
An Efficient Representation for Sparse Sets

PRESTON BRIGGS and LINDA TORCZON

Rice University

Sets are a fundamental abstraction widely used in programming. Many representations are

possible, each offering different advantages. We describe a representation that supports con-

stant-time implementations of clear-set, add-member, and delete-member. Additionally, it sup-

ports an et%cient forall iterator, allowing enumeration of all the members of a set in time
proportional to the cardinality of the set.

We present detailed comparisons of the costs of operations on our representation and on a bit
vector representation. Additionally, we give experimental results showing the effectiveness of our
representation in a practical application: construction of an interference graph for use during
graph-coloring register allocation.

While this representation was developed to solve a specific problem arising in register
allocation, we have found it useful throughout our work, especially when implementing efficient
analysis techniques for large programs. However, the new representation is not a panacea. The

operations required for a particular set should be carefully considered before this representation,
or any other representation, is chosen.

Categories and Subject Descriptors: E.1 [Data]: Data Structures; E.2 [Data]: Data Storage
Representations

General Terms: Algorithms

Additional Key Words and Phrases: Compiler implementation, register allocation, set represen-
tations, set operations

1. INTRODUCTION

Sets are a fundamental abstraction widely used in programming. Many

representations are possible, each offering different advantages. The choice of

a “best” representation for a given set depends on the operations required,

their cost in both time and space, and the relative frequency of those

operations.

As a part of our exploration of register allocation via graph coloring [Briggs

1992; Chaitin et al. 1981], we looked for good implementations for each phase

of the allocator. To quickly construct the interference graph, we needed a set

representation that supported efficient implementations of the operations

clear-set, add-member, and delete-member, as well as an iterator, forall, that

enumerated the members.

This work has been supported by ARPA through ONR grant NOO014-91-J-1989 and by the IBM

Corporation.
Authors’ address: Department of Computer Science, Rice University, Houston, TX 77251-1892.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01993 ACM 1057-4514/93/0300-0059 $03.50

ACM Letters on Programming Languages and Systems,
Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F176454.176484&domain=pdf&date_stamp=1993-03-01

60 . P. Briggsand L. Torczon

Bit vector representations, a traditional choice for dataflow analysis, are

not efficient in this case. They require 0(u) time to clear and 0(u) time to

iterate over all the members, where u represents the size of the universe.

These requirements are especially distressing in applications like ours, where

the number of elements in the set is small relative to the size of the universe.

Inspired by a memorable homework problem of Aho et al. [1974, Problem

2.121, we developed a sparse set representation that supports all the required

operations efficiently. We have since implemented several versions of the new

representation and find it widely useful in our work, particularly in the

implementation of efficient analysis techniques for large routines [Cytron

et al. 1991].

In the next section, we introduce the sparse representation and discuss its

implementation. In Section 3, we consider the asymptotic complexity of the

sparse representation and compare the, costs of using it versus a bit vector

representation. In Section 4, we discuss applications of the sparse representa-

tion in the context of our optimizer. We conclude with a review of related

work and a brief summary.

2. THE SET REPRESENTATION

In our problems, we usually manipulate sets with a fixed-size universe U,

where u will represent the number of elements in the universe (e.g., the

variables in a program or the compiler temporaries in a routine). For conve-

nience, we map elements in U to the integers O through u – 1. Note that the

restriction to a fixed-size universe is significant-it restricts the use of sparse

sets to off-line algorithms [Aho et al. 1994, p. 109]. While more flexible

alternatives are available for use with on-line algorithms, they seem to be

necessarily less efficient. Of course, bit vectors also require a fixed-size

universe.

Our sparse-set representation has three components: two vectors, each u

elements long, and a scalar that records the number of members in the set.

Figure 1 illustrates an example set with a single member 3. The scalar

members delimits the initialized portion of the dense vector. Initialized

elements in dense point to members in the sparse vector, which point back

into dense. The values of other elements in dense and sparse are unimpor-

tant; they are never initialized. If a number k is a member of a set, it must

satisfy two conditions:

O s sparse[k] < members

and

dense[sparse[k]] = k.

Therefore, the C code for a membership test might look like this:

int member(Set *s, unsigned int k)
{

unsigned int a =s + sparse[k];
return a < s + members && s + dense[a] = = k;

}

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

Efficient Representation for Sparse Sets . 61

01234 u-l

sparse o . .

