze.
Available at: https://www.bitcraze.io/products/flow-deck-v2/
(Accessed: 10 June 2020).

[8] Multi-ranger deck, Bitcraze.
Available at: https://www.bitcraze.io/products/multi-ranger-deck/
(Accessed: 10 June 2020).

[9] The bitcraze virtual machine, Github.
Available at: https://github.com/bitcraze/bitcraze-vm/releases/
(Accessed: 10 June 2020).

[10] Virtual machine description, vmware.
Available at: https://www.vmware.com/topics/glossary/content/virtual-machine
(Accessed: 10 June 2020).

[11] NetworkX webpage, NetworkX.
Available at: https://networkx.github.io/
(Accessed: 10 June 2020).

[12] Multiranger class, Github.
Available at: https://github.com/bitcraze/crazyflie-lib-python/blob/master/cflib/
utils/multiranger.py
(Accessed: 10 June 2020).

14

[13] AutonomousSequence.py example script, github.
Available at: https://github.com/bitcraze/crazyflie-lib-python/blob/master/examples/
autonomousSequence.py
(Accessed: 10 June 2020).

[14] Commander class, github.
https://github.com/bitcraze/crazyflie-lib-python/blob/master/cflib/crazyflie/
commander.py
(Accessed: 10 June 2020).

[15] Motion commander class, github.
https://github.com/bitcraze/crazyflie-lib-python/blob/master/cflib/positioning/
motion commander.py
(Accessed: 10 June 2020).

15

Appendices

A Available equipment

Equipment Description

Loco Positioning System 8 LPS nodes, 10 Loco Positioning decks

CrazyFlie 2.1 kit The micro drone

CrazyRadio PA Connects a controlling station to the micro drone

Multi-ranger Deck Ranging sensor for obstacle detection

Flow Deck v2 Optical motion sensor

Prototyping Deck Prototyping area for placing extra hardware

Breakout Deck For testing new hardware

Debug adapters For debugging the drone

Table 5: List over available equipment during this project.

B Flying environment

Figure 10: A photograph from a test flight with the drone.

16

C Methods of flying

C.1 Method 1: Angling the drone

Figure 11: Flying by angling the drone.

C.2 Method 2: Not angling the drone

Figure 12: Flying by not angling the drone.

17

D Code

D.1 LPS

-*- coding: utf -8 -*-
#
|| ____ _ __
+------+ / __)(_) /_______________ _____ ___
| 0xBC | / __ / / __/ ___/ ___/ __ ‘/_ / / _ \
+------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/
|| || /_____/_/__/___/_/ __,_/ /___/___/
#
Copyright (C) 2016 Bitcraze AB
#
Crazyflie Nano Quadcopter Client
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License , or (at your option) any later version.
#
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not , write to the Free Software
Foundation , Inc., 51 Franklin Street , Fifth Floor , Boston ,
MA 02110 -1301 , USA.

"""
This script flies one crazyflie autonomously through an obstacle course.
The coordinates are read from a file , placed in a directed graph and the
shortest path through the course is calculated and sent to the drone.
The drone can detect obstacles 50 cm away (def in is_close) and can handle
obstacles at splitting points and dead ends.

The script is designed for the Loco Positioning System.
"""

import logging
import time
import csv
import os
import sys
import networkx as nx
import numpy as np
import math

import cflib.crtp
from cflib.crazyflie import Crazyflie
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
from cflib.positioning.motion_commander import MotionCommander
from cflib.crazyflie.log import LogConfig
from cflib.crazyflie.syncLogger import SyncLogger
from cflib.utils.multiranger import Multiranger

18

URI to the Crazyflie to connect to
URI = ’radio ://0/80/2M’

#Bitcraze
def wait_for_position_estimator(scf):

print(’Waiting for estimator to find position ...’)