‘ense~
n1 members

Fig. 1. A set with one member.

For simplicity, we assume that k will always be less then u; therefore, the

initial access to s + sparse [k] will never provoke a bounds violation. Further-

more, because sparse is a vector of unsigned integers, no comparison is

required to prove that a > 0. Many variations are possible (e.g., using point-

ers instead of integer indices); however, they will all have the same asymp-

totic complexity.

Since all members of the set must appear between O and members in

dense, clearing the set requires only setting members to O. Enumeration of all

the members (~orall) is accomplished by iterating over the elements of dense.
To apply a function foo to every member of the set s, we would use the

following loop:

for(i=O; i<s~members; i++){
unsigned int member =s ~ dense[i];
foo(member);

}

Adding a member involves first checking for membership, then adding the

new element to dense. The corresponding entry in sparse is made to point at

the new dense entry.

void add_ member(Set *s, unsigned int k)
{

unsigned int a =s ~ sparse[kl;
unsigned int n = s ~ members;
if (a>= nils-+dense[a] != k){

s -+ sparse[k] = n;
s ~ dense[n] = k;
sjmembers=n+l;

}
}-

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

62 . P. Briggsand L. Torczon

Again, we are assuming that k < u. As a final example, consider the code for

deleting a member:

void delete_ member(Set *s, unsigned int k)
{
‘ unsigned int a =s ~ sparse[k];

unsigned int n = s - members – 1;
if(a<=n &&s- dense[al==k) {

unsigned int e = s -+ dense[n];
s + members = n;

s + dense[a] = e;

s + sparse[el = a;
}

}

In this case, we first check for membership, then use an element e from the

end of dense to overwrite the deleted member in dense [a]. Finally, the link

from sparse [e] is updated to point at dense[a].

3. COSTS

In this section, we discuss the asymptotic space and time complexity of sparse

sets. Additionally, we compare the actual costs of common set operations in

the context of sparse sets and a bit vector representation.

3.1 Asymptotic Complexity

A sparse set requires O(u) space, regardless of the number of members in the

set. In our implementations, we allocate 4 u + 2 bytes per set (storing 16-bit

indices in the vectors).

We have shown constant-time implementations for member, add-member,

and delete-member. Additionally, clear-set, cardinality, and choose-one have

simple, constant-time implementations. The following operations have obvi-

ous implementations based on forall that run in 0(n) time, where n is the

number of members: set-union, set-intersection, set-difference, set-copy, and

set-equality. Set-complement requires O(u) time, but is rarely necessary

given the existence of an efficient set-difference.

3.2 Comparisons with a Bit Vector Representation

Table I compares the asymptotic time complexities of several set operations

on a bit vector representation and a sparse-set representation. Notice that for

every operation, sparse sets are at least as good as bit vectors; therefore, if we
only considered asymptotic costs, we could safely choose a sparse set over a

bit vector representation for every application. Of course, the relative costs of

different operations are also important, particularly when there is not a clear

difference in the asymptotic complexities. In this section, we explore the

actual costs of operations on the sparse set and on a bit vector representation.

The costs of most bit vector operations are straightforward to determine

since they do not depend on the data. For sparse sets, the costs of many

operations depend on both the data and the state of the uninitialized portion

of sparse. For example, on the IBM RS/6000, the cost of performing a

ACM Letters on Programming Languages and Systemsj Vol. 2, Nos. 1-4, March-December 1993

Efficient Representation for Sparse Sets . 63

Table I. Asymptotic Time Complexities

Operatton Bit Vector Sparse

member o(1) o(1)

add-member ()(1) o(1)
delete-member o(1) o(1)

clear-set o(u) o(1)
cl] oose-on e o(u) 0(1)

cardin ali tey o(u) 0(1)

forall o(u) 0(7$)

copy o(u) 0(71)

compare o(u) 0(11)

union o(u) 0(11)

intersect o(u) 0(71)

ditlkren ce o(u) 0(11)

Complemel] t o(u) o(u)

member operation for a bit vector is always 6 cycles.1 On the other hand, the

cost of performing a member for a sparse set is either 10, 16, or 17 cycles,

depending on the exact path taken through the conditional branches. Cycle

counts for other simple operations are:

—add-member requires 7 cycles for bit vectors and 14, 15, or 20 cycles for

sparse sets;

—delete-member requires 7 cycles for bit vectors and 9, 15, or 22 cycles for

sparse sets.

The sparse set’s remaining constant-time operations (choose-one, cardinality,

and clear-set) are inexpensive compared to the corresponding operations for a

bit vector representation.

To verify the calculated costs, we performed an experiment comparing the

performance of operations on the two representations. For each representa-

tion, we measured the time required for one million add-member, delete-

member, and member operations. Since the time required for operations on a

sparse set are data dependent, we performed the operations in sequence with

random data. The test framework is shown here:

set = create_ set (size);
for(i=O; i < 1000000; i+ +) {

add_ member(set, rand() Y. size);
delete_ member(set, rand() YO size);
(void) member(set, rand() % size);

}

where rand () is a Unix system call returning integers in the range O to
215 – 1. To factor out overhead, we subtracted the time required for the same

1Cycle counts were determined by examining the output from IBM’s xlc compiler for the
RS/6000, ignoring the possibility of cache misses.

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993,

64 . P. Briggs and L. Torczon

Table II. Relative Operation Timings

B~t Vector Sparse

stze total ttllle average cost iotai time average cost ratto

500 0.7.5 seconds 7.5 cycles 1.86 seconds 18.6 cycles 2.48

5,000 0.74 seconds 7.4 cycles 1.85 seconds 18.5 cycles 2.50

50,000 0.76 seconds 7.6 cycles 2.76 seconds 27.6 cycles 3.63

loop with calls to the dummy set routines. To help show the effect of cache

misses, we performed the experiment with three different universe sizes: 500,

5000, and 50,000 elements. The tests were run on an IBM RS\6000, Model

540, with a 64KB data cache, a 30MHz clock, and a 100Hz timer. Each test

was repeated 10 times, and the results were averaged.

Table II summarizes the results of the tests. Our earlier comparisons

suggested that simple operations on the bit vector representation would be 2

to 3 times faster than on the sparse representation. The experimental results

confirm these comparisons.z Not surprisingly, the results also show that

operations on the sparse representation are more severely affected by cache

misses, particularly for large universes.

We also compared the costs of complex operations (e.g., set-union and

set-intersection). The bit vector operations require 0(u) time; the correspond-

ing sparse-set operations require 0(n) time. We would expect the tradeoff

between the representations to depend on the density of the sets (the value of

n versus u) and the constant factors implied by the implementations. We

considered two operations in detail:

—set-copy: Copying an entire set requires 12 + 3/ u\321 cycles for bit vectors

and 8 + 6 n cycles for the sparse-set representation.

—set-union: A two-address union (A + A U l?) requires 7 + 5[u\321 cycles

for bit vectors. A sparse set requires 10 cycles startup, plus 10 or 13 cycles

per member of B.

Comparing the requirements for set-copy suggests that a sparse is faster if

n < u/64. For set-union, we would expect the tradeoff point somewhere in

the range u \83 < n < u/64. Of course, these costs are all machine depen-

dent; in particular, they depend heavily on the 32-bit word of the RS\6000.

Longer word lengths will favor bit vector representations.
We performed tests to verify these comparisons. First, we measured the

time to perform each operation using bit vectors with a universe size of 5000

elements. Since these times are independent of the data in the set, we made

no effort to initialize the operands. Second, we measured the time required to

2There is no obvious reason why the bit vector operations require an average of 7.5 cycles instead

of the expected 6.67 cycles. The RS/6000 has a complex superscalar implementation, and we rely
on compiler estimates of structural interlocks. It seems likely that the compiler’s estimates are
flawed due to lack of interprocedural information.

ACM Letters on Programming Languages and Systems, Vol 2, Nos 1-4, March-December 1993

Efficient Representation for Sparse Sets . 65

perform the same operations using sparse sets of the same universe size. The

sparse sets were initialized with random elements, where the number of

elements varied between O and 100.

—set-copy: Copying the bit vector required 16.6ps versus our prediction of
16.l~s (a 15-cycle difference). The measured cost of copying a sparse set

varied linearly from 0.6~s for an empty set up to 20.5ps for a set with 100

members (versus a predicted cost of 20.3ws, a difference of 7 cycles). The

breakeven point occurred with a set containing 79 members (compared

with the predicted 5000\64 = 78.125).