log_config = LogConfig(name=’Kalman Variance ’, period_in_ms =500)
log_config.add_variable(’kalman.varPX’, ’float’)
log_config.add_variable(’kalman.varPY’, ’float’)
log_config.add_variable(’kalman.varPZ’, ’float’)

var_y_history = [1000] * 10
var_x_history = [1000] * 10
var_z_history = [1000] * 10

threshold = 0.001

with SyncLogger(scf , log_config) as logger:
for log_entry in logger:

data = log_entry [1]

var_x_history.append(data[’kalman.varPX’])
var_x_history.pop(0)
var_y_history.append(data[’kalman.varPY’])
var_y_history.pop(0)
var_z_history.append(data[’kalman.varPZ’])
var_z_history.pop(0)

min_x = min(var_x_history)
max_x = max(var_x_history)
min_y = min(var_y_history)
max_y = max(var_y_history)
min_z = min(var_z_history)
max_z = max(var_z_history)

print ("{} {} {}".
format(max_x - min_x , max_y - min_y , max_z - min_z))

if (max_x - min_x) < threshold and (
max_y - min_y) < threshold and (
max_z - min_z) < threshold:

break

#Bitcraze
def reset_estimator(scf):

cf = scf.cf
cf.param.set_value(’kalman.resetEstimation ’, ’1’)
time.sleep (0.1)
cf.param.set_value(’kalman.resetEstimation ’, ’0’)

wait_for_position_estimator(cf)

#Bitcraze

19

def position_callback(timestamp , data , logconf):
x = data[’kalman.stateX ’]
y = data[’kalman.stateY ’]
z = data[’kalman.stateZ ’]
#print(’pos: ({}, {}, {}) ’.format(x, y, z))
with open(’position.csv’, ’a’) as csvfile:

writer = csv.writer(csvfile ,delimiter=’,’)
writer.writerow ([x, y, z])

csvfile.close()

#Bitcraze
def start_position_printing(scf):

log_conf = LogConfig(name=’Position ’, period_in_ms =500)
log_conf.add_variable(’kalman.stateX ’, ’float’)
log_conf.add_variable(’kalman.stateY ’, ’float’)
log_conf.add_variable(’kalman.stateZ ’, ’float’)

scf.cf.log.add_config(log_conf)
log_conf.data_received_cb.add_callback(position_callback)
log_conf.start()

def is_close(range):
MIN_DISTANCE = 0.5 # m

if range is None:
return False

else:
return range < MIN_DISTANCE

def recalc_path(current_coord , next_coord , end_coord):
G.remove_edge(current_coord ,next_coord)
last_coord = next_coord
nodes_shortest = nx.dijkstra_path(G,source=current_coord , target=end_coord)
next_coord = nodes_shortest [1]
angles = angles_path(nodes_shortest)
return next_coord , nodes_shortest , angles

def make_graph ():
G = nx.DiGraph ()
with open(’copycoordinates.csv’, ’r’) as file:

reader = csv.reader(file)
line_count = 0
for row in reader:

nr_nodes = int(len(row)/3)
nr_paths = nr_nodes -1
x = []
y = []
z = []
for i in range(0,nr_nodes):

x.append(float(row [0+3*i]))
y.append(float(row [1+3*i]))
z.append(float(row [2+3*i]))

for i in range(0,nr_nodes -1):

20

Weight = abs(x[0]-x[i+1]+y[0]-y[i+1]+z[0]-z[i+1])
G.add_edge ((x[0],y[0],z[0]) ,(x[i+1],y[i+1],z[i+1]), weight = Weight)

return G

def change_startcoord ():
with open(’testpath.csv’, ’r’) as file:

reader = csv.reader(file)
lines = list(reader)
lines [0][2] = float(lines [0][2]) -0.0001

file.close()
with open(’copycoordinates.csv’, ’w’) as file:

writer = csv.writer(file)
writer.writerows(lines)

file.close()
return lines

def angles_path(nodes_shortest):
angles = []
for i in range(0, len(nodes_shortest) -1):

p0 = nodes_shortest[i] #current
p1 = nodes_shortest[i+1] #next
v1 = np.array([p1[0]-p0[0], p1[1]-p0[1]]) #Direction
v2 = np.array([1, 0]) #Reference
angle = np.math.atan2(np.linalg.det([v2,v1]),np.dot(v2,v1))
angles.append(np.degrees(angle))

angles.append (0)
return angles

def dy(distance ,m):
return m*dx(distance ,m)

def dx(distance ,m):
return math.sqrt(distance **2/(m**2+1))

def fly(scf , G, lines , multiranger):
cf = scf.cf
nodes_shortest = nx.dijkstra_path(G,source =(float(lines [0][0]) ,float(lines [0][1]) ,