—set-union: The bit vector union required 27.OWS versus our prediction of

26.4ps (a difference of 18 cycles). The time required for the sparse union

varied linearly from l.Ops for an empty set up to 40.8ps for a set with 100

members, suggesting a cost of approximately 12 cycles per member. The

breakeven point occurred with a set containing 65 members (corresponding

to a density of 1/77).

4. APPLICATIONS

We have found the sparse-set representation to be widely applicable. In this

section, we study our motivating example in greater depth and present an

experimental comparison of two implementations. We also describe briefly

several other successful applications of sparse sets.

4.1 Constructing an Interference Graph

Our original motivation was to efficiently construct the interference graph for

use during graph-coloring register allocation [Briggs 1992; Chaitin 1982]. The

interference graph construction algorithm is sketched below. In this setting,

we are concerned with the operations involving the set live.

for each block b in the flow graph {
clear_ set(Iive) (1)
for each /ive range Ir in b - liveOut

add_member(live, find(k)) (2)
for each instruction i in b (in reverse order) {

if i is a copy instruction (dst +- src)
delete_ member(live, find (dst)) (3)

for each defined live range def in i
for each live range Ir in live (4)

add_edge(graph, Ir, find(def))
for each defined live range def in i

deiete_member(live, find (clef)) (5)
for each referenced live range use in i

add_ member(live, find(use)) (6),

Considering only asymptotic complexities, the sparse representation seems
well suited for this application. However, the measured superiority of bit

vectors for the add-member and delete-member operations suggest that a bit

vector representation for live might prove competitive. To test this possibility,

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

66 . P. Briggs and L. Torczon

Table III. Interference Graph Construction

program doduc t orncatv f pppp

routine I reDvid I iniset I t onrcatv I t wldrv I f DWDD, . , , ,
before
spiUing

live ranges 440 2,113 699 4,911 5,439

clear-set 71 493 99 310 1

add-member 4,953 15,176 9,651 88,129 8,600

delete-member 592 2,934 894 6,310 6,446

ford] 427 1,976 680 4,726 5,456

ava. lenath 51.8 24.9 71.4 297.4 118.3c> .>

density 11.8% 1.2% 10.2% 6.0% 2.2%

time 0.04 / 002 0.16 I 006 0.08 I 0.05 ~. 14 1.08 1.77 \ 066

aft er live ranges 378 1,343 652 3,968 5,584

spilling clear-set 71 493 99 310 1

add-member 2,141 13,850 2,359 10,974 9,312

delet-member 417 1,393 723 4,285 5,635

ford] 366 1,206 657 4,103 5,601

avg. length 20.6 24.0 16.5 18.4 22.5

density 5.5% 1.1% 2.5% 0.5% 0.4%

time 0.02 0.01 0.08 004 0.03 0.01 O.JO 0,08 0.57 0.13

total construction time 0.24 0.15 0.70 029 0.68 0.33 15.75 7.86 10.49 3.76

total allocation time 0.48 039 1.38 0.97 1.22 0.87 20.55 12.66 16.32 959

we built two versions of Chaitin’s allocator: one version using a bit vector

representation for live and a second version using our sparse representation

for live.

Table III summarizes the results of our experiment. We tested the alloca-

tors on five routines collected from three programs in the SPEC benchmark

suite [Standards Performance Evaluation Corp. 1990]. Two of the routines,

twldrv and fpppp, were chosen because they are well known for the difficulties

provoked by their size. The routine iniset was chosen for its relatively high

ratio of basic blocks to instructions (fpppp represents the other extreme, with

a single basic block). The remaining routines were chosen as representative of

smaller examples.

We made two sets of measurements on each routine: one set for the initial

interference graph and one set for the interference graph constructed imme-

diately after the first round of spilling.3 We also measured the total time

spent constructing interference graphs and the total time spent in register

allocation. All tests were conducted on an IBM RS\6000, Model 540, with a
64KR data cache, a 20MJ4z clock, and a 100Hz timer. Each test wae repeated

10 times, and the results were averaged. All times reported in Table III are in

seconds. Times for the bit vector version are reported in italics; times for the

sparse version are shown in saris serif.