float(lines [0][2])), target =(float(lines [0][0]) ,float(lines [0][1]) ,float(lines
[0][2]) +0.0001))

angles = angles_path(nodes_shortest)
current_coord = nodes_shortest [0]
next_coord = nodes_shortest [1]
end_coord = nodes_shortest[len(nodes_shortest) -1]
times = 20

coord_index = 1
traveled_path = []
traveled_path.append(current_coord)
#Fly to the starting point
for j in range(times):

cf.commander.send_position_setpoint(current_coord [0],
current_coord [1],

21

current_coord [2],
angles[coord_index -1])

time.sleep (0.1)
print(current_coord)
while current_coord != end_coord:

#Check if there is a obstacle placed at the splitting point
if is_close(multiranger.front):

print(’Obstacle placed at splitting point’)
next_coord , nodes_shortest , angles = recalc_path(current_coord , next_coord

, end_coord)
coord_index = 1
for j in range(times):

cf.commander.send_position_setpoint(current_coord [0],
current_coord [1],
current_coord [2],
angles[coord_index -1])

time.sleep (0.1)

else:
#If no obstacle is found , go to next coordinate but stop before and check

for dead end
#print(’No obstacle found ’)
d = 0.4
distance_x = next_coord [0]- current_coord [0]
distance_y = next_coord [1]- current_coord [1]
distance_z = next_coord [2]- current_coord [2]
if distance_x == 0:

m = 0
else:

m = distance_y/distance_x
pause_coord = (next_coord [0] - dx(d, m), next_coord [1]-dy(d, m))
for j in range(times):

cf.commander.send_position_setpoint(pause_coord [0],
pause_coord [1],
current_coord [2],
angles[coord_index -1])

time.sleep (0.1)
print(’pause coord’)

#Check for dead end move back to the latest splitting point
if is_close(multiranger.front):

print(’Dead end found , retrack ’)
for j in range(times):

cf.commander.send_position_setpoint(current_coord [0],
current_coord [1],
current_coord [2],
angles[coord_index])

time.sleep (0.1)
for i in range(len(traveled_path)):

if len(G.adj[(traveled_path [-(i+1)])]) >=2:
splitting_point = traveled_path [-(i+1)]
break

else:
pass

#If the last splitting point is the last coordinate go back to it

22

if splitting_point == current_coord:
next_coord , nodes_shortest , angles = recalc_path(current_coord ,

next_coord , end_coord)
coord_index = 1
for j in range(times):

cf.commander.send_position_setpoint(current_coord [0],
current_coord [1],
current_coord [2],
angles[coord_index])

time.sleep (0.1)
else:

#If the last splitting point is several coordinates away , retrack
to it

print(’current_coord ’)
print(current_coord)
retrack = nx.dijkstra_path(G,source=splitting_point , target=

current_coord)
#print(retrack)
G.remove_edge(current_coord ,next_coord)
for i in range(len(retrack) -1):

for j in range(times):
cf.commander.send_position_setpoint(retrack[-(i+2)][0],

retrack[-(i+2)][1],
retrack[-(i+2)][2],
0)

time.sleep (0.1)
current_coord = (retrack[-(i+2)][0], retrack[-(i+2)][1],

retrack[-(i+2)][2])

traveled_path.pop()
print(’current_coord ’)
print(current_coord)

next_coord , nodes_shortest , angles = recalc_path(current_coord ,
retrack [1], end_coord)

coord_index = 1
for j in range(times):

cf.commander.send_position_setpoint(current_coord [0],
current_coord [1],
current_coord [2],
angles[coord_index -1])

time.sleep (0.1)

#If no dead end is found , move all the way to the node and turn towards
next direction

else:
print(’fly to all the way to next’)
for j in range(times):

cf.commander.send_position_setpoint(next_coord [0],
next_coord [1],
next_coord [2],
angles[coord_index])

time.sleep (0.1)
coord_index += 1
if coord_index < len(nodes_shortest):

current_coord = next_coord

23

traveled_path.append ((current_coord))
print(’current_coord ’)
print(current_coord)
next_coord = nodes_shortest[coord_index]

else:
break

cf.commander.send_stop_setpoint ()
Make sure that the last packet leaves before the link is closed
since the message queue is not flushed before closing

print(next_coord)
return end_coord

if __name__ == ’__main__ ’:
try:

os.remove(’position.csv’)
except:

print(’Already deleted.’)
lines = change_startcoord ()
G = make_graph ()
cflib.crtp.init_drivers(enable_debug_driver=False)
with SyncCrazyflie(URI , cf=Crazyflie(rw_cache=’./cache’)) as scf:

reset_estimator(scf)
start_position_printing(scf)
with Multiranger(scf) as multiranger:

fly(scf , G, lines , multiranger)

D.2 Flow Deck

D.2.1 Method 1

-*- coding: utf -8 -*-
#
|| ____ _ __
+------+ / __)(_) /_______________ _____ ___
| 0xBC | / __ / / __/ ___/ ___/ __ ‘/_ / / _ \
+------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/
|| || /_____/_/__/___/_/ __,_/ /___/___/
#
Copyright (C) 2017 Bitcraze AB
#
Crazyflie Nano Quadcopter Client
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License , or (at your option) any later version.
#
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not , write to the Free Software

24

Foundation , Inc., 51 Franklin Street , Fifth Floor , Boston ,
MA 02110 -1301 , USA.
"""
This script flies one crazyflie autonomously through an obstacle course.
The coordinates are read from a file , placed in a directed graph and the
shortest path through the course is calculated and sent to the drone.
The drone can detect obstacles 50 cm away (def in is_close) and can handle
obstacles at splitting points and dead ends.

The script is designed for the floe deck.
"""

import logging
import time
import csv
import os
import sys
import networkx as nx
import numpy as np
import math

import cflib.crtp
from cflib.crazyflie import Crazyflie
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
from cflib.positioning.motion_commander import MotionCommander
from cflib.crazyflie.log import LogConfig
from cflib.crazyflie.syncLogger import SyncLogger
from cflib.utils.multiranger import Multiranger

URI = ’radio ://0/80/2M’
if len(sys.argv) > 1:

URI = sys.argv [1]

#Bitcraze
def position_callback(timestamp , data , logconf):

x = data[’kalman.stateX ’]
y = data[’kalman.stateY ’]
z = data[’kalman.stateZ ’]
#print(’pos: ({}, {}, {}) ’.format(x, y, z))
with open(’position.csv’, ’a’) as csvfile:

writer = csv.writer(csvfile ,delimiter=’,’)
writer.writerow ([x, y, z])

csvfile.close()

#Bitcraze
def start_position_printing(scf):

log_conf = LogConfig(name=’Position ’, period_in_ms =500)
log_conf.add_variable(’kalman.stateX ’, ’float’)
log_conf.add_variable(’kalman.stateY ’, ’float’)
log_conf.add_variable(’kalman.stateZ ’, ’float’)
scf.cf.log.add_config(log_conf)
log_conf.data_received_cb.add_callback(position_callback)
log_conf.start()

25

def is_close(range):
MIN_DISTANCE = 0.5 # m

if range is None:
return False

else:
return range < MIN_DISTANCE

def recalc_path(current_coord , next_coord , end_coord):
G.remove_edge(current_coord ,next_coord)
last_coord = next_coord
nodes_shortest = nx.dijkstra_path(G,source=current_coord , target=end_coord)
next_coord = nodes_shortest [1]
angles = angles_path(nodes_shortest)
angle = angle_nodes(current_coord , next_coord , last_coord)
return next_coord , nodes_shortest , angles , angle

def make_graph ():
G = nx.DiGraph ()
with open(’copycoordinates.csv’, ’r’) as file:

reader = csv.reader(file)
line_count = 0
for row in reader:

nr_nodes = int(len(row)/3)
nr_paths = nr_nodes -1
x = []
y = []
z = []
for i in range(0,nr_nodes):

x.append(float(row [0+3*i]))
y.append(float(row [1+3*i]))
z.append(float(row [2+3*i]))

for i in range(0,nr_nodes -1):
Weight = abs(x[0]-x[i+1]+y[0]-y[i+1]+z[0]-z[i+1])
G.add_edge ((x[0],y[0],z[0]) ,(x[i+1],y[i+1],z[i+1]), weight = Weight)

return G

def change_startcoord ():
with open(’testpath.csv’, ’r’) as file:

reader = csv.reader(file)
lines = list(reader)
lines [0][2] = float(lines [0][2]) -0.0001

file.close()

with open(’copycoordinates.csv’, ’w’) as file:
writer = csv.writer(file)
writer.writerows(lines)

file.close()
return lines

def angles_path(nodes_shortest):
angles = []