The timing results are quite conclusive; for this application, the sparse-set

representation is much faster than a bit vector representation. For the phases

3Note that the interference graph is constructed in two passes and then repeatedly refined via

coalescing—we measured only the first pass.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

Efficient Representation for Sparse Sets . 67

shown and analyzed in detail, the improvement is usually at least a factor of

two; in the extreme case, we see a factor of five. This produces a factor of two
improvement in the total amount of time spent constructing interference

graphs for each routine. The change in total allocation time, while always less

than a factor of two, is still significant.

In addition to the timings, Table III also contains a variety of other data to

help illustrate the behavior of the graph construction algorithm. The number

of live ranges indicates the size of the universe for the set live. The entries for

clear-set, add-member, and delete-member indicate the number of times each

operation was invoked during the graph construction. Since the construction

process invokes clear-set once for each basic block, the entries for clear-set

correspond to the number of basic blocks in each routine. The entries marked

forall indicate how many definition points were encountered; that is, they

indicate how many times line (4) was executed. The entries for average length

and density show the average number of members in live. The low average

density shows why the bit vector version was not competitive.4 Naturally, the

average length is reduced by spilling.5

4,2 Other Successful Applications

Since adding an implementation of the sparse-set representation to our

toolbox, we have discovered several additional opportunities for its use. In

some cases, sparse sets provide an asymptotically superior implementation

choice; in other cases, they simply offer convenient reuse without unneces-

sary run-time costs. Three typical applications are described here.

—In Chaitin’s [1982] register allocator, the computation of spill costs, while

straightforward at the high level, is tricky to implement. In our version

[Briggs 1992, Section 8.7], we walk backward over each basic block, main-

taining a set need Load of all live ranges referenced since the last death.

The set requires the operations member, add-member, delete-member,

clear-set, and forall. The operation clear-set is especially important, since

we must empty the set at each death (potentially at each instruction).

—During the actual coloring phase of Chaitin’s allocator, we divide nodes

among two sets, high and low, depending on their degree. As a node n and

its edges are removed from the graph, the neighbors of n may migrate from

high to IOW. While IOW could be ei%ciently implemented as a singly linked

list and high as a doubly linked list, the sparse-set representation is just as

fast. Indeed, given an existing implementation, sparse sets are the simpler

implementation choice.

40ur forall for bit vectors considered each 32-bit word in the vector. If the word was nonzero, it
shifted through the bits until the word was empty.
5The allocator wag cdlowed 16 intager registers and 18 410&fig-P&A i-~~=t~~~.The -~=.~~~
length, after spilling, suggests an interesting way to compare the effectiveness of two register
allocators: a greater average number of members in live would indicate more eflkient utilization
of the machine’s register set.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

68 . P. Briggsand L. Torczon

—When placing ~-functions during construction of minimal SSA [Cytron

et al. 1989, Figure 4], the boolean arrays Work and DomFronPlus are

cleared for each variable. By using sparse sets instead of simple arrays, we

are able to clear the sets in constant time.G As a matter of convenience, we

also represent the worklist W with a sparse set.

While these applications of sparse sets were discovered during our work on

register allocation [Briggs 1992; Briggs et al. 1992], we have used similar

ideas in other passes of our optimizer, including dead-code elimination, value

numbering, constant propagation, and partial-redundancy elimination.

5. RELATED WORK

The problem of designing specific set representations is covered in several

textbooks on algorithms (e.g., Aho et al. [1974]). Papers analyzing special

representations for specific problems are also common. For example, West-

brook and Tarjan [1989] analyze algorithms for set union with backtracking,

and Yellin [1989] considers the problem of providing a constant-time test for

set equality.

The approach we use is based on the suggested solution to a problem posed

by Aho et al. [1974]. A similar problem and solution is given by Bentley [1986,

p. 9]. This idea is also used by Boehm and Weiser [1988] to support pointer

identification in their conservative garbage collector.

An interesting alternative to our approach is used in the implementation of

SETL [Dewar et al. 1979]. The default SETL representation uses hashing to

achieve constant expected time for member, add-member, and delete-member

with links to support an efficient forall. However, a hashed representation

requires time to initialize the hash table for both set-clear and set-copy.

6. SUMMARY

Programs should be designed in terms of well-understood abstractions, e.g.,

sequences, trees, and sets. When the design is complete, the programmer

should decide on a representation for each abstract object, where the choice of

representation is guided by the relative frequency of the different operations,

perhaps tempered by space considerations. ‘

Unfortunately, programmers tend to rely on intuition developed by experi-

ence rather than consider each new problem with the care it deserves. Of

course, part of the difficulty lies in recognizing when a particular problem is
new. In the cam of interference graph conrkruction, it was three year= before

we carefully considered the requirements for live. Part of the difficulty lay in

lack of adequate profiling; it is difficult to measure the overhead of a for loop

in a C program, and we were distracted by the cost of adding edges to the

graph. Since we had computed liveOut using traditional bit vector techniques,

6In a later presentation [Cytron et al. 1991, Fig. 11], the two boolean arrays are replaced with
integer arrays, Work and HasAlready, and a counter is maintained to avoid the need to
reinitialize for every variable.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

Efficient Representation for Sparse Sets . 69

it was natural (and wrong) to use the same bit vector routines to implement

live.

In this article, we have described a representation suitable for sets with a

fixed-size universe. The representation supports constant-time implementa-

tions of clear-set, member, add-member, delete-member, cardinality, and

choose-one. Based on the eflkiency of these operations, the new representa-

tion will often be superior to alternatives such as bit vectors, balanced binary

trees, hash tables, linked lists, etc. Additionally, the new representation

supports enumeration of the members in 0(n) time, making it a competitive

choice for relatively sparse sets requiring operations like forall, set-copy,

set-union, and set-di~erence.

ACKNOWLEDGMENTS

Rob Shillingsburg and Brian West suggested improvements to our implemen-

tation. The editor, the referees, and Keith Cooper suggested many ways to

improve our presentation. Keith Cooper and Ken Kennedy have supported

our work for many years. We thank them all for their help and interest.

REFERENCES

AHO, A. V., HOPCROFT,J. E., AND ULLW, J. D. 1974. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass.
BENTLEY, J. 1986. Programming Pearls. Addison-Wesley, Reading, Mass.

BOEHM, H.-J., AND WEWER, M. 1988. Garbage collection in an uncooperative environment.
Softw. Prac. Exp. 18, 9 (Sept.), 807-820.

BRIGGS, P. 1992. Register allocation via graph coloring. Ph.D. thesis, Rice Univ., Houston, Tex.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1992. Rematerialization. SIGPLAN Not. 27, 7

(July), 311-321. Proceedings of the ACM SIGPLAN ’92 Conference on Programming Lan-
guage Design and Implementation.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. SIGPLAN Not. 17, 6

(June), 98-105. proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction.
CHAITIN,G. J., AUSLANDER,M. A., CHANDRA,A. K., Cocm, J., HOPKINS,M. E., ANDMARKSTEIN,

P. W. 1981. Register allocation via coloring. Comput. Lang. 6, 1 (Jan.), 47-57.
CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently

computing static single assignment form and the control dependence graph. ACM Trans.

Program. Lang. Syst. 13, 4 (Oct.), 451-490.
CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGW, M. N., AND ZADECK, F. K. 1989. An efficient

method of computing static single assignment form. In Conference Record of the 16th Annual

ACM Symposium on the Principles of Programming Languages. ACM, New York, 25-35.
DEWAR, R. B. K., GRAND, A., LIU, S.-C., SCHWARTZ,J. T., AND SCHONBERG,E. 1979. Program-

ming by refinement, as exemplified by the SETL representation sublanguage. ACM Trans.

Program. Lang. Syst. 1, 1 (July), 27-49.

STANDARDSPERFORMANCEEVALUATION CORP. 1990. SPEC Release 1.2. SPEC Corp., Freemont,

Calif.
WESTBROOK, J. AND TWAN, R. E. 1989. Amortized analysis of algorithms for set union with

backtracking. SWIM J. Comput. 18, 1 (Feb.), 1-11.
YELLIN, D. M. 1989. Representing sets with constant time equality testing. Tech. Rep. RC

14539, IBM, Yorktown Heights, N.Y.

Received April 1993; revised August 1993; accepted October 1993

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