26

for i in range(1, len(nodes_shortest) -1):
p0 = nodes_shortest[i]
p1 = nodes_shortest[i-1]
p2 = nodes_shortest[i+1]
v1 = np.array([p1[0]-p0[0], p1[1]-p0[1]])
v2 = np.array([p2[0]-p0[0], p2[1]-p0[1]])
angle = np.math.atan2(np.linalg.det([v1,v2]),np.dot(v1,v2))
angles.append (180-np.degrees(angle))

angles.append (0)
print(angles)
return angles

def angle_nodes(current , next , last):
v1 = np.array([last[0]- current [0], last[1]- current [1]])
v2 = np.array([next[0]- current [0], next[1]- current [1]])
angle = np.degrees(np.math.atan2(np.linalg.det([v2,v1]),np.dot(v2,v1)))
return angle

def fly(G, lines , mc, multiranger):
nodes_shortest = nx.dijkstra_path(G,source =(float(lines [0][0]) ,float(lines [0][1]) ,

float(lines [0][2])), target =(float(lines [0][0]) ,float(lines [0][1]) ,float(lines
[0][2]) +0.0001))

angles = angles_path(nodes_shortest)
current_coord = nodes_shortest [0]
next_coord = nodes_shortest [1]
end_coord = nodes_shortest[len(nodes_shortest) -1]
print(current_coord)
coord_index = 1
traveled_path = []
latest_angles = []
traveled_path.append(current_coord)

while current_coord != end_coord:
time.sleep (1)
angle=angles[coord_index -1]

#Check if there is a obstacle placed at the splitting point
if is_close(multiranger.front):

print(’Obstacle placed close to the splitting point’)
next_coord , nodes_shortest , angles , correction_angle = recalc_path(

current_coord , next_coord , end_coord)

#If obstacle is found turn to the coordinate next in line
if correction_angle > 180:

mc.turn_left (360- correction_angle , 360.0/2.0)
print(’turn left’)

else:
mc.turn_right(correction_angle ,360.0/2.0)
print(’turn right’)

coord_index = 1

#If no obstacle is found , go to next coordinate but stop before and check if it
is a dead end

27

else:
distance_x = next_coord [0]- current_coord [0]
distance_y = next_coord [1]- current_coord [1]
distance_z = next_coord [2]- current_coord [2]
x_distance = math.sqrt((distance_x*distance_x)+(distance_y*distance_y))

-0.2
mc.move_distance(x_distance -0.2, 0.0, distance_z)
time.sleep (1)

#Check to see if it is a dead end if it is move back to the latest
splitting point

if is_close(multiranger.front):
mc.move_distance (-(x_distance -0.2), 0, -(distance_z))

for i in range(len(traveled_path)):
if len(G.adj[(traveled_path [-(i+1)])]) >=2:

splitting_point = traveled_path [-(i+1)]
break

else:
pass

#If the last splitting point is the last coordinate go back to it
if splitting_point == current_coord:

next_coord , nodes_shortest , angles , correction_angle = recalc_path
(current_coord , next_coord , end_coord)

if correction_angle > 180:
mc.turn_left (360- correction_angle , 360.0/2.0)

else:
mc.turn_right(correction_angle ,360.0/2.0)

#If the last splitting point is several coordinates away , retrack to
it

else:
print(current_coord)
retrack = nx.dijkstra_path(G,source=splitting_point , target=

current_coord)
print(retrack)
G.remove_edge(current_coord ,next_coord)

for i in range(len(retrack) -1):
distance_x = retrack[-(i+2)][0]- current_coord [0]
distance_y = retrack[-(i+2)][1]- current_coord [1]
distance_z = retrack[-(i+2)][2]- current_coord [2]
x_distance = math.sqrt((distance_x*distance_x)+(distance_y*

distance_y))
latest_angle = latest_angles [-(i+1)]

if latest_angle > 180:
mc.turn_right (360- latest_angle , 360.0/2.0)

else:
mc.turn_left(latest_angle ,360.0/2.0)

28

mc.move_distance(x_distance , 0.0, distance_z)
traveled_path.pop()
current_coord = retrack[-(i+2)]
print(’current_coord ’)
print(current_coord)

next_coord , nodes_shortest , angles , correction_angle = recalc_path
(current_coord , retrack [1], end_coord)

time.sleep (1)

if correction_angle > 180:
mc.turn_left (360- correction_angle , 360.0/2.0)

else:
mc.turn_right(correction_angle ,360.0/2.0)

time.sleep (1)
coord_index = 1

#If no dead end is found , move all the way to the node
else:

mc.move_distance (0.20, 0.0, 0.0)
time.sleep (1)

if angle > 180:
mc.turn_left (360-angle , 360.0/2.0)
latest_angles.append(angle)

else:
mc.turn_right(angle ,360.0/2.0)
latest_angles.append(angle)

time.sleep (1)

#Update current coordinate to next coordinate in the shortest path
coord_index += 1
if coord_index < len(nodes_shortest):

current_coord = next_coord
traveled_path.append ((current_coord))
print(current_coord)
next_coord = nodes_shortest[coord_index]

else:
break

print(next_coord)

Only output errors from the logging framework
logging.basicConfig(level=logging.ERROR)

if __name__ == ’__main__ ’:
try:

os.remove(’position.csv’)
except:

29

print(’Already deleted.’)
lines = change_startcoord ()
G = make_graph ()

cflib.crtp.init_drivers(enable_debug_driver=False)
with SyncCrazyflie(URI , cf=Crazyflie(rw_cache=’./cache’)) as scf:

start_position_printing(scf) #Log the drone’s path
with MotionCommander(scf) as mc:

with Multiranger(scf) as multiranger:
mc.up(0.3)
fly(G,lines , mc, multiranger)

D.2.2 Method 2

-*- coding: utf -8 -*-
#
|| ____ _ __
+------+ / __)(_) /_______________ _____ ___
| 0xBC | / __ / / __/ ___/ ___/ __ ‘/_ / / _ \
+------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/
|| || /_____/_/__/___/_/ __,_/ /___/___/
#
Copyright (C) 2017 Bitcraze AB
#
Crazyflie Nano Quadcopter Client
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License , or (at your option) any later version.
#
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not , write to the Free Software
Foundation , Inc., 51 Franklin Street , Fifth Floor , Boston ,
MA 02110 -1301 , USA.
"""
This script flies one crazyflie autonomously through an obstacle course.
The coordinates are read from a file , placed in a directed graph and the
shortest path through the course is calculated and sent to the drone.
The drone can detect obstacles 50 cm away (def in is_close) and can handle
obstacles at splitting points and dead ends.

The script is designed for the floe deck.
"""

import logging
import time
import csv
import os
import sys

30

import networkx as nx
import numpy as np
import math

import cflib.crtp
from cflib.crazyflie import Crazyflie
from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
from cflib.positioning.motion_commander import MotionCommander
from cflib.crazyflie.log import LogConfig
from cflib.crazyflie.syncLogger import SyncLogger
from cflib.utils.multiranger import Multiranger

URI = ’radio ://0/80/2M’
if len(sys.argv) > 1:

URI = sys.argv [1]

#Bitcraze
def position_callback(timestamp , data , logconf):

x = data[’kalman.stateX ’]
y = data[’kalman.stateY ’]
z = data[’kalman.stateZ ’]
#print(’pos: ({}, {}, {}) ’.format(x, y, z))
with open(’position.csv’, ’a’) as csvfile:

writer = csv.writer(csvfile ,delimiter=’,’)
writer.writerow ([x, y, z])

csvfile.close()

def get_position ():
with open(’position.csv’, ’r’) as file:

reader = csv.reader(file)
lines = list(reader)

file.close()
return lines[-1]

#Bitcraze
def start_position_printing(scf):

log_conf = LogConfig(name=’Position ’, period_in_ms =500)
log_conf.add_variable(’kalman.stateX ’, ’float’)
log_conf.add_variable(’kalman.stateY ’, ’float’)
log_conf.add_variable(’kalman.stateZ ’, ’float’)
scf.cf.log.add_config(log_conf)
log_conf.data_received_cb.add_callback(position_callback)
log_conf.start()

def is_close(range):
MIN_DISTANCE = 0.5 # m

if range is None:
return False

else:
return range < MIN_DISTANCE

31

def recalc_path(current_coord , next_coord , end_coord):
G.remove_edge(current_coord ,next_coord)
nodes_shortest = nx.dijkstra_path(G,source=current_coord , target=end_coord)
next_coord = nodes_shortest [1]
angles = angles_path(nodes_shortest)
return next_coord , nodes_shortest , angles

def make_graph ():
G = nx.DiGraph ()
with open(’copycoordinates.csv’, ’r’) as file:

reader = csv.reader(file)
line_count = 0
for row in reader:

nr_nodes = int(len(row)/3)
nr_paths = nr_nodes -1
x = []
y = []
z = []
for i in range(0,nr_nodes):

x.append(float(row [0+3*i]))
y.append(float(row [1+3*i]))
z.append(float(row [2+3*i]))

for i in range(0,nr_nodes -1):
Weight = abs(x[0]-x[i+1]+y[0]-y[i+1]+z[0]-z[i+1])
G.add_edge ((x[0],y[0],z[0]) ,(x[i+1],y[i+1],z[i+1]), weight = Weight)

return G

def change_startcoord ():
with open(’testpath.csv’, ’r’) as file:

reader = csv.reader(file)
lines = list(reader)
splitting_points = []
lines [0][2] = float(lines [0][2]) -0.0001

file.close()

with open(’copycoordinates.csv’, ’w’) as file:
writer = csv.writer(file)
writer.writerows(lines)

file.close()
return lines

def remove_lines(end_coord):
with open(’position.csv’, ’r’) as file:

reader = csv.reader(file)
line = list(reader)
diff_x = float(line [9][0]) - end_coord [0]
diff_y = float(line [9][1]) - end_coord [1]
diff_z = float(line [9][2]) - end_coord [2]
counter = 0
for rows in line:

if counter > 8:
line[counter][0] = float(line[counter][0])-diff_x
line[counter][1] = float(line[counter][1])-diff_y
line[counter][2] = float(line[counter][2])-diff_z

else:

32

pass
counter +=1

file.close()
with open(’position.csv’, ’w’) as file:

writer = csv.writer(file)
writer.writerows(line [9:])

file.close()

def diff(start_coord):
with open(’position.csv’, ’r’) as file:

reader = csv.reader(file)
line = list(reader)
diff_x = float(line [9][0]) - start_coord [0]
diff_y = float(line [9][1]) - start_coord [1]

file.close()
return diff_x , diff_y

def correct(diff_x , diff_y , next_coord):
pos = get_position ()
current_x = pos[0]- diff_x
current_y = pos[1]- diff_y
correction_x = next_coord [0]- current_x
correction_y = next_coord [1]- current_y
return correction_x , correction_y

def sensor(forward_sensor):
if forward_sensor == ’left’:

multisensor = multiranger.left
elif forward_sensor == ’right’:

multisensor = multiranger.right
elif forward_sensor == ’front’:

multisensor = multiranger.front
else:

multisensor = multiranger.back
return multisensor

def direction_of_travel(angle):
if angle > 45 and angle < 135 :

direction = ’left’
elif angle >-45 and angle < 45:

direction = ’front’
elif angle > -135 and angle < -45:

direction = ’right’
else:

direction = ’back’
return direction

def angles_path(nodes_shortest):
angles = []

for i in range(0, len(nodes_shortest) -1):
p0 = nodes_shortest[i] #current
p1 = nodes_shortest[i+1] #next
v1 = np.array([p1[0]-p0[0], p1[1]-p0[1]])
v2 = np.array([1, 0])
angle = np.math.atan2(np.linalg.det([v2,v1]),np.dot(v2,v1))

33

angles.append(np.degrees(angle))
return angles

def fly(G, lines , mc, multiranger):
velocity = 0.6
nodes_shortest = nx.dijkstra_path(G,source =(float(lines [0][0]) ,float(lines [0][1]) ,

float(lines [0][2])), target =(float(lines [0][0]) ,float(lines [0][1]) ,float(lines
[0][2]) +0.0001))

angles = angles_path(nodes_shortest)
current_coord = nodes_shortest [0]
diff_x , diff_y = diff(current_node)
next_coord = nodes_shortest [1]
end_coord = nodes_shortest[len(nodes_shortest) -1]
print(current_coord)
coord_index = 0
forward_sensor = ’front’
traveled_path = []
traveled_path.append(current_coord)
while current_coord != end_coord:

time.sleep (1)
multisensor = sensor(forward_sensor)

#Check if there is a obstacle placed at the splitting point
if is_close(multisensor):

print(’Obstacle placed in splitting point’)
next_coord , nodes_shortest , angles = recalc_path(current_coord , next_coord

, end_coord)
coord_index = 0
angle=angles[coord_index]
forward_sensor = direction_of_travel(angle)
print(’Using sensor after splitting point’)
print(forward_sensor)

#If no obstacle is found , go to next coordinate but stop before and check if
it is a dead end

else:
distance_x = next_coord [0]- current_coord [0]
distance_y = next_coord [1]- current_coord [1]
distance_z = next_coord [2]- current_coord [2]
mc.move_distance (0.8* distance_x , 0.8* distance_y , 0.0, velocity)
time.sleep (1)

multisensor = sensor(forward_sensor)

#Check for dead end move back to the latest splitting point
if is_close(multisensor):

mc.move_distance (-(0.8* distance_x), -(0.8* distance_y), 0.0, velocity)

for i in range(len(traveled_path)):
if len(G.adj[(traveled_path [-(i+1)])]) >=2:

splitting_point = traveled_path [-(i+1)]
break

else:
pass

34

#If the last splitting point is the last coordinate go back to it
if splitting_point == current_coord:

next_coord , nodes_shortest , angles = recalc_path(current_coord ,
next_coord , end_coord)

coord_index =0
angle=angles[coord_index]
forward_sensor = direction_of_travel(angle)
print(’Using sensor after splitting point == current_coord dead

end’)
print(forward_sensor)

#If the last splitting point is several coordinates away , retrack to
it

else:
print(current_coord)
retrack = nx.dijkstra_path(G,source=splitting_point , target=

current_coord)
G.remove_edge(current_coord ,next_coord)

for i in range(len(retrack) -1):
distance_x = retrack[-(i+2)][0]- current_coord [0]
distance_y = retrack[-(i+2)][1]- current_coord [1]
distance_z = retrack[-(i+2)][2]- current_coord [2]
mc.move_distance(distance_x , distance_y , 0.0, velocity)
traveled_path.pop()
current_coord = retrack[-(i+2)]
print(’current_coord ’)
print(current_coord)

next_coord , nodes_shortest , angles = recalc_path(current_coord ,
retrack [1], end_coord)

coord_index =0
angle=angles[coord_index]
forward_sensor = direction_of_travel(angle)
print(’Using sensor after dead end’)
print(forward_sensor)
time.sleep (1)

#If no dead end is found , move all the way to the node
else:

mc.move_distance (0.2* distance_x , 0.2* distance_y , 0.0, velocity)
time.sleep (1)

#Correct position in relation to the current logged position
correction_x , correction_y = correct(diff_x , diff_y , next_coord)
mc.move_distance(correction_x , correction_y , 0.0, velocity)

#Update current coordinate to next coordinate in the shortest path
coord_index += 1
if coord_index +1 < len(nodes_shortest):

current_coord = next_coord
traveled_path.append ((current_coord))
print(current_coord)
next_coord = nodes_shortest[coord_index +1]
print(next_coord)

35

else:
break

angle=angles[coord_index]
forward_sensor = direction_of_travel(angle)
print(’Using sensor after updating angle’)
print(forward_sensor)

print(next_coord)

Only output errors from the logging framework
logging.basicConfig(level=logging.ERROR)

if __name__ == ’__main__ ’:
try:

os.remove(’position.csv’)
except:

print(’Already deleted.’)

lines = change_startcoord ()
G = make_graph ()

cflib.crtp.init_drivers(enable_debug_driver=False)
with SyncCrazyflie(URI , cf=Crazyflie(rw_cache=’./cache’)) as scf:

start_position_printing(scf) #Log the drone’s path
with MotionCommander(scf) as mc:

with Multiranger(scf) as multiranger:
mc.up(0.3)
fly(G,lines , mc, multiranger)

36

